ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The Yeast Iron Regulatory Proteins Grx3/4 and Fra2 Form Heterodimeric Complexes Containing a [2Fe-2S] Cluster with Cysteinyl and Histidyl Ligation

View Author Information
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
§ Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602
Department of Physics, Emory University, Atlanta, Georgia 30322
Chemistry Department, Northwestern University, Evanston, Illinois 60208
# Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29424
*To whom correspondence should be addressed. C.E.O.: e-mail, [email protected]; tel, 803-777-8783; fax, 803-777-9521. M.K.J.: e-mail, [email protected]; tel, 706-542-9378; fax, 706-542-9454.
Cite this: Biochemistry 2009, 48, 40, 9569–9581
Publication Date (Web):August 28, 2009
https://doi.org/10.1021/bi901182w
Copyright © 2009 American Chemical Society

    Article Views

    2403

    Altmetric

    -

    Citations

    176
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The transcription of iron uptake and storage genes in Saccharomyces cerevisiae is primarily regulated by the transcription factor Aft1. Nucleocytoplasmic shuttling of Aft1 is dependent upon mitochondrial Fe-S cluster biosynthesis via a signaling pathway that includes the cytosolic monothiol glutaredoxins (Grx3 and Grx4) and the BolA homologue Fra2. However, the interactions between these proteins and the iron-dependent mechanism by which they control Aft1 localization are unclear. To reconstitute and characterize components of this signaling pathway in vitro, we have overexpressed yeast Fra2 and Grx3/4 in Escherichia coli. We have shown that coexpression of recombinant Fra2 with Grx3 or Grx4 allows purification of a stable [2Fe-2S]2+ cluster-containing Fra2-Grx3 or Fra2-Grx4 heterodimeric complex. Reconstitution of a [2Fe-2S] cluster on Grx3 or Grx4 without Fra2 produces a [2Fe-2S]-bridged homodimer. UV−visible absorption and CD, resonance Raman, EPR, ENDOR, Mössbauer, and EXAFS studies of [2Fe-2S] Grx3/4 homodimers and the [2Fe-2S] Fra2-Grx3/4 heterodimers indicate that inclusion of Fra2 in the Grx3/4 Fe-S complex causes a change in the cluster stability and coordination environment. Taken together, our analytical, spectroscopic, and mutagenesis data indicate that Grx3/4 and Fra2 form a Fe-S-bridged heterodimeric complex with Fe ligands provided by the active site cysteine of Grx3/4, glutathione, and a histidine residue. Overall, these results suggest that the ability of the Fra2-Grx3/4 complex to assemble a [2Fe-2S] cluster may act as a signal to control the iron regulon in response to cellular iron status in yeast.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    One table showing the primers used for cloning and mutagenesis and two figures providing additional XAS data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 176 publications.

    1. Adrienne C. Dlouhy, Haoran Li, Angela-Nadia Albetel, Bo Zhang, Daphne T. Mapolelo, Sajini Randeniya, Ashley A. Holland, Michael K. Johnson, and Caryn E. Outten . The Escherichia coli BolA Protein IbaG Forms a Histidine-Ligated [2Fe-2S]-Bridged Complex with Grx4. Biochemistry 2016, 55 (49) , 6869-6879. https://doi.org/10.1021/acs.biochem.6b00812
    2. Lucia Banci, Francesca Camponeschi, Simone Ciofi-Baffoni, and Riccardo Muzzioli . Elucidating the Molecular Function of Human BOLA2 in GRX3-Dependent Anamorsin Maturation Pathway. Journal of the American Chemical Society 2015, 137 (51) , 16133-16143. https://doi.org/10.1021/jacs.5b10592
    3. Marco Albertini, Paola Berto, Francesca Vallese, Marilena Di Valentin, Paola Costantini, and Donatella Carbonera . Probing the Solvent Accessibility of the [4Fe–4S] Cluster of the Hydrogenase Maturation Protein HydF from Thermotoga neapolitana by HYSCORE and 3p-ESEEM. The Journal of Physical Chemistry B 2015, 119 (43) , 13680-13689. https://doi.org/10.1021/acs.jpcb.5b03110
    4. Huanchen Wang, Vasudha S. Nair, Ashley A. Holland, Samanta Capolicchio, Henning J. Jessen, Michael K. Johnson, and Stephen B. Shears . Asp1 from Schizosaccharomyces pombe Binds a [2Fe-2S]2+ Cluster Which Inhibits Inositol Pyrophosphate 1-Phosphatase Activity. Biochemistry 2015, 54 (42) , 6462-6474. https://doi.org/10.1021/acs.biochem.5b00532
    5. Allison Cockrell, Sean P. McCormick, Michael J. Moore, Mrinmoy Chakrabarti, and Paul A. Lindahl . Mössbauer, EPR, and Modeling Study of Iron Trafficking and Regulation in Δccc1 and CCC1-up Saccharomyces cerevisiae. Biochemistry 2014, 53 (18) , 2926-2940. https://doi.org/10.1021/bi500002n
    6. YaJun Tang, Jiahai Zhang, Jiang Yu, Ling Xu, Jihui Wu, Cong-Zhao Zhou, and Yunyu Shi . Structure-Guided Activity Enhancement and Catalytic Mechanism of Yeast Grx8. Biochemistry 2014, 53 (13) , 2185-2196. https://doi.org/10.1021/bi401293s
    7. Bo Zhang, Sibali Bandyopadhyay, Priyanka Shakamuri, Sunil G. Naik, Boi Hanh Huynh, Jérémy Couturier, Nicolas Rouhier, and Michael K. Johnson . Monothiol Glutaredoxins Can Bind Linear [Fe3S4]+ and [Fe4S4]2+ Clusters in Addition to [Fe2S2]2+ Clusters: Spectroscopic Characterization and Functional Implications. Journal of the American Chemical Society 2013, 135 (40) , 15153-15164. https://doi.org/10.1021/ja407059n
    8. Huanyao Gao, Sowmya Subramanian, Jérémy Couturier, Sunil G. Naik, Sung-Kun Kim, Thomas Leustek, David B. Knaff, Hui-Chen Wu, Florence Vignols, Boi Hanh Huynh, Nicolas Rouhier, and Michael K. Johnson . Arabidopsis thaliana Nfu2 Accommodates [2Fe-2S] or [4Fe-4S] Clusters and Is Competent for in Vitro Maturation of Chloroplast [2Fe-2S] and [4Fe-4S] Cluster-Containing Proteins. Biochemistry 2013, 52 (38) , 6633-6645. https://doi.org/10.1021/bi4007622
    9. Daniel W. Bak and Sean J. Elliott . Conserved Hydrogen Bonding Networks of MitoNEET Tune Fe-S Cluster Binding and Structural Stability. Biochemistry 2013, 52 (27) , 4687-4696. https://doi.org/10.1021/bi400540m
    10. Priyanka Shakamuri, Bo Zhang, and Michael K. Johnson . Monothiol Glutaredoxins Function in Storing and Transporting [Fe2S2] Clusters Assembled on IscU Scaffold Proteins. Journal of the American Chemical Society 2012, 134 (37) , 15213-15216. https://doi.org/10.1021/ja306061x
    11. Angela S. Fleischhacker, Audria Stubna, Kuang-Lung Hsueh, Yisong Guo, Sarah J. Teter, Justin C. Rose, Thomas C. Brunold, John L. Markley, Eckard Münck, and Patricia J. Kiley . Characterization of the [2Fe-2S] Cluster of Escherichia coli Transcription Factor IscR. Biochemistry 2012, 51 (22) , 4453-4462. https://doi.org/10.1021/bi3003204
    12. Haoran Li and Caryn E. Outten . Monothiol CGFS Glutaredoxins and BolA-like Proteins: [2Fe-2S] Binding Partners in Iron Homeostasis. Biochemistry 2012, 51 (22) , 4377-4389. https://doi.org/10.1021/bi300393z
    13. Haoran Li, Daphne T. Mapolelo, Sajini Randeniya, Michael K. Johnson, and Caryn E. Outten . Human Glutaredoxin 3 Forms [2Fe-2S]-Bridged Complexes with Human BolA2. Biochemistry 2012, 51 (8) , 1687-1696. https://doi.org/10.1021/bi2019089
    14. N. Yeung, B. Gold, N. L. Liu, R. Prathapam, H. J. Sterling, E. R. Willams, and G. Butland . The E. coli Monothiol Glutaredoxin GrxD Forms Homodimeric and Heterodimeric FeS Cluster Containing Complexes. Biochemistry 2011, 50 (41) , 8957-8969. https://doi.org/10.1021/bi2008883
    15. Ren Miao, Gregory P. Holmes-Hampton, and Paul A. Lindahl . Biophysical Investigation of the Iron in Aft1-1up and Gal-YAH1 Saccharomyces cerevisiae. Biochemistry 2011, 50 (13) , 2660-2671. https://doi.org/10.1021/bi102015s
    16. Hong Ye and Tracey A. Rouault. Human Iron−Sulfur Cluster Assembly, Cellular Iron Homeostasis, and Disease. Biochemistry 2010, 49 (24) , 4945-4956. https://doi.org/10.1021/bi1004798
    17. Michelle M. Dicus, Andrea Conlan, Rachel Nechushtai, Patricia A. Jennings, Mark L. Paddock, R. David Britt and Stefan Stoll. Binding of Histidine in the (Cys)3(His)1-Coordinated [2Fe−2S] Cluster of Human mitoNEET. Journal of the American Chemical Society 2010, 132 (6) , 2037-2049. https://doi.org/10.1021/ja909359g
    18. Trent Quist, Jiahua Chen, Alex MacNeil, Maria-Eirini Pandelia. The Cryptic Nature of Fe-S Clusters: A Case Study of the Hepatitis B HBx Oncoprotein. Inorganics 2023, 11 (12) , 475. https://doi.org/10.3390/inorganics11120475
    19. Debolina Hati, Ariane Brault, Malini Gupta, Kylie Fletcher, Jean-François Jacques, Simon Labbé, Caryn E. Outten. Iron homeostasis proteins Grx4 and Fra2 control activity of the Schizosaccharomyces pombe iron repressor Fep1 by facilitating [2Fe-2S] cluster removal. Journal of Biological Chemistry 2023, 299 (12) , 105419. https://doi.org/10.1016/j.jbc.2023.105419
    20. Qiuling Dong, Qing Yan, Bo Zhang, Li-qun Zhang, Xiaogang Wu, . Regulation of 2,4-diacetylphloroglucinol biosynthesis and biocontrol capacity by the BolA family protein IbaG in Pseudomonas fluorescens 2P24. Microbiology Spectrum 2023, 11 (5) https://doi.org/10.1128/spectrum.00985-23
    21. Ana Alves da Silva, Lisete Galego, Cecília Maria Arraiano. New Perspectives on BolA: A Still Mysterious Protein Connecting Morphogenesis, Biofilm Production, Virulence, Iron Metabolism, and Stress Survival. Microorganisms 2023, 11 (3) , 632. https://doi.org/10.3390/microorganisms11030632
    22. Kobi J. Simpson-Lavy, Martin Kupiec. The polyHIS Tract of Yeast AMPK Coordinates Carbon Metabolism with Iron Availability. International Journal of Molecular Sciences 2023, 24 (2) , 1368. https://doi.org/10.3390/ijms24021368
    23. Sofia R. Pauleta, Raquel Grazina, Marta S.P. Carepo, José J.G. Moura, Isabel Moura. Iron-sulfur clusters – functions of an ancient metal site. 2023, 105-173. https://doi.org/10.1016/B978-0-12-823144-9.00116-3
    24. Yanhong Song, Ziyi Wu, Hang Xue, Ping Zhao. Ferroptosis is involved in regulating perioperative neurocognitive disorders: emerging perspectives. Journal of Neuroinflammation 2022, 19 (1) https://doi.org/10.1186/s12974-022-02570-3
    25. Francesca Camponeschi, Mario Piccioli, Lucia Banci. The Intriguing mitoNEET: Functional and Spectroscopic Properties of a Unique [2Fe-2S] Cluster Coordination Geometry. Molecules 2022, 27 (23) , 8218. https://doi.org/10.3390/molecules27238218
    26. Paul A Lindahl, Shaik Waseem Vali. Mössbauer-based molecular-level decomposition of the Saccharomyces cerevisiae ironome, and preliminary characterization of isolated nuclei. Metallomics 2022, 14 (11) https://doi.org/10.1093/mtomcs/mfac080
    27. Guichun Li, Ankanahalli N. Nanjaraj Urs, Andrew Dancis, Yan Zhang. Genetic suppressors of Δgrx3 Δgrx4 , lacking redundant multidomain monothiol yeast glutaredoxins, rescue growth and iron homeostasis. Bioscience Reports 2022, 42 (6) https://doi.org/10.1042/BSR20212665
    28. Jordan D. Pritts, Sarah L.J. Michel. Fe-S clusters masquerading as zinc finger proteins. Journal of Inorganic Biochemistry 2022, 230 , 111756. https://doi.org/10.1016/j.jinorgbio.2022.111756
    29. Simone Ciofi-Baffoni, Claudia Andreini. The Intriguing Role of Iron-Sulfur Clusters in the CIAPIN1 Protein Family. Inorganics 2022, 10 (4) , 52. https://doi.org/10.3390/inorganics10040052
    30. Yuting Yang, Wanyu Xue, Panpan Chen, Xin Yuan, Xvzhen Li, Tingting Zhang, Shuxia Chen. Identification and expression analyzes of CC-type glutaredoxin in cucumber (Cucumis sativus L.) under abiotic stress. Scientia Horticulturae 2021, 289 , 110417. https://doi.org/10.1016/j.scienta.2021.110417
    31. Jun Li, Daqi Yu, Lan Liu, Huanhuan Liang, Qi Ouyang, Yingfang Liu. Structural study of the N-terminal domain of human MCM8/9 complex. Structure 2021, 29 (10) , 1171-1181.e4. https://doi.org/10.1016/j.str.2021.05.006
    32. Jonathan V. Dietz, Jennifer L. Fox, Oleh Khalimonchuk. Down the Iron Path: Mitochondrial Iron Homeostasis and Beyond. Cells 2021, 10 (9) , 2198. https://doi.org/10.3390/cells10092198
    33. Peihua Zheng, Xiuxia Zhang, Dongmei Wang, Juntao Li, Zelong Zhang, Yaopeng Lu, Jianan Xian, Anli Wang, Lei Wang. Molecular Characterization and Expression Analysis of a Novel Glutaredoxin 3 Gene in Pacific White Shrimp (Litopenaeus vannamei). Frontiers in Marine Science 2021, 8 https://doi.org/10.3389/fmars.2021.687377
    34. Panpan Li, Hanhan Liu, Xin Shi, Verena Prokosch. Hydrogen Sulfide: Novel Endogenous and Exogenous Modulator of Oxidative Stress in Retinal Degeneration Diseases. Molecules 2021, 26 (9) , 2411. https://doi.org/10.3390/molecules26092411
    35. Sambuddha Sen, Zechariah Thompson, Christine Wachnowsky, Sean Cleary, Sophie R Harvey, J A Cowan. Biochemical impact of a disease-causing Ile67Asn substitution on BOLA3 protein. Metallomics 2021, 13 (4) https://doi.org/10.1093/mtomcs/mfab010
    36. Robert Hider, Mayra Vera Aviles, Yu-Lin Chen, Gladys Oluyemisi Latunde-Dada. The Role of GSH in Intracellular Iron Trafficking. International Journal of Molecular Sciences 2021, 22 (3) , 1278. https://doi.org/10.3390/ijms22031278
    37. Sambuddha Sen, Amber L. Hendricks, James A. Cowan. Cluster exchange reactivity of [2Fe‐2S]‐bridged heterodimeric BOLA1‐GLRX5. The FEBS Journal 2021, 288 (3) , 920-929. https://doi.org/10.1111/febs.15452
    38. Stefania Iametti, Francesco Bonomi, Alberto Barbiroli. Circular Dichroism to Probe the Synthesis, Transfer, and Stability of Fe-S Clusters. 2021, 209-229. https://doi.org/10.1007/978-1-0716-1605-5_12
    39. Carsten Berndt, Loïck Christ, Nicolas Rouhier, Ulrich Mühlenhoff. Glutaredoxins with iron-sulphur clusters in eukaryotes - Structure, function and impact on disease. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2021, 1862 (1) , 148317. https://doi.org/10.1016/j.bbabio.2020.148317
    40. Evan A. Talib, Caryn E. Outten. Iron-sulfur cluster biogenesis, trafficking, and signaling: Roles for CGFS glutaredoxins and BolA proteins. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2021, 1868 (1) , 118847. https://doi.org/10.1016/j.bbamcr.2020.118847
    41. Jeffrey J. Warren, Harry B. Gray. Electron Transfer Proteins. 2021, 3-18. https://doi.org/10.1016/B978-0-12-409547-2.14831-0
    42. Tamanna Azam, Jonathan Przybyla-Toscano, Florence Vignols, Jérémy Couturier, Nicolas Rouhier, Michael K. Johnson. The Arabidopsis Mitochondrial Glutaredoxin GRXS15 Provides [2Fe-2S] Clusters for ISCA-Mediated [4Fe-4S] Cluster Maturation. International Journal of Molecular Sciences 2020, 21 (23) , 9237. https://doi.org/10.3390/ijms21239237
    43. Nicolas Grosjean, Crysten E. Blaby‐Haas. Leveraging computational genomics to understand the molecular basis of metal homeostasis. New Phytologist 2020, 228 (5) , 1472-1489. https://doi.org/10.1111/nph.16820
    44. Caroline C. Philpott, Sarju J. Patel, Olga Protchenko. Management versus miscues in the cytosolic labile iron pool: The varied functions of iron chaperones. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2020, 1867 (11) , 118830. https://doi.org/10.1016/j.bbamcr.2020.118830
    45. Thomas Roret, Geneviève Alloing, Jean-Michel Girardet, Thomas Perrot, Tiphaine Dhalleine, Jérémy Couturier, Pierre Frendo, Claude Didierjean, Nicolas Rouhier. Sinorhizobium meliloti YrbA binds divalent metal cations using two conserved histidines. Bioscience Reports 2020, 40 (10) https://doi.org/10.1042/BSR20202956
    46. Trnka Daniel, Hossain Md Faruq, Jordt Laura Magdalena, Gellert Manuela, Lillig Christopher Horst. Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism—Review. Molecules 2020, 25 (17) , 3860. https://doi.org/10.3390/molecules25173860
    47. Hanhan Liu, Natarajan Perumal, Caroline Manicam, Karl Mercieca, Verena Prokosch. Proteomics Reveals the Potential Protective Mechanism of Hydrogen Sulfide on Retinal Ganglion Cells in an Ischemia/Reperfusion Injury Animal Model. Pharmaceuticals 2020, 13 (9) , 213. https://doi.org/10.3390/ph13090213
    48. Mónica A. Mechoud, Nuria Pujol-Carrion, Sandra Montella-Manuel, Maria Angeles de la Torre-Ruiz, . Interactions of GMP with Human Glrx3 and with Saccharomyces cerevisiae Grx3 and Grx4 Converge in the Regulation of the Gcn2 Pathway. Applied and Environmental Microbiology 2020, 86 (14) https://doi.org/10.1128/AEM.00221-20
    49. Selma S. Alkafeef, Shelley Lane, Clinton Yu, Tingting Zhou, Norma V. Solis, Scott G. Filler, Lan Huang, Haoping Liu, . Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes. PLOS Genetics 2020, 16 (6) , e1008881. https://doi.org/10.1371/journal.pgen.1008881
    50. Gretchen E. Kroh, Marinus Pilon. Regulation of Iron Homeostasis and Use in Chloroplasts. International Journal of Molecular Sciences 2020, 21 (9) , 3395. https://doi.org/10.3390/ijms21093395
    51. Malini Gupta, Caryn E. Outten. Iron–sulfur cluster signaling: The common thread in fungal iron regulation. Current Opinion in Chemical Biology 2020, 55 , 189-201. https://doi.org/10.1016/j.cbpa.2020.02.008
    52. Felix Adusei-Danso, Faisal Tarique Khaja, Micaela DeSantis, Philip D. Jeffrey, Eugenie Dubnau, Borries Demeler, Matthew B. Neiditch, David Dubnau, . Structure-Function Studies of the Bacillus subtilis Ric Proteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and RNA Processing. mBio 2019, 10 (5) https://doi.org/10.1128/mBio.01841-19
    53. Christine Wachnowsky, Brian Rao, Sambuddha Sen, Brian Fries, Cecil J. Howard, Jennifer J. Ottesen, J. A. Cowan. Reconstitution, characterization, and [2Fe–2S] cluster exchange reactivity of a holo human BOLA3 homodimer. JBIC Journal of Biological Inorganic Chemistry 2019, 24 (7) , 1035-1045. https://doi.org/10.1007/s00775-019-01713-x
    54. Frédéric Devaux, Antonin Thiébaut. The regulation of iron homeostasis in the fungal human pathogen Candida glabrata. Microbiology 2019, 165 (10) , 1041-1060. https://doi.org/10.1099/mic.0.000807
    55. Zhihui Wang, Tianling Ma, Yunyan Huang, Jing Wang, Yun Chen, H. Corby Kistler, Zhonghua Ma, Yanni Yin, . A fungal ABC transporter FgAtm1 regulates iron homeostasis via the transcription factor cascade FgAreA-HapX. PLOS Pathogens 2019, 15 (9) , e1007791. https://doi.org/10.1371/journal.ppat.1007791
    56. Haoran Li, Caryn E. Outten. The conserved CDC motif in the yeast iron regulator Aft2 mediates iron–sulfur cluster exchange and protein–protein interactions with Grx3 and Bol2. JBIC Journal of Biological Inorganic Chemistry 2019, 24 (6) , 809-815. https://doi.org/10.1007/s00775-019-01705-x
    57. Sarju J. Patel, Avery G. Frey, Daniel J. Palenchar, Sooraj Achar, Kimberly Z. Bullough, Ajay Vashisht, James A. Wohlschlegel, Caroline C. Philpott. A PCBP1–BolA2 chaperone complex delivers iron for cytosolic [2Fe–2S] cluster assembly. Nature Chemical Biology 2019, 15 (9) , 872-881. https://doi.org/10.1038/s41589-019-0330-6
    58. Anurag Kumar, Nutan Chauhan, Shailza Singh. Understanding the Cross-Talk of Redox Metabolism and Fe-S Cluster Biogenesis in Leishmania Through Systems Biology Approach. Frontiers in Cellular and Infection Microbiology 2019, 9 https://doi.org/10.3389/fcimb.2019.00015
    59. Mohnad Abdalla, Wafa Ali Eltayb, Aadil Yousif. Comparison of structures among Saccharomyces cerevisiae Grxs proteins. Genes and Environment 2018, 40 (1) https://doi.org/10.1186/s41021-018-0104-5
    60. Telma S. Martins, Vítor Costa, Clara Pereira. Signaling pathways governing iron homeostasis in budding yeast. Molecular Microbiology 2018, 109 (4) , 422-432. https://doi.org/10.1111/mmi.14009
    61. Smilja Todorovic, Miguel Teixeira. Resonance Raman spectroscopy of Fe–S proteins and their redox properties. JBIC Journal of Biological Inorganic Chemistry 2018, 23 (4) , 647-661. https://doi.org/10.1007/s00775-018-1533-0
    62. Ricardo Garcia-Serres, Martin Clémancey, Jean-Marc Latour, Geneviève Blondin. Contribution of Mössbauer spectroscopy to the investigation of Fe/S biogenesis. JBIC Journal of Biological Inorganic Chemistry 2018, 23 (4) , 635-644. https://doi.org/10.1007/s00775-018-1534-z
    63. Paige E. Erpf, James A. Fraser. The Long History of the Diverse Roles of Short ORFs: sPEPs in Fungi. PROTEOMICS 2018, 18 (10) , 1700219. https://doi.org/10.1002/pmic.201700219
    64. Chang-Biao Chi, YaJun Tang, Jiahai Zhang, Ya-Nan Dai, Mohnad Abdalla, Yuxing Chen, Cong-Zhao Zhou. Structural and Biochemical Insights into the Multiple Functions of Yeast Grx3. Journal of Molecular Biology 2018, 430 (8) , 1235-1248. https://doi.org/10.1016/j.jmb.2018.02.024
    65. Huanyao Gao, Tamanna Azam, Sajini Randeniya, Jérémy Couturier, Nicolas Rouhier, Michael K. Johnson. Function and maturation of the Fe–S center in dihydroxyacid dehydratase from Arabidopsis. Journal of Biological Chemistry 2018, 293 (12) , 4422-4433. https://doi.org/10.1074/jbc.RA117.001592
    66. Pete Chandrangsu, Vu Van Loi, Haike Antelmann, John D. Helmann. The Role of Bacillithiol in Gram-Positive Firmicutes. Antioxidants & Redox Signaling 2018, 28 (6) , 445-462. https://doi.org/10.1089/ars.2017.7057
    67. Zvonimir Marelja, Silke Leimkühler, Fanis Missirlis. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Frontiers in Physiology 2018, 9 https://doi.org/10.3389/fphys.2018.00050
    68. Andrew Melber, Dennis R. Winge. Steps Toward Understanding Mitochondrial Fe/S Cluster Biogenesis. 2018, 265-292. https://doi.org/10.1016/bs.mie.2017.09.004
    69. Geoffrey D. Shimberg, Jordan D. Pritts, Sarah L.J. Michel. Iron–Sulfur Clusters in Zinc Finger Proteins. 2018, 101-137. https://doi.org/10.1016/bs.mie.2017.09.005
    70. Angela-Nadia Albetel, Caryn E. Outten. Characterization of Glutaredoxin Fe–S Cluster-Binding Interactions Using Circular Dichroism Spectroscopy. 2018, 327-353. https://doi.org/10.1016/bs.mie.2017.11.003
    71. Telma S. Martins, Clara Pereira, David Canadell, Rita Vilaça, Vítor Teixeira, Pedro Moradas-Ferreira, Eulàlia de Nadal, Francesc Posas, Vítor Costa. The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2018, 1863 (1) , 61-70. https://doi.org/10.1016/j.bbalip.2017.10.001
    72. Simone Ciofi-Baffoni, Veronica Nasta, Lucia Banci. Protein networks in the maturation of human iron–sulfur proteins. Metallomics 2018, 10 (1) , 49-72. https://doi.org/10.1039/C7MT00269F
    73. Lucía Ramos-Alonso, Nadine Wittmaack, Isabel Mulet, Carlos A. Martínez-Garay, Josep Fita-Torró, María Jesús Lozano, Antonia M. Romero, Carlos García-Ferris, María Teresa Martínez-Pastor, Sergi Puig. Molecular strategies to increase yeast iron accumulation and resistance. Metallomics 2018, 10 (9) , 1245-1256. https://doi.org/10.1039/C8MT00124C
    74. Sambuddha Sen, Brian Rao, Christine Wachnowsky, J. A. Cowan. Cluster exchange reactivity of [2Fe–2S] cluster-bridged complexes of BOLA3 with monothiol glutaredoxins. Metallomics 2018, 10 (9) , 1282-1290. https://doi.org/10.1039/C8MT00128F
    75. Christine Wachnowsky, Yushi Liu, Taejin Yoon, J. A. Cowan. Regulation of human Nfu activity in Fe‐S cluster delivery—characterization of the interaction between Nfu and the HSPA 9/Hsc20 chaperone complex. The FEBS Journal 2018, 285 (2) , 391-410. https://doi.org/10.1111/febs.14353
    76. Marcel Deponte. The Incomplete Glutathione Puzzle: Just Guessing at Numbers and Figures?. Antioxidants & Redox Signaling 2017, 27 (15) , 1130-1161. https://doi.org/10.1089/ars.2017.7123
    77. Sambuddha Sen, J. A. Cowan. Role of protein-glutathione contacts in defining glutaredoxin-3 [2Fe–2S] cluster chirality, ligand exchange and transfer chemistry. JBIC Journal of Biological Inorganic Chemistry 2017, 22 (7) , 1075-1087. https://doi.org/10.1007/s00775-017-1485-9
    78. Sandrine Ollagnier de Choudens, Hélène Puccio. FeS Cluster Assembly: ISC System in Bacteria and Eukarya. 2017, 1-19. https://doi.org/10.1002/9781119951438.eibc2467
    79. Veronica Nasta, Andrea Giachetti, Simone Ciofi-Baffoni, Lucia Banci. Structural insights into the molecular function of human [2Fe-2S] BOLA1-GRX5 and [2Fe-2S] BOLA3-GRX5 complexes. Biochimica et Biophysica Acta (BBA) - General Subjects 2017, 1861 (8) , 2119-2131. https://doi.org/10.1016/j.bbagen.2017.05.005
    80. Xinyu Zhang, Wenming Wang, Chen Li, Yi Zhao, Hong Yuan, Xianshi Tan, Lijie Wu, Zhuanhua Wang, Hongfei Wang. Structural insights into the binding of buckwheat glutaredoxin with GSH and regulation of its catalytic activity. Journal of Inorganic Biochemistry 2017, 173 , 21-27. https://doi.org/10.1016/j.jinorgbio.2017.04.019
    81. Caroline C. Philpott, Moon-Suhn Ryu, Avery Frey, Sarju Patel. Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells. Journal of Biological Chemistry 2017, 292 (31) , 12764-12771. https://doi.org/10.1074/jbc.R117.791962
    82. María Teresa Martínez-Pastor, Ana Perea-García, Sergi Puig. Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology 2017, 33 (4) https://doi.org/10.1007/s11274-017-2215-8
    83. Nuria Pujol-Carrion, Maria Angeles de la Torre-Ruiz. Physical interaction between the MAPK Slt2 of the PKC1-MAPK pathway and Grx3/Grx4 glutaredoxins is required for the oxidative stress response in budding yeast. Free Radical Biology and Medicine 2017, 103 , 107-120. https://doi.org/10.1016/j.freeradbiomed.2016.12.023
    84. Bibbin T. Paul, David H. Manz, Frank M. Torti, Suzy V. Torti. Mitochondria and Iron: current questions. Expert Review of Hematology 2017, 10 (1) , 65-79. https://doi.org/10.1080/17474086.2016.1268047
    85. Adrienne C. Dlouhy, Jude Beaudoin, Simon Labbé, Caryn E. Outten. Schizosaccharomyces pombe Grx4 regulates the transcriptional repressor Php4 via [2Fe–2S] cluster binding. Metallomics 2017, 9 (8) , 1096-1105. https://doi.org/10.1039/C7MT00144D
    86. Christine Wachnowsky, Insiya Fidai, James A. Cowan. Cytosolic iron–sulfur cluster transfer—a proposed kinetic pathway for reconstitution of glutaredoxin 3. FEBS Letters 2016, 590 (24) , 4531-4540. https://doi.org/10.1002/1873-3468.12491
    87. Insiya Fidai, Christine Wachnowsky, J. A. Cowan. Glutathione-complexed [2Fe-2S] clusters function in Fe–S cluster storage and trafficking. JBIC Journal of Biological Inorganic Chemistry 2016, 21 (7) , 887-901. https://doi.org/10.1007/s00775-016-1387-2
    88. Avery G. Frey, Daniel J. Palenchar, Justin D. Wildemann, Caroline C. Philpott. A Glutaredoxin·BolA Complex Serves as an Iron-Sulfur Cluster Chaperone for the Cytosolic Cluster Assembly Machinery. Journal of Biological Chemistry 2016, 291 (43) , 22344-22356. https://doi.org/10.1074/jbc.M116.744946
    89. Antimo Cutone, Barry D. Howes, Adriana E. Miele, Rossella Miele, Alessandra Giorgi, Andrea Battistoni, Giulietta Smulevich, Giovanni Musci, Maria Carmela Bonaccorsi di Patti. Pichia pastoris Fep1 is a [2Fe-2S] protein with a Zn finger that displays an unusual oxygen-dependent role in cluster binding. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep31872
    90. Marta A Uzarska, Veronica Nasta, Benjamin D Weiler, Farah Spantgar, Simone Ciofi-Baffoni, Maria Rosaria Saviello, Leonardo Gonnelli, Ulrich Mühlenhoff, Lucia Banci, Roland Lill. Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron-sulfur proteins. eLife 2016, 5 https://doi.org/10.7554/eLife.16673
    91. Núria Vall-llaura, Gemma Reverter-Branchat, Celia Vived, Naomi Weertman, María José Rodríguez-Colman, Elisa Cabiscol. Reversible glutathionylation of Sir2 by monothiol glutaredoxins Grx3/4 regulates stress resistance. Free Radical Biology and Medicine 2016, 96 , 45-56. https://doi.org/10.1016/j.freeradbiomed.2016.04.008
    92. . Iron Uptake by Plants and Fungi. 2016, 155-204. https://doi.org/10.1002/9781118925645.ch5
    93. Geoffrey D. Shimberg, Jamie L. Michalek, Abdulafeez A. Oluyadi, Andria V. Rodrigues, Beth E. Zucconi, Heather M. Neu, Shanchari Ghosh, Kanisha Sureschandra, Gerald M. Wilson, Timothy L. Stemmler, Sarah L. J. Michel. Cleavage and polyadenylation specificity factor 30: An RNA-binding zinc-finger protein with an unexpected 2Fe–2S cluster. Proceedings of the National Academy of Sciences 2016, 113 (17) , 4700-4705. https://doi.org/10.1073/pnas.1517620113
    94. N. Maio, T. A. Rouault. Mammalian Fe–S proteins: definition of a consensus motif recognized by the co-chaperone HSC20. Metallomics 2016, 8 (10) , 1032-1046. https://doi.org/10.1039/C6MT00167J
    95. Insiya Fidai, Christine Wachnowsky, J. A. Cowan. Mapping cellular Fe–S cluster uptake and exchange reactions – divergent pathways for iron–sulfur cluster delivery to human ferredoxins. Metallomics 2016, 8 (12) , 1283-1293. https://doi.org/10.1039/C6MT00193A
    96. Xiuxiang An, Caiguo Zhang, Robert A. Sclafani, Paul Seligman, Mingxia Huang. The late‐annotated small ORF LSO 1 is a target gene of the iron regulon of Saccharomyces cerevisiae. MicrobiologyOpen 2015, 4 (6) , 941-951. https://doi.org/10.1002/mbo3.303
    97. Amanda J. Bird. Cellular sensing and transport of metal ions: implications in micronutrient homeostasis. The Journal of Nutritional Biochemistry 2015, 26 (11) , 1103-1115. https://doi.org/10.1016/j.jnutbio.2015.08.002
    98. Joshua D. Wofford, Paul A. Lindahl. Mitochondrial Iron-Sulfur Cluster Activity and Cytosolic Iron Regulate Iron Traffic in Saccharomyces cerevisiae. Journal of Biological Chemistry 2015, 290 (45) , 26968-26977. https://doi.org/10.1074/jbc.M115.676668
    99. Michele Scian, William M. Atkins. The busulfan metabolite EdAG irreversibly glutathionylates glutaredoxins. Archives of Biochemistry and Biophysics 2015, 583 , 96-104. https://doi.org/10.1016/j.abb.2015.08.005
    100. Lucia Banci, Simone Ciofi-Baffoni, Karolina Gajda, Riccardo Muzzioli, Riccardo Peruzzini, Julia Winkelmann. N-terminal domains mediate [2Fe-2S] cluster transfer from glutaredoxin-3 to anamorsin. Nature Chemical Biology 2015, 11 (10) , 772-778. https://doi.org/10.1038/nchembio.1892
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect