Skip to main content
Log in

Evolution of conspicuous colouration, body size and gregariousness: a comparative analysis of lepidopteran larvae

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Protective colouration in animals includes camouflage (i.e., crypsis), that decreases the risk of detection, and conspicuous colouration, which is often used in combination with chemical defences to deter predators from attacking. Experiments have shown that the efficacy of conspicuous colouration increases with increasing size of pattern elements and larger body size. Prey species that have acquired avoidance inducing colouration therefore may be exposed to selection for larger body size, and such colouration may more easily evolve in large than in small prey species. Here we test for a difference in body size between species with different colouration modes and perform a comparative analysis based on phylogenetically independent contrasts to examine if evolutionary shifts in colour pattern have been associated with evolutionary changes in body size, using data for 578 species of moths. Larval body size did not differ between species with signalling and non-signalling larvae, and results from the comparative analysis suggest that these two traits have not evolved in parallel. The lack of association between evolutionary changes in colouration and body size may reflect a confounding influence of lifestyle, because evolutionary shifts from solitary to group-living larvae were associated with decreased larval body length and adult wing span. Because evolutionary changes in larval body size were associated with evolutionary changes in adult wing span the predicted association between colouration and size may have been confounded also by conflicting selection on body size in larvae and adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P., Leimar, O., Nylin, S. and Wiklund, C. (1996) The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. Am. Nat. 147, 381-395.

    Google Scholar 

  • Atkinson, D. (1994) Temperature and organism size. Adv. Ecol. Res. 25, 1-58.

    Google Scholar 

  • Alatalo, R. V. and Mappes, J. (1996) Tracking the evolution of warning signals. Nature 382, 708-709.

    Google Scholar 

  • Bates, W. H. (1862) Contributions to an insect fauna of the Amazon valley. Lepidoptera:Helicinidae. Trans. Linn. Soc. London 23, 495-566.

    Google Scholar 

  • Blanckenhorn, W. U. (2000) The evolution of body size:what keeps organisms small? Quart. Rev. Biol. 75, 385-407.

    Google Scholar 

  • Blest, A. D. (1957) The function of eyespot patterns in the Lepidoptera. Behaviour 11, 209-256.

    Google Scholar 

  • Brodie, E. D. III (1992) Correlational selection for colour pattern and antipredator behaviour in the garter snake Thamnophis ordinoides. Evolution 46, 1284-1298.

    Google Scholar 

  • Carter, D. J. (1984) Pest Lepidoptera of Europe-with special reference to the British Isles. Series Entomoligica. Vol 31, Dr Junk Publishers, London.

    Google Scholar 

  • Chinery, M. (1976) Nordeuropas Insekter-En bestämningsbok. Albert Bonniers Förlag, Stockholm.

    Google Scholar 

  • Coppinger, R. P. (1969) The effect of experience and novelty on avian feeding behaviour with reference to the evolution of warning colouration in butterflies. I. Reactions of wild-caught adult blue-jays to novel insects. Behavior 35, 4-60.

    Google Scholar 

  • Coppinger, R. P. (1970) The effect of experience and novelty on avian feeding behaviour with reference to the evolution of warning colouration in butterflies. II. Reactions of the naïve birds to novel insects. Am. Nat. 104, 323-335.

    Google Scholar 

  • Cott, H. B. (1940) Adaptive Colouration in Animals. Methuen, London.

    Google Scholar 

  • Darwin, C. (1871) The Decent of Man and Selection in Relation to Sex. 2nd edn. John Murray, London.

    Google Scholar 

  • DeJong, P. S., Gussekloo, W. S. and Brakefield, P. M. (1996) Differences in thermal balance, body temperature and activity between non-melanic and melanic two-spot ladybird beetles (Adalia bipunctata ) under controlled conditions. J. Exp. Biol. 199, 2655-2666.

    Google Scholar 

  • Digby, P. S. B. (1955) Factors affecting the temperature excess of insects in sunshine. J. Exp. Biol. 32, 279-298.

    Google Scholar 

  • Edmunds, M. (1974) Defence in Animals. Longman, Harlow.

    Google Scholar 

  • Emmet, A. M. and Heath, J. (1991) The Moths and Butterflies of Great Britain and Ireland. Vol 7, Part 2, B. H. and A. Harley Ltd., Colchester.

    Google Scholar 

  • Endler, J. A. (1978) A predator 's view of animal color patterns. Evol. Biol. 11, 319-364.

    Google Scholar 

  • Endler, J. A. (1991) Interactions between predators and prey. In J. R. Krebs and N. B. Davies (eds) Behavioural Ecology: An Evolutionary Approach. 3rd edn. Blackwell, Oxford, pp. 169-196.

    Google Scholar 

  • Felsenstein, J. (1985) Phylogenies and the comparative method. Am. Nat. 125, 1-15.

    Google Scholar 

  • Fergueson, D. C. (1972) The Moths of America north of Mexico including Greenland. Fasicle 20. 2. Bombycoidea: Saturniidae. EW Classey and RBD Publications, London.

    Google Scholar 

  • Fergueson, D. C. (1978) The Moths of America north of Mexico including Greenland. Fasicle 22. 2. Noctuidea: Lymatridae. EW Classey and Wedge Entomological Research Foundation, London.

    Google Scholar 

  • Fisher, R. A. (1930) The Genetical Theory of Natural Selection. Clarendon, Oxford.

    Google Scholar 

  • Forsman, A. and Appelqvist, S. (1998) Visual predators impose correlational selection on prey color pattern and behavior. Behav. Ecol. 9, 409-413.

    Google Scholar 

  • Forsman, A. and Merilaita, S. (1999) Fearful symmetry:pattern size and asymmetry a. ects aposematic signal effiancy. Evol. Ecol. 13, 131-140.

    Google Scholar 

  • Franclemont, J. G. (1973) The Moths of America North of Mexico Including Greenland. Fasicle 20. 1. Mimallonoidea: Mimallonoidae and Bimycoidea: Apatelodidae, Bombycidae, Lasiocampidae. EW Classey and RBD Publications, London.

    Google Scholar 

  • Furniss, R. L. and Carolin, V. M. (1977) US Department of Agriculture, Forest Service, Western Forest Insects, Miscellanous Publication No. 273.

  • Gamberale, G. and Tullberg, B. S. (1996a) Evidence for a peak-shift in predator generalization among aposematic prey. Proc. R. Soc. London B 263, 1329-1334.

    Google Scholar 

  • Gamberale, G. and Tullberg, B. S. (1996b) Evidence for a more effective signal in aggregated aposematic prey. Anim. Behav. 52, 597-601.

    Google Scholar 

  • Gamberale, G. and Tullberg, B. S. (1998) Aposematism and gregariousness: the combined effect of group size and colouration on signal repellence. Proc. R. Soc. London B 265, 889-894.

    Google Scholar 

  • Gerstmeier, R. (1994) Fjärilar-Kännetecken och förekomst. Wahlströms Naturguider, Stockholm.

    Google Scholar 

  • Gittleman, J. L. and Harvey P. H. (1980) Why are distasteful prey not cryptic? Nature 286, 149-150.

    Google Scholar 

  • Guilford, T. (1978) The evolution of conspicuous colouration. Am. Nat. 131, 7-21.

    Google Scholar 

  • Guilford, T. (1990) The evolution of aposematism. In D. L. Evans and J. O. Schmidt (eds) Insect Defence 1. State University of New York Press, Albany, pp. 23-26.

    Google Scholar 

  • Gullander, B. (1971) Nordens nattflyn. PA Norstedt and Söners förlag, Stockholm.

    Google Scholar 

  • Harvey, P. H. and Pagel, M. D. (1991) The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford.

    Google Scholar 

  • Hodges, R. W. (1971) The moths of America north of Mexico including Greenland. Fasicle 21. Sphingidae: Hawkmoths. EW Classey and RBD Publications, London. http://www.atl.cfs.nrcan.gc.ca, 07/09/00 http://www.atl.cfs.NRCan.gc.ca, 07/09/00 http://www.digilander.iol.it, 07/21/00 http://www.doacs.state.fl.us, 07/20/00 http://www.fhpr8.srs.fs.fed.us, 07/09/00 http://www.nitro.biosci.arizona.edu, 08/06/00 http://www.snapper.bio.umass.edu, 08/06/00 http://www.cdfa.ca.gov, 07/21/00 http://www.fcmr.forestry.ca, 07/12/00 http://www.forestry.ubc.ca, 07/12/00 http://www.furman.edu, 07/13/00 http://www.ipm.ucdavis.edu, 07/12/00 http://www.naturegrid.org.uk, 07/15/00 http:/www.npwrc.usgs.gov, 07/15/00

    Google Scholar 

  • Järvi, T. B., Sillén-Tullberg, B. and Wiklund, C. (1981) The cost of being aposematic:an experimental study of predation on larvae of Papilio machaon by the great tit Parus major. Oikos 36, 267-272.

    Google Scholar 

  • Leimar, O., Enquist, M. and Sillén-Tullberg, B. (1986) Evolutionary stability of aposematic coloration and prey unpro tability:a theoretical analysis. Am. Nat. 128, 468-490.

    Google Scholar 

  • Lindstrom, L., Alatalo, R. V., Mappes, J., Riipi, M. and Vertainen L. (1999) Can aposematic signals evolve by gradual change? Nature 397, 249-251.

    Google Scholar 

  • McGuFFn, W. C. (1967) Guide to the Geometridae of Canada (Lepidoptera). I. Subfamily Sterrhinae. 1. Entomol. Soc. Canada Mem. 50, 1-67.

    Google Scholar 

  • McGuffn, W. C. (1972) Guide to the Geometridae of Canada (Lepidoptera). II. Subfamily En. 1. Ennominae. 1. Entomol. Soc. Canada Mem. 86, 1-159.

    Google Scholar 

  • McGuffn, W. C. (1977) Guide to the Geometridae of Canada (Lepidoptera ). II. Subfamily Ennominae. 2. Entomol. Soc. Canada Mem. 101, 1-191.

    Google Scholar 

  • McGuffn, W. C. (1981) Guide to the Geometridae of Canada (Lepidoptera). II. Subfamily Ennominae. 3. Entomol. Soc. Canada Mem. 117, 1-153.

    Google Scholar 

  • McGuffn, W. C. (1989) Guide to the Geometridae of Canada (Lepidoptera). II. Subfamily Ennominae. 4. Entomol. Soc. Canada Mem. 138, 1-182.

    Google Scholar 

  • Merilaita, S. (1998) Crypsis through disruptive coloration in an isopod. Proc. R. Soc. Lond. B. 265, 1059-1064.

    Google Scholar 

  • Merilaita, S., Tuomi, J. and Jormalainen, V. (1999) Optimization of cryptic coloration in heterogeneous habitats. Biol. J. Linn. Soc. 67, 151-161.

    Google Scholar 

  • Michener, C. D. (1952) The Saturniidae (Lepidoptera) of the Western hemisphere:Morphology, phylogeny and classi cation. Bull. Am. Mus. Nat. Hist. 98, 335-501.

    Google Scholar 

  • Miller, J. A. (1991) Cladism and classi cation of the Notodontidae (Lepidoptera: Noctuidea) based on larvae and adult morphology. Bull. Am. Mus. Nat. Hist. 204, 1-226.

    Google Scholar 

  • Møller, A. P. and Birkhead, T. R. A. (1992) A pairwise comparative method as illustrated by copulation frequency in birds. Am. Nat. 139, 644-656.

    Google Scholar 

  • Nielsen, E. S. (1989) Phylogeny of major Lepidopteran groups. In B. Fernholm, K. Bremer and H. Jörnvall (eds) The Hierarchy of Life. Elsevier, Amsterdam, pp. 281-294.

    Google Scholar 

  • Poulton, E. B. (1890) The Colour of Animals: Their Meaning and Use. Keagan Pauil, Trench, Trubner, London.

    Google Scholar 

  • Purvis, A. and Rambaut, A. (1995) Comparative analysis by independent contrasts (C. A. I. C.):an Apple Macintosh application for analysing comparative data. Computer Appl. Biosci. 11, 247-251.

    Google Scholar 

  • Reznick, D. A., Bryga, H. and Endler, J. A. (1990) Experimentally induced life-history variation in a natural population. Nature 346, 357-359.

    Google Scholar 

  • Roff, D. A. (1992) The Evolution of Life Histories. Chapman and Hall, New York.

    Google Scholar 

  • Roff, D. A. (2000) Trade-offs between growth and reproduction:an analysis of the quantitative genetic evidence. J. Evol. Biol. 13, 434-445.

    Google Scholar 

  • Roper, T. J. and Redstone, S. (1987) Conspicuousness of distasteful prey a. ects the strength and durability of one-trial avoidance learning. Anim. Behav. 35, 739-747.

    Google Scholar 

  • Rowe, C. and Guilford, T. (1996) Hidden color aversions in domestic chicks triggered by pyrazine odours of insect warning displays. Nature 383, 520-522.

    Google Scholar 

  • Rougeot, P. C, and Viette, P. (1980) Svärmare och spinnare i Europa och Nordafrika, Bonniers, Stockholm.

    Google Scholar 

  • Sargent, T. D. (1990) Startle as an anti-predator mechanism with special reference to the underwing moths, (Catocala). In D. L. Evaus and J. O. Schmidt (eds) Insect Defenses-Adaptive Mechanisms and Strategies of Prey and Predators. State University of New York Press, Albany, pp. 229-249.

    Google Scholar 

  • Shine, R. (2000) Vertebral numbers in male and female snakes:the roles of natural, sexual and fecundity selection. J. Evol. Biol. 13, 455-465.

    Google Scholar 

  • Sillén-Tullberg, B. (1988) Evolution of gregariousness in aposematic butter. y larvae:a phylogenetic analysis. Evolution 42, 293-305.

    Google Scholar 

  • Sillén-Tullberg, B. (1993) The effect of biased inclusion of taxa on the correlation between discrete characters in phylogenic trees. Evolution 47, 1182-1191.

    Google Scholar 

  • Skinner, B. (1984) Moths of the British Isles. William Clowes Ltd., London.

    Google Scholar 

  • Skou, P. (1986) The Geometroid Moths of North Europé, Scandinaivan Science Press, Copenhagen.

    Google Scholar 

  • Stanek, V. J. (1977) Fjärilarnas värld i färg. Tidens Förlag, Stockholm.

    Google Scholar 

  • Stevenson, R. D. (1985) Body size and limits to the daily range of body temperatures in terrestrial ectotherms. Am. Nat. 125, 102-117.

    Google Scholar 

  • Stewart, L. A. and Dixon, A. F. G. (1989) Why big species of ladybird beetles are not melanic. Funct. Ecol. 3, 165-177.

    Google Scholar 

  • Stokoe, W. J. (1952) Butterffies and moths of the wayside and woodland, Frederick Warne and Co., Ltd, London.

    Google Scholar 

  • Tullberg, B. S. and Hunter, A. F. (1996) Evolution of larval gregariousness in relation to repellent defenses and warning colouration in tree-feeding Macrolepidoptera:a phylogenetic analysis based on independent contrasts. Biol. J. Linn. Soc. 57, 253-276.

    Google Scholar 

  • Tullgren, A. and Ljungdahl, D. (1941) Svenska Fjärilar, systematisk bearbetning av Sveriges storfjärilar-Macrolepidoptera. Nordisk Familjeboks förlags aktiebolag, Stockholm.

    Google Scholar 

  • Wallace, A. R. (1878) Tropical Nature and Other Essays. Macmillan, London.

    Google Scholar 

  • Watt, W. B. (1968) Adaptive significance of pigment polymorphism in Colias butterflies. I. Varia-tion of melanin pigment in relation to thermoregulation. Evolution 22, 437-458.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Forsman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, M., Forsman, A. Evolution of conspicuous colouration, body size and gregariousness: a comparative analysis of lepidopteran larvae. Evolutionary Ecology 17, 51–66 (2003). https://doi.org/10.1023/A:1022417601010

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022417601010

Navigation