Advertisement
No access
Research Articles

Hairpin RNAs and Retrotransposon LTRs Effect RNAi and Chromatin-Based Gene Silencing

Science
22 Aug 2003
Vol 301, Issue 5636
pp. 1069-1074

Abstract

The expression of short hairpin RNAs in several organisms silences gene expression by targeted mRNA degradation. This RNA interference (RNAi) pathway can also affect the genome, as DNA methylation arises at loci homologous to the target RNA in plants. We demonstrate in fission yeast that expression of a synthetic hairpin RNA is sufficient to silence the homologous locus in trans and causes the assembly of a patch of silent Swi6 chromatin with cohesin. This requires components of the RNAi machinery and Clr4 histone methyltransferase for small interfering RNA generation. A similar process represses several meiotic genes through nearby retrotransposon long terminal repeats (LTRs). These analyses directly implicate interspersed LTRs in regulating gene expression during cellular differentiation.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (schramke.som.pdf)

References and Notes

1
B. A. Sullivan, M. D. Blower, G. H. Karpen, Nature Rev. Genet.2, 584 (2001).
2
G. H. Karpen, R. C. Allshire, Trends Genet.13, 489 (1997).
3
G. P. Copenhaver et al., Science286, 2468 (1999).
4
C. X. Zhong et al., Plant Cell14, 2825(2002).
5
X. Sun, H. D. Le, J. M. Wahlstrom, G. H. Karpen, Genome Res.13, 182 (2003).
6
P. Bernard et al., Science294, 2539 (2001).
7
N. Nonaka et al., Nature Cell Biol.4, 89 (2002).
8
A. M. Weiner, Curr. Opin. Cell Biol.14, 343 (2002).
9
M. Speek, Mol. Cell. Biol.21, 1973 (2001).
10
K. Kashkush, M. Feldman, A. A. Levy, Nature Genet.33, 102 (2003).
11
N. C. Comfort, Trends Genet.17, 475(2001).
12
J. A. Jeddeloh, J. Bender, E. J. Richards, Genes Dev.12, 1714 (1998).
13
A. Miura et al., Nature411, 212 (2001).
14
R. J. Britten, E. H. Davidson, Science165, 349 (1969).
15
C. Maison et al., Nature Genet.30, 329 (2002).
16
M. A. Hakimi et al., Nature418, 994 (2002).
17
Y. Kondo, J. P. Issa, J. Biol. Chem.278, 27658 (2003).
18
I. C. Waizenegger, S. Hauf, A. Meinke, J. M. Peters, Cell103, 399 (2000).
19
R. C. Allshire, E. R. Nimmo, K. Ekwall, J. P. Javerzat, G. Cranston, Genes Dev.9, 218 (1995).
20
J. F. Partridge, B. Borgstrom, R. C. Allshire, Genes Dev.14, 783 (2000).
21
S. Rea et al., Nature406, 593 (2000).
22
J. Nakayama, J. C. Rice, B. D. Strahl, C. D. Allis, S. I. Grewal, Science292, 110 (2001).
23
A. J. Bannister et al., Nature410, 120 (2001).
24
J. F. Partridge, K. S. Scott, A. J. Bannister, T. Kouzarides, R. C. Allshire, Curr. Biol.12, 1652 (2002).
25
B. J. Reinhart, D. P. Bartel, Science297, 1831 (2002).
26
T. A. Volpe et al., Science297, 1833 (2002).
27
P. Provost et al., Proc. Natl. Acad. Sci. U.S.A.99, 16648 (2002).
28
I. M. Hall, K. Noma, S. I. Grewal, Proc. Natl. Acad. Sci. U.S.A.100, 193 (2003).
29
T. A. Volpe et al., Chromosome Res.11, 137 (2003).
30
H. Nakagawa et al., Genes Dev.16, 1766 (2002).
31
N. J. Bowen, I. K. Jordan, J. A. Epstein, V. Wood, H. L. Levin, Genome Res., in press.
32
G. J. Hannon, Nature418, 244 (2002).
33
M. Wassenegger, S. Heimes, L. Riedel, H. L. Sanger, Cell76, 567 (1994).
34
L. Jones et al., Plant Cell11, 2291 (1999).
35
M. F. Mette, W. Aufsatz, J. van der Winden, M. A. Matzke, A. J. Matzke, EMBO J.19, 5194 (2000).
36
A. Hamilton, O. Voinnet, L. Chappell, D. Baulcombe, EMBO J.21, 4671 (2002).
37
D. Zilberman, X. Cao, S. E. Jacobsen, Science299, 716 (2003).
38
K. Ekwall, G. Cranston, R. C. Allshire, Genetics153, 1153 (1999).
39
Expression of shuraSE silences ura4+ expression from the wild-type ura4+ locus, from Rint:ura4+, and from ura4+ inserted at bub1, dma1, mad2, rad1, rad2, rad3, rad22, and wee1 loci. It is therefore unlikely that flanking chromatin makes ura4+ prone to silencing. V. Schramke, R. Allshire, unpublished observations.
40
I. M. Hall et al., Science297, 2232 (2002).
41
J. Mata, R. Lyne, G. Burns, J. Bahler, Nature Genet.32, 143 (2002).
42
T. Watanabe et al., Nucleic Acids Res.29, 2327 (2001).
43
A. V. Gendrel, Z. Lippman, C. Yordan, V. Colot, R. A. Martienssen, Science297, 1871 (2002).
44
www.genedb.org/genedb/pombe
45
D. C. Weaver, G. V. Shpakovski, E. Caputo, H. L. Levin, J. D. Boeke, Gene131, 135(1993).
46
V. Ambros, Cell107, 823 (2001).
47
D. Baulcombe, Science297, 2002 (2002).
48
C. A. Kidner, R. A. Martienssen, Trends Genet.19, 13 (2003).
49
S. M. Elbashir, J. Martinez, A. Patkaniowska, W. Lendeckel, T. Tuschl, EMBO J.20, 6877 (2001).
50
R. K. Dawe, Plant Cell15, 297 (2003).
51
F. Sleutels, R. Zwart, D. P. Barlow, Nature415, 810 (2002).
52
C. Fournier et al., EMBO J.21, 6560 (2002).
53
C. Tufarelli et al., Nature Genet. (2003).
54
shuraSE is expressed from the nmt41 promoter on the previously described pREP41 plasmid. Transcriptional repressors turn off this promoter in the presence of thiamine. High expression occurs in media with no thiamine.
55
A. F. Dernburg, G. H. Karpen, Cell111, 159 (2002).
56
We thank members of the Allshire lab for advice and suggestions; A. Pidoux, A. Bird, and N. Hastie for comments on the manuscript; T. Volpe and R. Martienssen for strains and discussions; A. Hamilton and M. Matzke for siRNA detection protocols. We are grateful to V. Wood and H. Levin for communicating data before publication. R.A. also thanks members of the Epigenetic Regulation Network (EC HPRN-CT-2000-00078) for valuable input especially T. Jenuwein for antiserum for methyl H3. This research is supported by the Wellcome Trust. R.A. is a Wellcome Trust Principal Research Fellow.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 301 | Issue 5636
22 August 2003

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 15 May 2003
Accepted: 7 July 2003
Published in print: 22 August 2003

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/1086870/DC1
Materials and Methods
Table S1
References

Authors

Affiliations

Vera Schramke
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK.
Robin Allshire* [email protected]
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Small Interfering RNAs That Trigger Posttranscriptional Gene Silencing Are Not Required for the Histone H3 Lys9 Methylation Necessary for Transgenic Tandem Repeat Stabilization in Neurospora crassa , Molecular and Cellular Biology, 25, 9, (3793-3801), (2023).https://doi.org/10.1128/MCB.25.9.3793-3801.2005
    Crossref
  2. A Motif within SET-Domain Proteins Binds Single-Stranded Nucleic Acids and Transcribed and Supercoiled DNAs and Can Interfere with Assembly of Nucleosomes, Molecular and Cellular Biology, 25, 5, (1891-1899), (2023).https://doi.org/10.1128/MCB.25.5.1891-1899.2005
    Crossref
  3. Dicer-Dependent Turnover of Intergenic Transcripts from the Human β-Globin Gene Cluster, Molecular and Cellular Biology, 25, 21, (9724-9733), (2023).https://doi.org/10.1128/MCB.25.21.9724-9733.2005
    Crossref
  4. Global Effects on Gene Expression in Fission Yeast by Silencing and RNA Interference Machineries, Molecular and Cellular Biology, 25, 2, (590-601), (2023).https://doi.org/10.1128/MCB.25.2.590-601.2005
    Crossref
  5. cis -Acting Determinants of Heterochromatin Formation on Drosophila melanogaster Chromosome Four , Molecular and Cellular Biology, 24, 18, (8210-8220), (2023).https://doi.org/10.1128/MCB.24.18.8210-8220.2004
    Crossref
  6. Dissection of a Natural RNA Silencing Process in the Drosophila melanogaster Germ Line , Molecular and Cellular Biology, 24, 15, (6742-6750), (2023).https://doi.org/10.1128/MCB.24.15.6742-6750.2004
    Crossref
  7. The Assembly and Maintenance of Heterochromatin Initiated by Transgene Repeats Are Independent of the RNA Interference Pathway in Mammalian Cells, Molecular and Cellular Biology, 26, 11, (4028-4040), (2023).https://doi.org/10.1128/MCB.02189-05
    Crossref
  8. Retraction, Science, 310, 5745, (49-49), (2021)./doi/10.1126/science.310.5745.49b
    Abstract
  9. Small Interfering RNA-Induced Transcriptional Gene Silencing in Human Cells, Science, 305, 5688, (1289-1292), (2021)./doi/10.1126/science.1101372
    Abstract
  10. RNAi-Mediated Targeting of Heterochromatin by the RITS Complex, Science, 303, 5658, (672-676), (2021)./doi/10.1126/science.1093686
    Abstract
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media