Advertisement
No access
Research Article

Functional heterogeneity of human memory CD4+ T cell clones primed by pathogens or vaccines

Science
4 Dec 2014
Vol 347, Issue 6220
pp. 400-406

For T cells, variety is the spice of life

CD4+ helper T cells come in a variety of flavors. This allows them to respond in a manner that is tailored to the pathogen they encounter. Becattini et al. wondered whether multiple “flavors” of human CD4+ T cells respond to specific stimuli or if just one flavor dominates. To find out, they stimulated human memory CD4+ T cells with a fungus, a bacteria, or a vaccine antigen. Multiple helper cell subsets participated in each response. T cell receptor sequencing revealed that in some cases, T cells with the same specificity acquired different helper cell fates. Thus, there is more heterogeneity in human T cell responses than previously appreciated.
Science, this issue p. 400

Abstract

Distinct types of CD4+ T cells protect the host against different classes of pathogens. However, it is unclear whether a given pathogen induces a single type of polarized T cell. By combining antigenic stimulation and T cell receptor deep sequencing, we found that human pathogen- and vaccine-specific T helper 1 (TH1), TH2, and TH17 memory cells have different frequencies but comparable diversity and comprise not only clones polarized toward a single fate, but also clones whose progeny have acquired multiple fates. Single naïve T cells primed by a pathogen in vitro could also give rise to multiple fates. Our results unravel an unexpected degree of interclonal and intraclonal functional heterogeneity of the human T cell response and suggest that polarized responses result from preferential expansion rather than priming.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S7
Tables S1 and S2
References (4044)
Data files

Resources

File (1260668-tcr-sequences.zip)
File (becattini.sm.pdf)

References and Notes

1
Medzhitov R., Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).
2
Sallusto F., Lanzavecchia A., Heterogeneity of CD4+ memory T cells: Functional modules for tailored immunity. Eur. J. Immunol. 39, 2076–2082 (2009).
3
Heinzel F. P., Sadick M. D., Holaday B. J., Coffman R. L., Locksley R. M., Reciprocal expression of interferon γ or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets J. Exp. Med. 169, 59–72 (1989).
4
Yamamura M., Uyemura K., Deans R. J., Weinberg K., Rea T. H., Bloom B. R., Modlin R. L., Defining protective responses to pathogens: Cytokine profiles in leprosy lesions. Science 254, 277–279 (1991).
5
Ma C. S., Chew G. Y., Simpson N., Priyadarshi A., Wong M., Grimbacher B., Fulcher D. A., Tangye S. G., Cook M. C., Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 205, 1551–1557 (2008).
6
Milner J. D., Brenchley J. M., Laurence A., Freeman A. F., Hill B. J., Elias K. M., Kanno Y., Spalding C., Elloumi H. Z., Paulson M. L., Davis J., Hsu A., Asher A. I., O’Shea J., Holland S. M., Paul W. E., Douek D. C., Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008).
7
Puel A., Cypowyj S., Bustamante J., Wright J. F., Liu L., Lim H. K., Migaud M., Israel L., Chrabieh M., Audry M., Gumbleton M., Toulon A., Bodemer C., El-Baghdadi J., Whitters M., Paradis T., Brooks J., Collins M., Wolfman N. M., Al-Muhsen S., Galicchio M., Abel L., Picard C., Casanova J. L., Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).
8
Iwasaki A., Medzhitov R., Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).
9
Zhu J., Yamane H., Paul W. E., Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).
10
O’Garra A., Gabryšová L., Spits H., Quantitative events determine the differentiation and function of helper T cells. Nat. Immunol. 12, 288–294 (2011).
11
O’Shea J. J., Paul W. E., Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).
12
Cosmi L., De Palma R., Santarlasci V., Maggi L., Capone M., Frosali F., Rodolico G., Querci V., Abbate G., Angeli R., Berrino L., Fambrini M., Caproni M., Tonelli F., Lazzeri E., Parronchi P., Liotta F., Maggi E., Romagnani S., Annunziato F., Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J. Exp. Med. 205, 1903–1916 (2008).
13
Bending D., De la Peña H., Veldhoen M., Phillips J. M., Uyttenhove C., Stockinger B., Cooke A., Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J. Clin. Invest. 119, 565–572 (2009).
14
Hirota K., Duarte J. H., Veldhoen M., Hornsby E., Li Y., Cua D. J., Ahlfors H., Wilhelm C., Tolaini M., Menzel U., Garefalaki A., Potocnik A. J., Stockinger B., Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).
15
Reiner S. L., Sallusto F., Lanzavecchia A., Division of labor with a workforce of one: Challenges in specifying effector and memory T cell fate. Science 317, 622–625 (2007).
16
Chang J. T., Palanivel V. R., Kinjyo I., Schambach F., Intlekofer A. M., Banerjee A., Longworth S. A., Vinup K. E., Mrass P., Oliaro J., Killeen N., Orange J. S., Russell S. M., Weninger W., Reiner S. L., Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007).
17
Gerlach C., van Heijst J. W., Swart E., Sie D., Armstrong N., Kerkhoven R. M., Zehn D., Bevan M. J., Schepers K., Schumacher T. N., One naive T cell, multiple fates in CD8+ T cell differentiation. J. Exp. Med. 207, 1235–1246 (2010).
18
Stemberger C., Huster K. M., Koffler M., Anderl F., Schiemann M., Wagner H., Busch D. H., A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27, 985–997 (2007).
19
Tubo N. J., Pagán A. J., Taylor J. J., Nelson R. W., Linehan J. L., Ertelt J. M., Huseby E. S., Way S. S., Jenkins M. K., Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 153, 785–796 (2013).
20
See supplementary materials on Science Online.
21
T cell subsets were isolated according to the differential expression of chemokine receptors, as previously described (22). Cells in the CXCR3+CCR4CCR6 subset (defined as TH1) produced IFN-γ and expressed T-bet mRNA; cells in the CCR4+CXCR3CCR6 subset (TH2) produced IL-4 and expressed high level of GATA3 mRNA; cells in the CCR4+CCR6+CXCR3 subset (TH17) produced IL-17A and expressed RORγt; cells in the CXCR3+CCR6+CCR4 (nonconventional TH1, defined as TH1*) produced IFN-γ and low levels of IL-17A and expressed both T-bet and RORγt mRNA.
22
Acosta-Rodriguez E. V., Rivino L., Geginat J., Jarrossay D., Gattorno M., Lanzavecchia A., Sallusto F., Napolitani G., Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).
23
In all experiments, the specificity of proliferating memory T cells was assessed by sorting CFSElo cells and isolating T cell clones by limiting dilution. On average, more than 95% of the T cell clones responded to the antigen used in the initial stimulation.
24
Zielinski C. E., Mele F., Aschenbrenner D., Jarrossay D., Ronchi F., Gattorno M., Monticelli S., Lanzavecchia A., Sallusto F., Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484, 514–518 (2012).
25
Bacher P., Schink C., Teutschbein J., Kniemeyer O., Assenmacher M., Brakhage A. A., Scheffold A., Antigen-reactive T cell enrichment for direct, high-resolution analysis of the human naive and memory Th cell repertoire. J. Immunol. 190, 3967–3976 (2013).
26
Robins H. S., Campregher P. V., Srivastava S. K., Wacher A., Turtle C. J., Kahsai O., Riddell S. R., Warren E. H., Carlson C. S., Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 114, 4099–4107 (2009).
27
T cell subsets from two healthy donors were isolated from PBMCs, labeled with CFSE, and stimulated with M. tuberculosis. For donor MT-01, input cell numbers were TH1*, 1.5 × 106; TH17, 1.5 × 106; CXCR3+CCR4+ TH, 1.2 × 106. For donor MT-02, input cell numbers were TH1*, 1.5 × 106; TH17, 1.4 × 106; CXCR3+CCR4+ TH, 1.1 × 106. Recovered CFSElo cells on day 6 for donor MT-01 were TH1*, 2.2 × 106; TH17, 0.95 × 106; CXCR3+CCR4+ TH, 2.0 × 106. For donor MT-02, these numbers were TH1*, 2.4 × 106; TH17, 0.7 × 106; CXCR3+CCR4+ TH, 1.7 × 106.
28
Lindestam Arlehamn C. S., Gerasimova A., Mele F., Henderson R., Swann J., Greenbaum J. A., Kim Y., Sidney J., James E. A., Taplitz R., McKinney D. M., Kwok W. W., Grey H., Sallusto F., Peters B., Sette A., Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLOS Pathog. 9, e1003130 (2013).
29
T cell subsets from four donors were isolated and stimulated with TT. Input cell number for each subset was 2.5 × 106 (donor TT-01), 1.5 × 106 (donors TT-02 and TT-03), and 1.1 × 106 (donor TT-04).
30
Naïve T cells were isolated from three donors. Input cell numbers were 3.2 × 106 (donor N-01), 6.6 × 106 (donor N-02), and 8.8 × 106 (donor N-03).
31
In control experiments, the purity of the sorted populations was confirmed by measuring IFNG, IL4, and IL17 mRNAs by quantitative PCR immediately after sorting.
32
Pulendran B., Variegation of the immune response with dendritic cells and pathogen recognition receptors. J. Immunol. 174, 2457–2465 (2005).
33
Sigmundsdottir H., Butcher E. C., Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nat. Immunol. 9, 981–987 (2008).
34
Plumlee C. R., Sheridan B. S., Cicek B. B., Lefrançois L., Environmental cues dictate the fate of individual CD8+ T cells responding to infection. Immunity 39, 347–356 (2013).
35
Birnbaum M. E., Mendoza J. L., Sethi D. K., Dong S., Glanville J., Dobbins J., Ozkan E., Davis M. M., Wucherpfennig K. W., Garcia K. C., Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157, 1073–1087 (2014).
36
Welsh R. M., Selin L. K., No one is naive: The significance of heterologous T-cell immunity. Nat. Rev. Immunol. 2, 417–426 (2002).
37
Mason D., A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).
38
Rivino L., Messi M., Jarrossay D., Lanzavecchia A., Sallusto F., Geginat J., Chemokine receptor expression identifies Pre-T helper (Th)1, Pre-Th2, and nonpolarized cells among human CD4+ central memory T cells. J. Exp. Med. 200, 725–735 (2004).
39
Production of cytokines was measured on day 6 in the supernatants of 5 × 104 naïve CD4 T cells stimulated with plate-bound CD3 and CD28 antibodies. Mean values and SEM (n = 3) were as follows: IFN-γ, 414 ± 270.2; IL-17, 30.7 ± 3.3; IL-22, 391.6 ± 129.2; IL-4, 3.6 ± 3.6; IL-5, 9.6 ± 5.4; IL-13, 91 ± 20.5.
40
Tang F., Barbacioru C., Nordman E., Li B., Xu N., Bashkirov V. I., Lao K., Surani M. A., RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat. Protoc. 5, 516–535 (2010).
41
Li H., Durbin R., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
42
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
43
Bolotin D. A., Shugay M., Mamedov I. Z., Putintseva E. V., Turchaninova M. A., Zvyagin I. V., Britanova O. V., Chudakov D. M., MiTCR: Software for T-cell receptor sequencing data analysis. Nat. Methods 10, 813–814 (2013).
44
Gerlach C., Rohr J. C., Perié L., van Rooij N., van Heijst J. W., Velds A., Urbanus J., Naik S. H., Jacobs H., Beltman J. B., de Boer R. J., Schumacher T. N., Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340, 635–639 (2013).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 347 | Issue 6220
23 January 2015

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 1 September 2014
Accepted: 25 November 2014
Published in print: 23 January 2015

Permissions

Request permissions for this article.

Acknowledgments

We thank D. Jarrossay for cell sorting; O. Petrini, C. Fragoso, and A. Sette for providing valuable reagents; the Adaptive Biotechnologies team for technical support; and S. Monticelli for critical reading of the manuscript. The data presented in this manuscript are tabulated in the main paper and in the supplementary materials. All TCR sequences are available in the supplementary materials as .txt files. FASTA format files are available at downloads.adaptivebiotech.com (username: SallustoSciDec2014data; password: di2PhaiT). The sequences have been deposited in the Gene Expression Omnibus (accession numbers xxxxxx). Supported by European Research Council grant 323183 PREDICT (F.S.), Swiss National Science Foundation grants 149475 (F.S.) and 147662 (A.L.), and European Commission grants FP7-HEALTH-2011-280873, ADITEC (A.L. and F.S.) and FP7-HEALTH-2013-601958, SUPERSIST (T.N.S.). The Institute for Research in Biomedicine is supported by the Helmut Horten Foundation.

Authors

Affiliations

Simone Becattini
Institute for Research in Biomedicine, Bellinzona, Università della Svizzera Italiana, Lugano, Switzerland.
Institute of Microbiology, ETH Zürich, Zürich, Switzerland.
Daniela Latorre
Institute for Research in Biomedicine, Bellinzona, Università della Svizzera Italiana, Lugano, Switzerland.
Federico Mele
Institute for Research in Biomedicine, Bellinzona, Università della Svizzera Italiana, Lugano, Switzerland.
Mathilde Foglierini
Institute for Research in Biomedicine, Bellinzona, Università della Svizzera Italiana, Lugano, Switzerland.
Corinne De Gregorio
Institute for Research in Biomedicine, Bellinzona, Università della Svizzera Italiana, Lugano, Switzerland.
Antonino Cassotta
Institute for Research in Biomedicine, Bellinzona, Università della Svizzera Italiana, Lugano, Switzerland.
Blanca Fernandez
Institute for Research in Biomedicine, Bellinzona, Università della Svizzera Italiana, Lugano, Switzerland.
Sander Kelderman
Division of Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands.
Ton N. Schumacher
Division of Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands.
Davide Corti
Institute for Research in Biomedicine, Bellinzona, Università della Svizzera Italiana, Lugano, Switzerland.
Antonio Lanzavecchia
Institute for Research in Biomedicine, Bellinzona, Università della Svizzera Italiana, Lugano, Switzerland.
Institute of Microbiology, ETH Zürich, Zürich, Switzerland.
Federica Sallusto* [email protected]
Institute for Research in Biomedicine, Bellinzona, Università della Svizzera Italiana, Lugano, Switzerland.

Notes

*
Corresponding author. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Interferon-γ and infectious diseases: Lessons and prospects, Science, 384, 6693, (2024)./doi/10.1126/science.adl2016
    Abstract
  2. Characterizing T cell responses to enzymatically modified beta cell neo-epitopes, Frontiers in Immunology, 13, (2023).https://doi.org/10.3389/fimmu.2022.1015855
    Crossref
  3. Antigen specificity and cross-reactivity drive functionally diverse anti–Aspergillus fumigatus T cell responses in cystic fibrosis, Journal of Clinical Investigation, 133, 5, (2023).https://doi.org/10.1172/JCI161593
    Crossref
  4. Innate TCRβ-chain engagement drives human T cells toward distinct memory-like effector phenotypes with immunotherapeutic potentials, Science Advances, 9, 49, (2023)./doi/10.1126/sciadv.adj6174
    Abstract
  5. Intestinal parasitic infections and risk factors for infection in Kenyan children with and without HIV infection, Parasitology International, 94, (102717), (2023).https://doi.org/10.1016/j.parint.2022.102717
    Crossref
  6. General and Emerging Concepts of Immunity, Encyclopedia of Cell Biology, (510-525), (2023).https://doi.org/10.1016/B978-0-12-821618-7.00263-7
    Crossref
  7. Delineating the transcriptional landscape and clonal diversity of virus-specific CD4+ T cells during chronic viral infection, eLife, 11, (2022).https://doi.org/10.7554/eLife.80079
    Crossref
  8. Preexisting memory CD4 T cells in naïve individuals confer robust immunity upon hepatitis B vaccination, eLife, 11, (2022).https://doi.org/10.7554/eLife.68388
    Crossref
  9. Dynamics of Inflammatory and Neurodegenerative Biomarkers after Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis, International Journal of Molecular Sciences, 23, 18, (10946), (2022).https://doi.org/10.3390/ijms231810946
    Crossref
  10. An Integrated Analysis of Prognostic Signature and Immune Microenvironment in Tongue Squamous Cell Carcinoma, Frontiers in Oncology, 12, (2022).https://doi.org/10.3389/fonc.2022.891716
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media