Advertisement
No access
Special Issue Article

The Ice Record of Greenhouse Gases

Science
12 Feb 1993
Vol 259, Issue 5097
pp. 926-934

Abstract

Gases trapped in polar ice provide our most direct record of the changes in greenhouse gas levels during the past 150,000 years. The best documented trace-gas records are for CO2 and CH4. The measurements corresponding to the industrial period document the recent changes in growth rate. The variability observed over the last 1000 years constrains the possible feedbacks of a climate change on the trace gases under similar conditions as exist today. Changes in the levels of greenhouse gases during the glacial-interglacial cycle overall paralleled, at least at high southern latitudes, changes in temperature; this relation suggests that greenhouse gases play an important role as an amplifier of the initial orbital forcing of Earth's climate and also helps to assess the feedbacks on the biogeochemical cycles in a climate system in which the components are changing at different rates.

Get full access to this article

View all available purchase options and get full access to this article.

REFERENCES AND NOTES

1
Mitchell J. F. B., Rev. Geophys. 27, 115 (1989),
Boer G. J., McFarlane N. A., Lazare M., J. Climate 5, 1045 (1992).
2
Cess R. D., et al., Science 245, 513 (1989),
Cess R. D., et al., J. Geophys. Res. 95, 10601 (1990).
3
Houghton G. T., Jenkins J. T., Ephraums J. J., andthe Intergovernmental Panel on Climate Change (IPCC), Climate Change, The IPCC Scientific Assessment (Cambridge Univ. Press, Cambridge, 1990).
4
Schwander J., et al., J. Geophys. Res., in press.
5
Schwander J., Stauffer B., Nature 311, 45 (1984).
6
Neftel A., Moor E., Oeschger H., Stauffer B., ibid.315, 45 (1985);
Friedli H., Loetscher K., Oeschger H., Siegenthaler U., Stauffer B., ibid.324, 237 (1986).
7
Etheridge D. M., Pearman G. I., Fraser P. J., Tellus 44B, 282 (1992).
8
Jaworowski Z., Segalstad T. V., Ono N., Sci. Total Environ. 114, 227 (1992).
9
Shoji H., Langway C. C., J. Physique 48, 551 (1987).
10
Miller S. L., Science 165, 489 (1969).
11
Delmas R. J., Ascencio J. M., Legrand M., Nature 284, 155 (1980).
12
Neftel A., Oeschger H., Schwander J., Stauffer B., Zumbrunn R., ibid.295, 222 (1982).
13
Barnola J. M., Raynaud D., Korotkevich Y. S., Lorius C., ibid.329, 408 (1987).
14
Neftel A., Oeschger H., Staffelbach T., Stauffer B., ibid.331, 609 (1988).
15
Stauffer B., Lochbronner E., Oeschger H., Schwander J., ibid.332, 812 (1988).
16
Raynaud D., Chappellaz J., Barnola J.-M., Korotkevich Y. S., Lorius C., ibid.333, 655 (1988).
17
Chappellaz J., Barnola J.-M., Raynaud D., Korotkevich Y. S., Lorius C., ibid.345, 127 (1990).
18
Barnola J. M., Pimienta P., Raynaud D., Korotkevich Y. S., Tellus 43B, 83 (1991).
19
The amount of CO2 naturally present in the bubbles is typically 0.7 to 1.0 μM. In general the only chemical species suspected to react with CO2 are carbonates, in particular calcium carbonate, according to: CO2 + CaCO3 + H2O → Ca (HCO3)2. The presence of CaCO3 in ice is linked to the transport of continental dust, but in any case, the scavenging of CO2 by carbonate would occur only if the reaction was possible in the solid phase, a phenomenon that seems to be unlikely because of the low mobility of gases and salts in ice.
20
Delmas R., Tellus, in press.
21
Sulfuric acid aerosol is ubiquitous in the atmosphere. It is scavenged and deposited on the ice by snowflakes. Carbonate dust (loess) is only present in Greenland ice where particularly high levels are observed during ice ages [C. Hammer U., et al., in Greenland Ice Core: Geophysics, Geochemistry and the Environment, Langway C. C., et al., Eds. (American Geophysical Union, Washington, DC, 1985), pp. 90–94]. The possible formation of excess CO2 would occur according to: 2H+ + CaCO3 → Ca++ + H2O + CO2.
22
Stauffer B., Hofer H., Oeschger H., Schwander J., Siegenthaler U., Ann. Glaciol. 5, 760 (1984).
23
The late glacial rapid variations of CO2 levels during late glacial time and the climatic changes are observed in exactly the same layers. This result is difficult to explain because the changes are expected to occur simultaneously and thus should not appear at the same depth, because of the age difference between the air and the ice [Staffelbach T., Stauffer B., Sigg A., Oeschger H., Tellus 43B, 91 (1991)].
24
Legrand M. R., Lorius C., Barkov N. I., Petrov V. N., Atmos. Environ. 22, 317 (1988).
25
Hammer C. U., in The Environmental Record in Glaciers and Ice Sheets, Konferenzen D., Oeschger H., Langway C. C., Eds. (Wiley, New York, 1989), pp. 99–121;
Stauffer B. R., in ibid., pp. 123–139;
Reeh N., in ibid., pp. 141–159;
Shoji H., Langway C. C., in ibid., pp. 161–175.
26
Layer counting combines information from stable isotopes (however because of diffusion, differences in the isotopic ratios disappear with time), microparticles, and chemical species like ammonium, calcium, and nitrate that show well marked seasonal variations. The abrupt Younger-Dryas Pre-boreal transition is independently dated at 11,550 ± 70 at GRIP (28) and 11,660 ± 250 GISP II (29). This consistency gives confidence in the validity of the multiparameter counting approach.
27
Hammer C. U., Clausen H. B., Tauber H., Radiocarbon 28, 284 (1986).
28
Johnsen S. J., et al., Nature 359, 311 (1992).
29
Alley R., et al., Eos 73, 259 (1992).
30
Hammer C. U., Clausen H. B., Langway C. C., Ann. Glaciol. 7, 214 (1985).
31
Lorius C., et al., Nature 316, 591 (1985).
32
The accumulation change (lower during cold than during warm periods) is estimated directly from the temperature record. The validity of this method is now confirmed from the GRIP core where layer thickness estimated from this approach is in excellent agreement with that derived from seasonal variations (D. Dahl-Jensen, S. J. Johnsen, C. U. Hammer, H. B. Clausen, J. Jouzel, in preparation). For Vostok, the accumulation rate estimate is independently supported by the 10Be profile (33, 34).
33
Yiou F., Raisbeck G., Bourles D., Lorius C., Barkov N. I., Nature 316, 616 (1985).
34
Jouzel J., et al., Quat. Res. 31, 135 (1989).
35
This relationship, which results from the successive isotopic fractionations occurring at each phase change of the water during its atmospheric cycle, is particularly well obeyed for present-day Greenland and Antarctic precipitation. The isotopic contents δD and δ18O are expressed in per mil with respect to the V.S.M.O.W. standard (Vienna Standard Mean Ocean Water). The interpretation of ice core data in terms of models which range from simple Rayleigh models [Dansgaard, et al. Tellus 16, 436 (1964);
Jouzel J., Merlivat L., J. Geophys. Res. 89, 11749 (1984)]
to GCM isotopic models [Jouzel J., Koster R. D., Suozzo R., Russell G., Eos 73, 105 (1992);
Joussaume S., Jouzel J., J. Geophys. Res., in press;
Jouzel J., Joussaume S., Koster R. D., paper presented at the Dahlem Workshop, report ES12, Global Change in the Perspective of the Past, Eddy J. A., Oeschger H., Eds. (Wiley & Sons, Chichester, in press)] which support the use of present-day observed surface temperature gradients for interpreting ice core data.
This approach accounts for possible seasonal changes [de Robin G. Q., in The Climatic Record in Polar Ice Sheets (, de Robin G. Q., Ed. (Cambridge Univ. Press, Cambridge, 1983), pp. 184–189;
Fisher D. A., Cold Regions Sci. Tech. 21, 61 (1992)]
or the origin of precipitation [Johnsen S. J., Dansgaard W., White J., Tellus 41B, 452 (1989);
Peel D. A., Mulvaney R., ibid.44B, 430 (1992)], that are often cited as limiting factors of the temperature interpretation. The various isotopic records show remarkable similarities, at least for their long-term changes, both for Antarctica (33) and Greenland (27). This indicates that the derived climatic information is clearly regionally robust.
36
Pichon J. J., Labeyrie L. D., Bareille G., Labracherie M., Duprat J., Jouzel J., Paleoceanography 7, 289 (1992).
37
Sowers T., Bender M., Raynaud D., Korotkevich Y. S., Orchado J., ibid.6, 679 (1991).
38
Etheridge D., Pearman G. I., de Silva F., Ann. Glaciol. 10, 28 (1988);
Khalil M. A. K., Rasmunssen R. A., ibid.10, 73 (1988);
Zardini D., Raynaud D., Scharffe D., Seiler W., J. Atmos. Chem. 8, 189 (1989).
39
Leuenberger M., Siegenthaler U., Nature 360, 449 (1992). In this article, Leuenberger and Siegenthaler derived a total glacial-interglacial greenhouse forcing of 3 W m−2, 50% higher than that used by Lorius et al. (58) because of a different formulation of the CO2 forcing.
40
Houghton R. A., in preparation;
see also Sundquist E., Science 259, 934 (1993).
41
Raynaud D., Barnola J. M., Nature 315, 309 (1985);
Siegenthaler U., et al., Ann. Glaciol. 10, 151 (1988).
42
Khalil M. A. K., Rasmunssen R. A., Tellus 41 B, 554 (1989).
43
Prentice I. C., Sykes M. T., Lautenschlager M., Harrison S. P., Denissenko O., Bartlein P. J., in preparation.
44
Broecker W. S., Peng T.-H., in preparation.
45
Broecker W. S., Peng T.-H., Radiocarbon 28, 329 (1986).
46
Budd W. F., in Carbon Dioxyde and Climate: Australian Research, Pearman G. I., Ed. (Australian Academy of Sciences, Canberra, 1980), pp. 115–128;
Faure F., C R. Acad. Sci. Paris 305, 523 (1987).
47
Leuenberger M., Siegenthaler U., Langway C. C., Nature 357, 488 (1992);
Marino B. D., McElroy M. D., Salawitch M. J., Spaulding W. G., ibid., p. 461;
Jasper J. P., Hayes J. M., ibid.347, 462 (1990).
48
Jouzel J., et al., in The Last Deglaciation: Absolute and Radiocarbon Chronologie, Bard E., Broecker W. S., Eds. (NATO ASI Ser. 12 (Springer, Berlin, 1992), pp. 229–266.
49
According to the Vostok results, the regression between CH4 concentration (C) and Vostok surface temperature T s is: C (ppbv) = 23.7 T s (°C) + 591.5. Based on the temperature estimates for the glacial-interglacial transition, a 1°C change in global temperature corresponds to a 2°C change in the surface temperature at Vostok. Consequently, the corresponding CH4-temperature gradient is 47.4 pppv/°C.
50
Chappellaz J. A., Fung I. Y., Thompson A. M., Tellus 45B, in press;
Thompson A. M., Chappellaz J. A., Fung I. Y., Kuscera T. L., ibid., in press.
51
Nisbet E. G., J. Geophys. Res. 97, 12859 (1992).
52
Raynaud D., Siegenthaler U., in Global Changes in the Perspective of the Past, Eddy J. A., Oeschger H., Eds. (Wiley, Chichester, in press).
53
Imbrie J., Mclntyre A., Mix A., in Climate and Geosciences, Berger A., et al., Eds. (Kluwer, Nor-well, MA, 1989), pp. 121–164.
54
Shackleton N. J., Pisias N. G., in The Carbon Cycle and Atmospheric CO2. Natural Variations Archaean to Present, Sundquist E. T., Broecker W. S., Eds. (American Geophysical Union, Washington, DC, 1985). pp. 303–317;
Curry W. B., Crowley T. J., Paleoceanography 2, 489 (1987).
55
Sowers T., Bender M., Barnola J. M., Eos 73, 260 (1992).
56
Jouzel J., et al., Nature 329, 403 (1987);
Yiou P., et al., J. Geophys. Res. 96, 20365 (1991).
57
Hays J. D., Imbrie J., Shackleton N. J., Science 194, 1121 (1976).
58
Lorius C., Jouzel J., Raynaud D., Hansen J., Le Treut H., Nature 347, 139 (1990).
59
Broccoli A. J., Manabe S., Climate Dynam. 1, 87 (1987);
Berger A., Gallée H., Tricot C., J. Glaciol., in press.
60
Saltzman B., Climate Dynam. 5, 67 (1990);
Ya Verbitsky M., Oglesby R. J., J. Geophys. Res. 97, 5895 (1992).
61
Imbrie J., et al., Paleoceanography, in press. Two articles on the structure and origin of major glaciation cycles in two parts (i) linear response to Milankovitch forcing and (ii) the 100,000 year cycle.
62
Winograd I. J., et al., Science 258, 255 (1992);
Kerr R. A., ibid., p. 220;
Broecker W. S., Nature 359, 779 (1992);
Lambeck K., Nakada M., ibid.357, 125 (1992).
63
Hansen J. E., et al., in Climate Processes and Climate Sensitivity, Hansen J. E., Takahashi T., Eds. (American Geophysical Union, Washington, DC, 1984), pp. 130–163.
64
CLIMAP project members, Geol. Soc. Am. Map Chart Ser. MC 36 (1981).
65
Manabe S., Broccoli A. J., J. Atm. Sci. 42, 2643 (1985).
66
Harvey L. D. D., J. Geophys. Res. 94, 12783 (1989).
67
Hoffert M. I., Covey C., Nature 360, 573 (1992);
These authors derived climate sensitivity both from LGM and mid-Cretaceous data and obtained a ΔT 2 X of 2° ± 0.5°C for the LGM and 2.5° ± 0.2°C for the mid-Cretaceous. However, as noted by Barron E. [Nature 360, 533 (1992)] the LGM estimate would yield a sensitivity closer from 3.0°C if a value of 5°C colder than the present (instead of 3.0°C) would have been taken as estimate of the glacial temperature.
68
Wigley T. M. L., Raper S. C. B., Nature 357, 293 (1992).
69
Schlesinger M. E., Jiang X., Charlson R. J., in Climate Change and Energy Policy, Rosen L., Glaser M., Eds. (American Institute of Physics, New York, 1992), pp. 75–108.
70
Kelly P. M. L., Wigley T. M. L., Nature 360, 328 (1992);
Schlesinger M. E., Ramankutty N., ibid., p. 330.
71
Sowers T., Bender M., Raynaud D., Korotkevich Y. S., J. Geophys. Res. 97, 15683 (1992).
72
Johnson S. J., Dansgaard W., Clausen H. B., Langway C. C., Nature 235, 429 (1992).
73
Sowersm T., et al., in preparation.
74
Martinson D. G., Pisias N. G., Hays J. D., Imbrie J., Moore T. C., Shackleton N. J., Quat. Res. 27, 1 (1987).
75
We thank P. Duval for a review of the existing data on the brittle and clathrate zones, D. Etheridge for providing Fig. 3, and M. Bender, D. Etheridge, R. Francey, and M. Leuenberger for comments and discussions. Part of this review was prepared during a 3-month stay of D.R. at the Division of Atmospheric Research (CSIRO). The research on the ice core record of greenhouse gases is in France, supported by PNEDC (Programme National d’Etudes de la Dynamique du Climat) and by the Commission of the European Communities.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 259 | Issue 5097
12 February 1993

Submission history

Published in print: 12 February 1993

Permissions

Request permissions for this article.

Authors

Affiliations

D. Raynaud
Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) Centre National de la Recherche Scientifique, BP 96, 38402 Saint Martin d'Hères Cedex, France.
J. Jouzel
Laboratoire de Modélisation du Climat et de l'Environnement, Commissariat à l'Energie Atomique Saclay, 91191 Gif sur Yvette Cedex, France, and at LGGE.
J. M. Barnola
Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) Centre National de la Recherche Scientifique, BP 96, 38402 Saint Martin d'Hères Cedex, France.
J. Chappellaz
Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) Centre National de la Recherche Scientifique, BP 96, 38402 Saint Martin d'Hères Cedex, France.
R. J. Delmas
Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) Centre National de la Recherche Scientifique, BP 96, 38402 Saint Martin d'Hères Cedex, France.
C. Lorius
Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) Centre National de la Recherche Scientifique, BP 96, 38402 Saint Martin d'Hères Cedex, France.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Timing of Atmospheric CO2 and Antarctic Temperature Changes Across Termination III, Science, 299, 5613, (1728-1731), (2021)./doi/10.1126/science.1078758
    Abstract
  2. Clues from Fluid Inclusions, Science, 294, 5544, (1009-1011), (2021)./doi/10.1126/science.1066322
    Abstract
  3. Century-Scale Shifts in Early Holocene Atmospheric CO2 Concentration, Science, 284, 5422, (1971-1973), (1999)./doi/10.1126/science.284.5422.1971
    Abstract
  4. Ice Core Records of Atmospheric CO2 Around the Last Three Glacial Terminations, Science, 283, 5408, (1712-1714), (1999)./doi/10.1126/science.283.5408.1712
    Abstract
  5. Oceanic Carbon Dioxide Uptake in a Model of Century-Scale Global Warming, Science, 274, 5291, (1346-1350), (1996)./doi/10.1126/science.274.5291.1346
    Abstract
  6. Trends in Stomatal Density and 13C/12C Ratios of Pinus flexilis Needles During Last Glacial-Interglacial Cycle, Science, 264, 5156, (239-243), (1994)./doi/10.1126/science.264.5156.239
    Abstract
  7. Response: Gravitational Separation in Polar Firn, Science, 262, 5134, (764-764), (1993)./doi/10.1126/science.262.5134.764
    Abstract
  8. Gravitational Separation in Polar Firn, Science, 262, 5134, (763-764), (1993)./doi/10.1126/science.262.5134.763
    Abstract
  9. Paleoatmospheric Signatures in Neogene Fossil Leaves, Science, 260, 5115, (1788-1790), (1993)./doi/10.1126/science.260.5115.1788
    Abstract
  10. The Greenland Ice Core Project, Science, 260, 5115, (1766-1767), (1993)./doi/10.1126/science.260.5115.1766
    Abstract
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media