Advertisement

Abstract

The compact genome of Fugu rubripes has been sequenced to over 95% coverage, and more than 80% of the assembly is in multigene-sized scaffolds. In this 365-megabase vertebrate genome, repetitive DNA accounts for less than one-sixth of the sequence, and gene loci occupy about one-third of the genome. As with the human genome, gene loci are not evenly distributed, but are clustered into sparse and dense regions. Some “giant” genes were observed that had average coding sequence sizes but were spread over genomic lengths significantly larger than those of their human orthologs. Although three-quarters of predicted human proteins have a strong match toFugu, approximately a quarter of the human proteins had highly diverged from or had no pufferfish homologs, highlighting the extent of protein evolution in the 450 million years since teleosts and mammals diverged. Conserved linkages between Fugu and human genes indicate the preservation of chromosomal segments from the common vertebrate ancestor, but with considerable scrambling of gene order.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (1072104figs1.pdf)
File (1072104s2_large.jpeg)
File (1072104s2_med.gif)
File (1072104s2_thumb.gif)
File (1072104s3_large.jpeg)
File (1072104s3_med.gif)
File (1072104s3_thumb.gif)
File (1072104s4_large.jpeg)
File (1072104s4_med.gif)
File (1072104s4_thumb.gif)
File (1072104s5_large.jpeg)
File (1072104s5_med.gif)
File (1072104s5_thumb.gif)
File (1072104s6_large.jpeg)
File (1072104s6_med.gif)
File (1072104s6_thumb.gif)
File (1072104s7_large.jpeg)
File (1072104s7_med.gif)
File (1072104s7_thumb.gif)
File (1072104s8_large.jpeg)
File (1072104s8_med.gif)
File (1072104s8_thumb.gif)
File (aparicio.som.pdf)

REFERENCES AND NOTES

1
E. S. Lander et al., Nature409, 860 (2001).
2
J. C. Venter et al., Science291, 1304 (2001).
3
S. Brenner et al., Nature366, 265 (1993).
4
Hinegardner R., Am. Nat. 102, 517 (1968).
5
M. K. Trower et al., Proc. Natl. Acad. Sci. U.S.A. 93, 1366 (1996).
6
Gellner K., Brenner S., Genome Res. 9, 251 (1999).
7
S. Baxendale et al., Nature Genet.10, 67 (1995).
8
Venkatesh B., Brenner S., Gene 211, 169 (1998).
9
___, Gene 187, 211 (1997).
10
O. Coutelle et al., Gene 208, 7 (1998).
11
S. Aparicio et al., Proc. Natl. Acad. Sci. U.S.A. 92, 1684 (1995).
12
Venkatesh B., et al., Proc. Natl. Acad. Sci. U.S.A. 94, 12462 (1997).
13
J. Flint et al., Hum. Mol. Genet.10, 371 (2001).
14
Pfeffer P. L., et al., Development 129, 307 (2002).
15
W. P. Yu et al., Oncogene20, 5554 (2001).
16
J. M. Wentworth et al., Gene236, 315 (1999).
17
D. H. Rowitch et al., Development125, 2735 (1998).
18
H. Marshall et al., Nature370, 567 (1994).
19
H. Popperl et al., Cell 81, 1031 (1995).
20
S. Nonchev et al., Proc. Natl. Acad. Sci. U.S.A. 93, 9339 (1996).
21
B. Kammandel et al., Dev. Biol.205, 79 (1999).
22
L. M. Barton et al., Proc. Natl. Acad. Sci. U.S.A. 98, 6747 (2001).
23
Bagheri-Fam S., et al., Genomics 78, 73 (2001).
24
S. Brenner et al., Proc. Natl. Acad. Sci. U.S.A. 99, 2936 (2002).
25
Supplemental methods and data are available on Science Online.
26
C. Fischer et al., Cytogenet. Cell Genet. 88, 50 (2000).
27
T. Hubbard et al., Nucleic Acids Res.30, 38 (2002).
28
Birney E., Durbin R., Genome Res. 10, 547 (2000).
29
EnsEMBL human databases can be accessed at www.ensembl.org.
30
IPI maintains a nonredundant and updated set of human proteins, which can be accessed at www.ebi.ac.uk/IPI.
31
The sequences of these predicted human proteins are available from the project Web sites
32
H. Roest Crollius et al., Nature Genet.25, 235 (2000).
33
Venkatesh B., Ning Y., Brenner S., Proc. Natl. Acad. Sci. U.S.A. 96, 10267 (1999).
34
These pairings were from the comparative linkage analysis, described in the supplemental material, estimating conserved synteny, which can be accessed at Science Online.
35
S. Aparicio et al., data not shown.
36
Okabe M., et al., Nature 411, 94 (2001).
37
Yoda A., Sawa H., Okano H., Genes Cells 5, 885 (2000).
38
Wang W., et al., Mol. Biol. Evol. 17, 1294 (2000).
39
Y. Hirota et al., Mech. Dev.87, 93 (1999).
40
Sakakibara S., Okano H., J. Neurosci. 17, 8300 (1997).
41
M. Okabe et al., Dev. Neurosci.19, 9 (1997).
42
S. Sakakibara et al., Dev. Biol.176, 230 (1996).
43
Nakamura M., Okano H., Blendy J. A., Montell C., Neuron 13, 67 (1994).
44
Bernardi G., Gene 241, 3 (2000).
45
Nadeau J. H., Sankoff D., Mamm. Genome 9, 491 (1998).
46
Nadeau J. H., Taylor B. A., Proc. Natl. Acad. Sci. U.S.A. 81, 814 (1984).
47
Aparicio S., Nature Genet. 18, 301 (1998).
48
J. A. Bailey et al., Am. J. Hum. Genet. 70, 83 (2002).
49
Wolfe K. H., Shields D. C., Nature 387, 708 (1997).
50
J. H. Postlethwait et al., Nature Genet. 18, 345 (1998).
51
Lundin L. G., Genomics 16, 1 (1993).
52
Remm M., et al., J. Mol. Biol. 314, 1041 (2001).
53
S. Aparicio et al., Nature Genet.16, 79 (1997).
54
A. Amores et al., Science282, 1711 (1998).
55
Smith S. F., et al., Genome Res. 12, 776 (2002).
56
Chothia C., Lesk A. M., EMBO J. 5, 823 (1986).
57
Rost B., Protein Eng. 12, 85 (1999).
58
We examined the best local identity BLASTP matches from comparing the human proteome with Fugu. An expect score threshold of 10−2 to 10−3 rejects most alignments of <25 to 30% distant protein alignments. It has been previously shown by Chothia, Lesk, Rost, and others that 90% of alignments at or below this ”twilight zone“ of similarity are unlikely to represent true structural homologies.
59
We found 26,390 of 34,019 matches comparing human peptides with Fugu peptides, and a further 687 human peptides that matched Fugu assembled sequence or sequence fragments.
60
The accession numbers of these proteins can be accessed at the Fugu project Web sites.
61
Lee E. Y., Park H. H., Kim Y. T., Choi T. J., Gene 274, 237 (2001).
62
Najakshin A. M., Mechetina L. V., Alabyev B. Y., Taranin A. V., Eur. J. Immunol. 29, 375 (1999).
63
Lehane D. B., McKie N., Russell R. G., Henderson I. W., Gen. Comp. Endocrinol. 114, 80 (1999).
64
N. Miller et al., Immunol. Rev.166, 187 (1998).
65
Grondel J. L., Harmsen E. G., Immunology 52, 477 (1984).
66
Peixoto B. R., Brenner S., Immunogenetics 51, 443 (2000).
67
Stenvik J., Jorgensen T.O., Immunogenetics 51, 452 (2000).
68
Waterston R. H., Lander E. S., Sulston J. E., Proc. Natl. Acad. Sci. U.S.A. 5, 5 (2002).
69
Myers E. W., Sutton G. G., Smith H. O., Adams M. D., Venter J. C., Proc. Natl. Acad. Sci. U.S.A. 99, 4145 (2002).
70
Carvalho A. B., Clark A. G., Nature 401, 344 (1999).
71
Supported by the Agency for Science, Technology and Research, Singapore; the U.S. Department of Energy; and the Molecular Sciences Institute, Berkeley, California. We thank many colleagues and members of our labs for comments on earlier versions of the manuscript.
Sequencing Methods
Supplemental Data
Tables S1 to S7
Figs. S1 to S8
References

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 297 | Issue 5585
23 August 2002

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 21 March 2002
Accepted: 14 June 2002
Published in print: 23 August 2002

Permissions

Request permissions for this article.

Authors

Affiliations

Samuel Aparicio*
Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.
University of Cambridge, Department of Oncology, Hutchison–MRC Research Centre, Cambridge CB2 2XZ, UK.
Jarrod Chapman
U.S. DoE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
Elia Stupka*
Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.
Nik Putnam
U.S. DoE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
Jer-ming Chia
Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.
Paramvir Dehal
U.S. DoE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
Alan Christoffels
Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.
Sam Rash
U.S. DoE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
Shawn Hoon
Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.
Arian Smit
Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103, USA.
Maarten D. Sollewijn Gelpke
U.S. DoE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
Jared Roach
Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103, USA.
Tania Oh
Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.
Isaac Y. Ho
U.S. DoE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
Marie Wong
Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.
Chris Detter
U.S. DoE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
Frans Verhoef
Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.
Paul Predki
U.S. DoE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
Alice Tay
Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.
Susan Lucas
U.S. DoE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
Paul Richardson
U.S. DoE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
Sarah F. Smith
MRC UK HGMP Resource Centre, Hinxton, Cambridge CB10 1SB, UK.
Melody S. Clark
MRC UK HGMP Resource Centre, Hinxton, Cambridge CB10 1SB, UK.
Yvonne J. K. Edwards
MRC UK HGMP Resource Centre, Hinxton, Cambridge CB10 1SB, UK.
Norman Doggett
Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Andrey Zharkikh
Myriad Genetics Inc., 320 Wakara Way, Salt Lake City, UT 84108, USA.
Sean V. Tavtigian
Myriad Genetics Inc., 320 Wakara Way, Salt Lake City, UT 84108, USA.
Dmitry Pruss
Myriad Genetics Inc., 320 Wakara Way, Salt Lake City, UT 84108, USA.
Mary Barnstead
Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA.
Cheryl Evans
Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA.
Holly Baden
Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA.
Justin Powell
Paradigm Therapeutics Ltd., Physiological Laboratory, Cambridge CB2 3EG, UK.
Gustavo Glusman
Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103, USA.
Lee Rowen
Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103, USA.
Leroy Hood
Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103, USA.
Y. H. Tan
Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.
Greg Elgar*
MRC UK HGMP Resource Centre, Hinxton, Cambridge CB10 1SB, UK.
Trevor Hawkins*,
U.S. DoE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
Byrappa Venkatesh*
Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.
Daniel Rokhsar*
U.S. DoE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
Sydney Brenner*
Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.
Salk Institute, 10010 North Torrey Pines Road, La Jolla, San Diego, CA 92037–1099, USA.

Notes

*
To whom correspondence and requests for materials should be addressed. E-mail: [email protected] (S.A.), [email protected] (E.S.), [email protected] (G.E.), [email protected] (T.H.), [email protected] (B.V.), [email protected] (D.R.), [email protected] (S.B.).
Present address: Amersham Biosciences, 928 East Arques Avenue, Sunnyvale, CA 945085, USA.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Identification of Fish Species and Targeted Genetic Modifications Based on DNA Analysis: State of the Art, Foods, 12, 1, (228), (2023).https://doi.org/10.3390/foods12010228
    Crossref
  2. Chromosome-level haplotype-resolved genome assembly for Takifugu ocellatus using PacBio and Hi-C technologies, Scientific Data, 10, 1, (2023).https://doi.org/10.1038/s41597-023-01937-2
    Crossref
  3. Seawater fish use an electrogenic boric acid transporter, Slc4a11A, for boric acid excretion by the kidney, Journal of Biological Chemistry, 299, 1, (102740), (2023).https://doi.org/10.1016/j.jbc.2022.102740
    Crossref
  4. Bioinformatics approaches and big data analytics opportunities in improving fisheries and aquaculture, International Journal of Biological Macromolecules, 233, (123549), (2023).https://doi.org/10.1016/j.ijbiomac.2023.123549
    Crossref
  5. TLR5M cooperates with TLR5S to activate NF-κB in Nile tilapia (Oreochromis niloticus), Aquaculture, 562, (738775), (2023).https://doi.org/10.1016/j.aquaculture.2022.738775
    Crossref
  6. Biotechnology in modern aquaculture, Frontiers in Aquaculture Biotechnology, (1-13), (2023).https://doi.org/10.1016/B978-0-323-91240-2.00003-8
    Crossref
  7. Assessment of Haematology and Proximate Composition of Clarias gariepinus (Burchell, 1822) Population Groups for Genetic Improvements, Asian Journal of Animal and Veterinary Advances, 17, 3, (98-104), (2022).https://doi.org/10.3923/ajava.2022.98.104
    Crossref
  8. Genome-wide survey reveals the phylogenomic relationships of Chirolophis japonicus Herzenstein, 1890 (Stichaeidae, Perciformes), ZooKeys, 1129, (55-72), (2022).https://doi.org/10.3897/zookeys.1129.91543
    Crossref
  9. Nutrient-Mediated Perception and Signalling in Human Metabolism: A Perspective of Nutrigenomics, International Journal of Molecular Sciences, 23, 19, (11305), (2022).https://doi.org/10.3390/ijms231911305
    Crossref
  10. HOX-Gene Cluster Organization and Genome Duplications in Fishes and Mammals: Transcript Variant Distribution along the Anterior–Posterior Axis, International Journal of Molecular Sciences, 23, 17, (9990), (2022).https://doi.org/10.3390/ijms23179990
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media