Advertisement
No access
Reports

Cope's Rule and the Dynamics of Body Mass Evolution in North American Fossil Mammals

Science
1 May 1998
Vol 280, Issue 5364
pp. 731-734

Abstract

Body mass estimates for 1534 North American fossil mammal species show that new species are on average 9.1% larger than older species in the same genera. This within-lineage effect is not a sampling bias. It persists throughout the Cenozoic, accounting for the gradual overall increase in average mass (Cope's rule). The effect is stronger for larger mammals, being near zero for small mammals. This variation partially explains the unwavering lower size limit and the gradually expanding mid-sized gap, but not the sudden large increase in the upper size limit, at the Cretaceous-Tertiary boundary.

Get full access to this article

View all available purchase options and get full access to this article.

REFERENCES AND NOTES

1
E. D. Cope, The Origin of the Fittest(Appleton, New York, 1887).
2
Newell N. D., Evolution3, 103 (1949); B. Kurtén, Ann. Zool. Fenn. 76, 1 (1953).
3
Gingerich P. D., Annu. Rev. Earth Planet. Sci.8, 407 (1980).
4
K. J. McNamara, in Evolutionary Trends, K. J. McNamara, Ed. (Univ. of Arizona Press, Tucson, AZ, 1990), pp. 205–231.
5
D. Jablonski, in Evolutionary Paleobiology, D. Jablonski, D. H. Erwin, J. H. Lipps, Eds. (Univ. of Chicago Press, Chicago, 1996), pp. 256–289; Nature 385, 250 (1997).
6
B. J. MacFadden, Paleobiology 12, 355 (1987).
7
Stanley S. M., Evolution27, 1 (1973).
8
M. L. McKinney, Paleobiology 12, 282 (1986).
9
Arnold A. J., Kelly D. C., Parker W. C., J. Paleontol.69, 203 (1995).
10
R. D. Norris, Paleobiology 17, 388 (1991); J. Trammer and A. Kaim, Acta Palaeontol. Pol. 42, 1 (1997).
11
McShea D. W., Evolution48, 1747 (1994).
12
Gould S. J., J. Paleontol.62, 319 (1988); M. L. McKinney, inEvolutionary Trends, K. J. McNamara, Ed. (Univ. of Arizona Press, Tucson, AZ, 1990), pp. 75–118.
13
S. Legendre, Palaeovertebrata 16, 191 (1986); Legendre S., Roth C., Hist. Biol. 1, 85 (1988).
14
J. Damuth, in Body Size in Mammalian Paleobiology: Estimation and Biological Implications, J. Damuth and B. J. MacFadden, Eds. (Cambridge Univ. Press, Cambridge, 1990), pp. 229–253.
15
G. F. Gunnell, Univ. Mich. Pap. Palaeontol. 27, 1 (1989).
16
__ Gingerich P. D., Contrib. Mus. Paleontol. Univ. Mich. 29, 413 (1996).
17
B. J. MacFadden and R. C. Hulbert Jr., in Body Size in Mammalian Paleobiology: Estimation and Biological Implications, J. Damuth and B. J. MacFadden, Eds. (Cambridge Univ. Press, Cambridge, 1990), pp. 337–363.
18
J. Alroy, Paleobiology 18, 326 (1992).
19
___, ibid. 20, 191 (1994).
20
Wing S. L., Alroy J., Hickey L. J., Palaeogeogr. Palaeoclimatol. Palaeoecol.115, 117 (1995).
21
Alroy J., ibid127, 285 (1996).
22
P. D. Gingerich, in Phylogenetic Analysis and Paleontology, J. Cracraft and N. Eldredge, Eds. (Columbia Univ. Press, New York, 1979), pp. 41–77; D. C. Fisher, in Interpreting the Hierarchy of Nature—From Systematic Patterns to Evolutionary Theories, L. Grande and O. Rieppel, Eds. (Academic Press, Orlando, FL, 1994), pp. 133–171; J. P. Huelsenbeck, Paleobiology 20, 470 (1994); P. J. Wagner, ibid. 21, 153 (1995); J. P. Huelsenbeckand B. Rannala, ibid. 23, 174 (1997).
23
Felsenstein J., Am. Nat.125, 1 (1985); P. H. Harvey and M. D. Pagel, The Comparative Method in Evolutionary Biology (Oxford Univ. Press, Oxford, 1991); E. P. Martins, Ed., Phylogenies and the Comparative Method in Animal Behavior (Oxford Univ. Press, Oxford, 1996).
24
M. Foote and D. M. Raup, Paleobiology 22, 121 (1996); M. Foote, ibid., p. 141.
25
Gauthier J., Kluge A. G., Rowe T., Cladistics4, 105 (1988); R. Hitchin and M. J. Benton,Paleobiology 23, 20 (1997).
26
M. V. Lomolino, Am. Nat. 125, 310 (1985); J. H. Brown, P. A. Marquet, M. L. Taper, ibid 142, 574 (1993); Damuth J., Nature 365, 748 (1993); J. H. Brown,Macroecology (Univ. of Chicago Press, Chicago, 1995).
27
J. H. Brown, B. A. Maurer, Nature 324, 248 (1986); J. H. Brown, P. F. Nicoletto, Am. Nat. 138, 1478 (1991); Maurer B. A., Brown J. H., Rusler R. D., Evolution 46, 939 (1992).
28
E. O. Wilson, Evolution 13, 122 (1959); Rummel J. D., Roughgarden J., ibid 39, 1009 (1985); D. B. Miles and A. E. Dunham, ibid. 50, 594 (1996).
29
I thank A. DeQuieroz, W. DiMichele, C. Marshall, D. Raup, P. Wagner, P. Wilf, and the anonymous reviewers for comments on the paper. This work was supported by the Evolution of Terrestrial Ecosystems (ETE) program and the Smithsonian Institution.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 280 | Issue 5364
1 May 1998

Submission history

Received: 18 December 1997
Accepted: 6 March 1998
Published in print: 1 May 1998

Permissions

Request permissions for this article.

Authors

Affiliations

John Alroy
Department of Paleobiology, Smithsonian Institution, MRC 121, Washington, DC 20560, USA.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. A macroevolutionary pathway to megaherbivory, Science, 380, 6645, (616-618), (2023)./doi/10.1126/science.ade1833
    Abstract
  2. Comment on “The influence of juvenile dinosaurs on community structure and diversity”, Science, 375, 6578, (2022)./doi/10.1126/science.abj5976
    Abstract
  3. Evolution of Complexity in Paleozoic Ammonoid Sutures, Science, 286, 5440, (760-763), (2021)./doi/10.1126/science.286.5440.760
    Abstract
  4. The Evolution of Dinosaurs, Science, 284, 5423, (2137-2147), (2021)./doi/10.1126/science.284.5423.2137
    Abstract
  5. Evolutionary and Preservational Constraints on Origins of Biologic Groups: Divergence Times of Eutherian Mammals, Science, 283, 5406, (1310-1314), (2021)./doi/10.1126/science.283.5406.1310
    Abstract
  6. Cope’s rule in the evolution of marine animals, Science, 347, 6224, (867-870), (2021)./doi/10.1126/science.1260065
    Abstract
  7. The Evolution of Maximum Body Size of Terrestrial Mammals, Science, 330, 6008, (1216-1219), (2021)./doi/10.1126/science.1194830
    Abstract
  8. The Evolution and Distribution of Species Body Size, Science, 321, 5887, (399-401), (2021)./doi/10.1126/science.1157534
    Abstract
  9. Cope's Rule, Hypercarnivory, and Extinction in North American Canids, Science, 306, 5693, (101-104), (2021)./doi/10.1126/science.1102417
    Abstract
  10. A New Mammaliaform from the Early Jurassic and Evolution of Mammalian Characteristics, Science, 292, 5521, (1535-1540), (2021)./doi/10.1126/science.1058476
    Abstract
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media