Advertisement
No access
Report

Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics

Science
23 Oct 2015
Vol 350, Issue 6259
pp. 434-438

Methane cycling gets more diverse

The production and consumption of methane by microorganisms play a major role in the global carbon cycle. Although these processes can occur in a range of environments, from animal guts to the deep ocean, these metabolisms are confined to the Archaea. Evans et al. used metagenomics to assemble two nearly complete archaeal genomes from deep groundwater methanogens (see the Perspective by Lloyd). The two reconstructed genomes are members of the recently described Bathyarchaeota and not the phylum to which all previously known methane-metabolizing archaea belonged.
Science, this issue p. 434, see also p. 384

Abstract

Methanogenic and methanotrophic archaea play important roles in the global flux of methane. Culture-independent approaches are providing deeper insight into the diversity and evolution of methane-metabolizing microorganisms, but, until now, no compelling evidence has existed for methane metabolism in archaea outside the phylum Euryarchaeota. We performed metagenomic sequencing of a deep aquifer, recovering two near-complete genomes belonging to the archaeal phylum Bathyarchaeota (formerly known as the Miscellaneous Crenarchaeotal Group). These genomes contain divergent homologs of the genes necessary for methane metabolism, including those that encode the methyl–coenzyme M reductase (MCR) complex. Additional non-euryarchaeotal MCR-encoding genes identified in a range of environments suggest that unrecognized archaeal lineages may also contribute to global methane cycling. These findings indicate that methane metabolism arose before the last common ancestor of the Euryarchaeota and Bathyarchaeota.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Supplementary Text
Figs. S1 to S14
Tables S1 to S13
References (3087)

Resources

File (aac7745-evans-sm.pdf)

REFERENCES AND NOTES

1
Reeburgh W., Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).
2
Thauer R. K., Kaster A. K., Seedorf H., Buckel W., Hedderich R., Methanogenic archaea: Ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).
3
Thauer R. K., Anaerobic oxidation of methane with sulfate: On the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr. Opin. Microbiol. 14, 292–299 (2011).
4
Gribaldo S., Brochier-Armanet C., The origin and evolution of Archaea: A state of the art. Philos. Trans. R. Soc. London B Biol. Sci. 361, 1007–1022 (2006).
5
Kelly S., Wickstead B., Gull K., Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proc. Biol. Sci. 278, 1009–1018 (2011).
6
Iverson V., Morris R. M., Frazar C. D., Berthiaume C. T., Morales R. L., Armbrust E. V., Untangling genomes from metagenomes: Revealing an uncultured class of marine Euryarchaeota. Science 335, 587–590 (2012).
7
Castelle C. J., Wrighton K. C., Thomas B. C., Hug L. A., Brown C. T., Wilkins M. J., Frischkorn K. R., Tringe S. G., Singh A., Markillie L. M., Taylor R. C., Williams K. H., Banfield J. F., Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015).
8
Gagen E. J., Huber H., Meador T., Hinrichs K. U., Thomm M., Novel cultivation-based approach to understanding the miscellaneous crenarchaeotic group (MCG) archaea from sedimentary ecosystems. Appl. Environ. Microbiol. 79, 6400–6406 (2013).
9
Meng J., Xu J., Qin D., He Y., Xiao X., Wang F., Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J. 8, 650–659 (2014).
10
Lazar C. S., Biddle J. F., Meador T. B., Blair N., Hinrichs K. U., Teske A. P., Environmental controls on intragroup diversity of the uncultured benthic archaea of the miscellaneous Crenarchaeotal group lineage naturally enriched in anoxic sediments of the White Oak River estuary (North Carolina, USA). Environ. Microbiol. 17, 2228–2238 (2015).
11
Kubo K., Lloyd K. G., F Biddle J., Amann R., Teske A., Knittel K., Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J. 6, 1949–1965 (2012).
12
Vetriani C., Jannasch H. W., MacGregor B. J., Stahl D. A., Reysenbach A. L., Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl. Environ. Microbiol. 65, 4375–4384 (1999).
13
Lloyd K. G., Schreiber L., Petersen D. G., Kjeldsen K. U., Lever M. A., Steen A. D., Stepanauskas R., Richter M., Kleindienst S., Lenk S., Schramm A., Jørgensen B. B., Predominant archaea in marine sediments degrade detrital proteins. Nature 496, 215–218 (2013).
14
Biddle J. F., Lipp J. S., Lever M. A., Lloyd K. G., Sørensen K. B., Anderson R., Fredricks H. F., Elvert M., Kelly T. J., Schrag D. P., Sogin M. L., Brenchley J. E., Teske A., House C. H., Hinrichs K. U., Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc. Natl. Acad. Sci. U.S.A. 103, 3846–3851 (2006).
15
Konstantinidis K. T., Tiedje J. M., Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. U.S.A. 102, 2567–2572 (2005).
16
Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K. H., Whitman W. B., Euzéby J., Amann R., Rosselló-Móra R., Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645 (2014).
17
Lang K., Schuldes J., Klingl A., Poehlein A., Daniel R., Brune A., New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus methanoplasma termitum”. Appl. Environ. Microbiol. 81, 1338–1352 (2015).
18
Harms U., Thauer R. K., Identification of the active site histidine in the corrinoid protein MtrA of the energy-conserving methyltransferase complex from Methanobacterium thermoautotrophicum. Eur. J. Biochem. 250, 783–788 (1997).
19
Hocking W. P., Stokke R., Roalkvam I., Steen I. H., Identification of key components in the energy metabolism of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus by transcriptome analyses. Front. Microbiol. 5, 95 (2014).
20
Ma K., Hutchins A., Sung S. J., Adams M. W., Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase. Proc. Natl. Acad. Sci. U.S.A. 94, 9608–9613 (1997).
21
Biddle J. F., Fitz-Gibbon S., Schuster S. C., Brenchley J. E., House C. H., Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc. Natl. Acad. Sci. U.S.A. 105, 10583–10588 (2008).
22
Ermler U., Grabarse W., Shima S., Goubeaud M., Thauer R. K., Crystal structure of methyl-coenzyme M reductase: The key enzyme of biological methane formation. Science 278, 1457–1462 (1997).
23
Prakash D., Wu Y., Suh S. J., Duin E. C., Elucidating the process of activation of methyl-coenzyme M reductase. J. Bacteriol. 196, 2491–2498 (2014).
24
Brown C. T., Hug L. A., Thomas B. C., Sharon I., Castelle C. J., Singh A., Wilkins M. J., Wrighton K. C., Williams K. H., Banfield J. F., Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).
25
Haroon M. F., Hu S., Shi Y., Imelfort M., Keller J., Hugenholtz P., Yuan Z., Tyson G. W., Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).
26
Beal E. J., House C. H., Orphan V. J., Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009).
27
Rinke C., Schwientek P., Sczyrba A., Ivanova N. N., Anderson I. J., Cheng J. F., Darling A., Malfatti S., Swan B. K., Gies E. A., Dodsworth J. A., Hedlund B. P., Tsiamis G., Sievert S. M., Liu W. T., Eisen J. A., Hallam S. J., Kyrpides N. C., Stepanauskas R., Rubin E. M., Hugenholtz P., Woyke T., Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).
28
Parks D. H., Imelfort M., Skennerton C. T., Hugenholtz P., Tyson G. W., CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
29
Hyatt D., Chen G. L., Locascio P. F., Land M. L., Larimer F. W., Hauser L. J., Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).
30
Baublys K. A., Hamilton S. K., Golding S. D., Vink S., Esterle J., Microbial controls on the origin and evolution of coal seam gases and production waters of the Walloon Subgroup; Surat Basin, Australia. Int. J. Coal Geol. 147–148, 85–104 (2015).
31
Bælum J., Scheutz C., Chambon J. C., Jensen C. M., Brochmann R. P., Dennis P., Laier T., Broholm M. M., Bjerg P. L., Binning P. J., Jacobsen C. S., The impact of bioaugmentation on dechlorination kinetics and on microbial dechlorinating communities in subsurface clay till. Environ. Pollut. 186, 149–157 (2014).
32
Luo R., Liu B., Xie Y., Li Z., Huang W., Yuan J., He G., Chen Y., Pan Q., Liu Y., Tang J., Wu G., Zhang H., Shi Y., Liu Y., Yu C., Wang B., Lu Y., Han C., Cheung D. W., Yiu S. M., Peng S., Xiaoqian Z., Liu G., Liao X., Li Y., Yang H., Wang J., Lam T. W., Wang J., SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).
33
D. H. Parks, DBB: v1.0.5 (Zenodo, Geneva, 2015); https://zenodo.org/record/17426.
34
Kang D. D., Froula J., Egan R., Wang Z., MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).
35
Hultman J., Waldrop M. P., Mackelprang R., David M. M., McFarland J., Blazewicz S. J., Harden J., Turetsky M. R., McGuire A. D., Shah M. B., VerBerkmoes N. C., Lee L. H., Mavrommatis K., Jansson J. K., Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).
36
Li H., Durbin R., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
37
Seemann T., Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
38
Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M., Kubal M., Meyer F., Olsen G. J., Olson R., Osterman A. L., Overbeek R. A., McNeil L. K., Paarmann D., Paczian T., Parrello B., Pusch G. D., Reich C., Stevens R., Vassieva O., Vonstein V., Wilke A., Zagnitko O., The RAST Server: Rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008).
39
Marchler-Bauer A., Derbyshire M. K., Gonzales N. R., Lu S., Chitsaz F., Geer L. Y., Geer R. C., He J., Gwadz M., Hurwitz D. I., Lanczycki C. J., Lu F., Marchler G. H., Song J. S., Thanki N., Wang Z., Yamashita R. A., Zhang D., Zheng C., Bryant S. H., CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).
40
Magrane M., Consortium U., UniProt Knowledgebase: A hub of integrated protein data. Database 2011, bar009 (2011).
41
Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M. A., Barrell B., Artemis: Sequence visualization and annotation. Bioinformatics 16, 944–945 (2000).
42
Kanehisa M., Goto S., KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
43
Moriya Y., Itoh M., Okuda S., Yoshizawa A. C., Kanehisa M., KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185 (2007).
44
Milne I., Stephen G., Bayer M., Cock P. J., Pritchard L., Cardle L., Shaw P. D., Marshall D., Using Tablet for visual exploration of second-generation sequencing data. Brief. Bioinform. 14, 193–202 (2013).
45
DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L., Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).
46
Pruitt K. D., Tatusova T., Brown G. R., Maglott D. R., NCBI Reference Sequences (RefSeq): Current status, new features and genome annotation policy. Nucleic Acids Res. 40, D130–D135 (2012).
47
Leinonen R., Sugawara H., Shumway M.International Nucleotide Sequence Database Collaboration, The sequence read archive. Nucleic Acids Res. 39, D19–D21 (2011).
48
Hawley E. R., Piao H., Scott N. M., Malfatti S., Pagani I., Huntemann M., Chen A., Glavina Del Rio T., Foster B., Copeland A., Jansson J., Pati A., Tringe S., Gilbert J. A., Lorenson T. D., Hess M., Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California. Stand. Genomic Sci. 9, 1259–1274 (2014).
49
Soo R. M., Woodcroft B. J., Parks D. H., Tyson G. W., Hugenholtz P., Back from the dead; the curious tale of the predatory cyanobacterium Vampirovibrio chlorellavorus. PeerJ 3, e968 (2015).
50
Finn R. D., Mistry J., Tate J., Coggill P., Heger A., Pollington J. E., Gavin O. L., Gunasekaran P., Ceric G., Forslund K., Holm L., Sonnhammer E. L., Eddy S. R., Bateman A., The Pfam protein families database. Nucleic Acids Res. 38, D211–D222 (2010).
51
Haft D. H., Selengut J. D., White O., The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371–373 (2003).
52
Markowitz V. M., Chen I. M., Palaniappan K., Chu K., Szeto E., Pillay M., Ratner A., Huang J., Woyke T., Huntemann M., Anderson I., Billis K., Varghese N., Mavromatis K., Pati A., Ivanova N. N., Kyrpides N. C., IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res. 42, D560–D567 (2014).
53
Price M. N., Dehal P. S., Arkin A. P., FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).
54
Whelan S., Goldman N., A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691–699 (2001).
55
Yang Z., Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. J. Mol. Evol. 39, 306–314 (1994).
56
Felsenstein J., Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).
57
Huson D. H., Bryant D., Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).
58
Nawrocki E. P., Kolbe D. L., Eddy S. R., Infernal 1.0: Inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).
59
Edgar R. C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
60
Darriba D., Taboada G. L., Doallo R., Posada D., ProtTest 3: Fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165 (2011).
61
Le S. Q., Gascuel O., An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).
62
Bradley R. K., Roberts A., Smoot M., Juvekar S., Do J., Dewey C., Holmes I., Pachter L., Fast statistical alignment. PLOS Comput. Biol. 5, e1000392 (2009).
63
Stamatakis A., RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
64
Katoh K., Standley D. M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
65
Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar A., Buchner T., Lai S., Steppi G., Jobb W., Förster I., Brettske S., Gerber A. W., Ginhart O., Gross S., Grumann S., Hermann R., Jost A., König T., Liss R., Lüssmann M., May B., Nonhoff B., Reichel R., Strehlow A., Stamatakis N., Stuckmann A., Vilbig M., Lenke T., Ludwig A., Bode K. H., Schleifer, ARB: A software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).
66
Roy A., Kucukural A., Zhang Y., I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).
67
Yang J., Roy A., Zhang Y., Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29, 2588–2595 (2013).
68
Berg I. A., Kockelkorn D., Ramos-Vera W. H., Say R. F., Zarzycki J., Hügler M., Alber B. E., Fuchs G., Autotrophic carbon fixation in archaea. Nat. Rev. Microbiol. 8, 447–460 (2010).
69
Daniels L., Fuchs G., Thauer R. K., Zeikus J. G., Carbon monoxide oxidation by methanogenic bacteria. J. Bacteriol. 132, 118–126 (1977).
70
Rother M., Metcalf W. W., Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: An unusual way of life for a methanogenic archaeon. Proc. Natl. Acad. Sci. U.S.A. 101, 16929–16934 (2004).
71
Ferry J. G., House C. H., The stepwise evolution of early life driven by energy conservation. Mol. Biol. Evol. 23, 1286–1292 (2006).
72
Borrel G., Parisot N., Harris H. M., Peyretaillade E., Gaci N., Tottey W., Bardot O., Raymann K., Gribaldo S., Peyret P., O’Toole P. W., Brugère J. F., Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 15, 679 (2014).
73
Heim S., Künkel A., Thauer R. K., Hedderich R., Thiol:fumarate reductase (Tfr) from Methanobacterium thermoautotrophicum: Identification of the catalytic sites for fumarate reduction and thiol oxidation. Eur. J. Biochem. 253, 292–299 (1998).
74
Wang F.-P., Zhang Y., Chen Y., He Y., Qi J., Hinrichs K. U., Zhang X. X., Xiao X., Boon N., Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J. 8, 1069–1078 (2014).
75
Hoehler T. M., Alperin M. J., Albert D. B., Martens C. S., Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiol. Ecol. 38, 33–41 (2001).
76
Hales B. A., Edwards C., Ritchie D. A., Hall G., Pickup R. W., Saunders J. R., Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl. Environ. Microbiol. 62, 668–675 (1996).
77
Springer E., Sachs M. S., Woese C. R., Boone D. R., Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. Int. J. Syst. Evol. Microbiol. 45, 554–559 (1995).
78
Luton P. E., Wayne J. M., Sharp R. J., Riley P. W., The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148, 3521–3530 (2002).
79
Håvelsrud O. E., Haverkamp T. H., Kristensen T., Jakobsen K. S., Rike A. G., Metagenomic and geochemical characterization of pockmarked sediments overlaying the Troll petroleum reservoir in the North Sea. BMC Microbiol. 12, 203 (2012).
80
Bengtsson-Palme J., Boulund F., Fick J., Kristiansson E., Larsson D. G., Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol. 5, 648 (2014).
81
Kristiansson E., Fick J., Janzon A., Grabic R., Rutgersson C., Weijdegård B., Söderström H., Larsson D. G., Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLOS ONE 6, e17038 (2011).
82
Ma L., Li B., Zhang T., Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis. Appl. Microbiol. Biotechnol. 98, 5195–5204 (2014).
83
Cheng T.-W., Chang Y. H., Tang S. L., Tseng C. H., Chiang P. W., Chang K. T., Sun C. H., Chen Y. G., Kuo H. C., Wang C. H., Chu P. H., Song S. R., Wang P. L., Lin L. H., Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano. ISME J. 6, 2280–2290 (2012).
84
Hydrocarbon Metagenomics Project, Metagenomics for Greener Production and Extraction of Hydrocarbon Energy (2015); www.hydrocarbonmetagenomics.com.
85
Håvelsrud O. E., Haverkamp T. H., Kristensen T., Jakobsen K. S., Rike A. G., A metagenomic study of methanotrophic microorganisms in Coal Oil Point seep sediments. BMC Microbiol. 11, 221 (2011).
86
Kahnt J., Buchenau B., Mahlert F., Krüger M., Shima S., Thauer R. K., Post-translational modifications in the active site region of methyl-coenzyme M reductase from methanogenic and methanotrophic archaea. FEBS J. 274, 4913–4921 (2007).
87
Grabarse W., Mahlert F., Shima S., Thauer R. K., Ermler U., Comparison of three methyl-coenzyme M reductases from phylogenetically distant organisms: Unusual amino acid modification, conservation and adaptation. J. Mol. Biol. 303, 329–344 (2000).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 350 | Issue 6259
23 October 2015

Submission history

Received: 11 June 2015
Accepted: 14 September 2015
Published in print: 23 October 2015

Permissions

Request permissions for this article.

Acknowledgments

We thank E. Gagen and P. Hugenholtz for valuable comments and suggestions; K. Baublys, SGS-Leeder, and Australian Laboratory Services staff for sample collection; and M. Butler and S. Low for library preparation and sequencing. This study was supported by the Australian Research Council (ARC) Linkage Project (grant LP100200730) and the U.S. Department of Energy’s Office of Biological Environmental Research (award no. DE-SC0010574). D.H.P. is supported by the Natural Sciences and Engineering Research Council of Canada. S.J.R. is supported by an Australian Postgraduate Award Industry scholarship. G.W.T. is supported by an ARC Queen Elizabeth II Fellowship (grant DP1093175). The authors declare no conflicts of interest. Our Whole Genome Shotgun projects have been deposited in the DNA DataBank of Japan, the European Molecular Biology Laboratory repository, and NIH’s GenBank under the accession numbers LIHJ00000000 (BA1) and LIHK00000000 (BA2). The versions described in this paper are LIHJ01000000 (BA1) and LIHK01000000 (BA2). Non-euryarchaeotal Surat Basin mcrA sequences have been deposited under the accession numbers KT387805 to KT387832, and unprocessed reads have been deposited under the accession number SRX1122679.

Authors

Affiliations

Paul N. Evans*
Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia.
Donovan H. Parks*
Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia.
Grayson L. Chadwick
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
Steven J. Robbins
Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia.
Victoria J. Orphan
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
Suzanne D. Golding
School of Earth Sciences, University of Queensland, St Lucia 4072, Queensland, Australia.
Gene W. Tyson [email protected]
Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia.
Advanced Water Management Centre, University of Queensland, St Lucia 4072, Queensland, Australia.

Notes

*
These authors contributed equally to this work.
Corresponding author. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Variations and gradients between methane seep and off-seep microbial communities in a submarine canyon system in the Northeast Pacific, PeerJ, 11, (e15119), (2023).https://doi.org/10.7717/peerj.15119
    Crossref
  2. Sediment microbial community structure associated to different ecological types of mangroves in Celestún, a coastal lagoon in the Yucatan Peninsula, Mexico, PeerJ, 11, (e14587), (2023).https://doi.org/10.7717/peerj.14587
    Crossref
  3. Revisiting Microbial Diversity in Hypersaline Microbial Mats from Guerrero Negro for a Better Understanding of Methanogenic Archaeal Communities, Microorganisms, 11, 3, (812), (2023).https://doi.org/10.3390/microorganisms11030812
    Crossref
  4. Changes in the Rhizosphere Prokaryotic Community Structure of Halodule wrightii Monospecific Stands Associated to Submarine Groundwater Discharges in a Karstic Costal Area, Microorganisms, 11, 2, (494), (2023).https://doi.org/10.3390/microorganisms11020494
    Crossref
  5. Recent advances in constructed wetlands methane reduction: Mechanisms and methods, Frontiers in Microbiology, 14, (2023).https://doi.org/10.3389/fmicb.2023.1106332
    Crossref
  6. Long-term warming modulates diversity, vertical structuring of microbial communities, and sulfate reduction in coastal Baltic Sea sediments, Frontiers in Microbiology, 14, (2023).https://doi.org/10.3389/fmicb.2023.1099445
    Crossref
  7. Recovery of metagenome-assembled microbial genomes from a full-scale biogas plant of food waste by pacific biosciences high-fidelity sequencing, Frontiers in Microbiology, 13, (2023).https://doi.org/10.3389/fmicb.2022.1095497
    Crossref
  8. 海洋沉积物中深古菌的固碳潜能——基于DNA的稳定性同位素示踪研究, SCIENTIA SINICA Terrae, 53, 4, (897-905), (2023).https://doi.org/10.1360/SSTe-2022-0083
    Crossref
  9. SnakeMAGs: a simple, efficient, flexible and scalable workflow to reconstruct prokaryotic genomes from metagenomes, F1000Research, 11, (1522), (2023).https://doi.org/10.12688/f1000research.128091.2
    Crossref
  10. The majority of microorganisms in gas hydrate-bearing subseafloor sediments ferment macromolecules, Microbiome, 11, 1, (2023).https://doi.org/10.1186/s40168-023-01482-5
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media