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Abstract

This paper develops a model of quantile treatment effects with treatment endo-

geneity. The model primarily exploits similarity assumption as a main restriction that

handles endogeneity. From this model we derive a Wald IV estimating equation, and

show that the model does not require functional form assumptions for identification.

We then characterize the quantile treatment function as solving an "inverse" quan-

tile regression problem and suggest its finite-sample analog as a practical estimator.

This estimator, unlike generalized method-of-moments, can be easily computed by solv-

ing a series of conventional quantile regressions, and does not require grid searches over

high-dimensional parameter sets. A properly weighted version of this estimator is also

efficient. The model and estimator apply to either continuous or discrete variables. We
apply this estimator to characterize the median and other quantile treatment effects in

a market demand model and a job training program.
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1 Introduction

The ability of quantile regression models, Koenker and Bassett (1978), to characterize

the impact of variables on the distribution of outcomes makes them appealing for exam-

ining many economic applications, see e.g. Buchinsky (1998) and Koenker and Hallock

(2001). The distributional impacts of social programs, such as welfare, unemployment

insurance, and training programs are of large interest to economists. Unfortunately,

in all of these cases, treatment is self-selected or endogenous, making conventional

quantile regression inappropriate. This paper makes two contributions.

First, this paper proposes a model of quantile treatment effects with endogeneity.

At the heart of the model is an assumption of similarity (containing rank invariance as a

special case) that allows us to address endogeneity. This differs from the monotonicity

assumptions of Heckman's nonparametric selection model and Imbens and Angrist's

LATE model. 2 We show that this model's main implication is a Wald IV estimating

equation:

P(Y<q(D,T)\Z) = r, (1)

where q(d,r) is the T-quantile of the potential or counterfactual outcome when the

treatment is exogenously set to the value d, D is the actual endogenous treatment,

Y is the actual outcome, and Z is an instrument. Thus, the model provides a causal

justification and interpretation of the Wald IV estimating equation (l).
3 We also show

that the model does not require functional form assumptions for identification.

Second, we characterize the function q as solving an inverse quantile regression

problem and suggest its finite-sample analog as a practical estimator. This estima-

tor, unlike generalized method-of-moments and other similar estimators, can be easily

computed by solving a series of conventional quantile regressions (convex optimization

problems), and does not require grid searches over high-dimensional parameter sets. A
properly weighted version of this estimator is also efficient. We apply this estimator

to characterize the median and other quantile treatment effects in a market demand

model and a job training program.

An important aspect of the proposed model is treatment effect heterogeneity, given

which conventional linear IV inconsistently estimate the average treatment effect (ex-

ample 5.1). Thus, even if one is interested in ATE, one has to estimate the QTE's first

and integrate them over the quantile index to obtain a consistent estimate of ATE.

Alternatively, one may estimate only the median treatment effects to characterize the

central effects, using the proposed approach.4

2See Vytlacil (2001) on the distributional equivalence of these two models.
3There is very important prior work that estimates functions q under restrictions like (1). This

work starts as early as Hogg (1975); Koenker (1998) characterizes Hogg's estimator as a Wald's IV

approach to quantile regression. See Abadie (1995), Christoffersen, Hahn, and Inoue (1999), MaCurdy
and Timmins (1998) for GMM-like approaches to estimation and testing. Also see Hong and Tamer

(2001) for a fundamental treatment of censoring case. The problem is that a function q, satisfying

the estimating equation, has not had any known causal meaning within standard IV models with

non-constant treatment effects, such as those of Heckman or Imbens and Angrist. Thus, our model

provides a causal interpretation and support of (1) and of these previous important estimators.
4 In expected utility framework, some form of average is typically of interest, but since we (econome-



Further details of the model and the estimator are as follows. The model is devel-

oped in the standard potential outcomes framework, and the QTE is defined as the

difference in the quantiles of potential outcomes under potential treatments. At the

heart of the model is similarity, a generalization of rank invariance assumption, which

is reasonable in many applications and also facilitates interesting interpretations of

QTE, as in Lehmann(1974), Doksum (1974), and Koenker and Geling (2001). This

assumption is different from the monotonicity assumptions of the prevalent IV models

(the selection - LATE models). Similarity also requires less stringent independence

conditions (allowing, for example, measurement error in the instrument). As a result

the model differs from the selection-LATE models. However, the two models do contain

a large common subclass.

It should also be noted that the model and estimators looked at in this paper

both substantively complement and differ from the fundamental model of Amemiya

(1982) and the QTE model of Abadie, Angrist, and Imbens (2001) developed within the

LATE framework. Amemiya's approach and its extension by Chen and Portnoy (1996),

known as two-stage quantile regression (2SQR), allow continuous treatment variables.

However, we show that 2SQR is not consistent when the quantile treatment effect

differs across quantiles (Appendix B). The inconsistency is noted, since this estimator

has often been used expressly to estimate heterogeneous quantile treatment effects. On
the other hand, Abadie et al's (2001) approach applies only to binary treatments, and

its extension to more general treatments is not known. Allowing general treatments is

clearly important.

The approach in this paper expressly allows for QTE that vary across quantiles

and applies to arbitrary- continuous, discrete, or binary - treatment variables. Thus

it can be used to study education effects, demand systems, and any other non-binary

treatments.

On the estimation side, the inverse quantile regression is an easily computable and

transparent estimator, unlike GMM that requires grid searches over high-dimensional

parameter sets. The estimator is obtained as a link between Koenker-Bassett quantile

regression and the Wald IV restrictions. In addition to deriving theoretical properties of

inverse quantile regression, we provide user-friendly computer programs that implement

the estimator, standard errors, and produce graphical output.

The remainder of the paper is organized as follows. Section 2 presents the model.

Section 3 provides two economic models as examples: aggregate demand analysis and

the returns to education. Section 4 presents identification results and the inverse

quantile regression. Estimation methods are described in Section 5, and Section 6

contains two empirical applications, corresponding to models in section 3.

A word on notation. Following Koenker, we use Fy{-\x) and Qy{t\x) to denote the

conditional distribution function and the r-quantile of Y given X = x; capitals such

as Y denote random variables and y denote the values they take.

tricians) typically do not know (are agnostic about) which particular average, the entire distributional

impact needs to be evaluated. In addition, Manski's(1988) ingenious work provides ordinal utility mod-
els of decision making under uncertainty, where agents maximize a r-quantile of utility distribution.

In such framework only quantiles of potential outcomes would be of interest to a policy-maker.



2 A Model of Quantile Treatment Effects

The section begins with an important preliminary discussion that naturally leads to

the QTE model of this paper.

2.1 Potential Outcomes and the QTE

We develop our model within the conventional Neymann-Fisher-Rubin potential out-

come framework. 5 Potential real-valued outcomes are indexed against treatment D
(D £ V, a subset of R'), and denoted Yd, while potential treatment status is indexed

against the instrument Z, and denoted Dz . For example, Yd is an individual's outcome

when D = d and Dz is an individual's treatment status when Z = z.

The potential or counterfactual outcomes {Yd, d € V}, such as wages or demand,

vary across individuals or states of the world. Given the actual treatment D, the

observed outcome is

Y = YD .

That is, only the Z?-th component of {Yd, d £ V} is observed. Typically D is selected

in relation to potential outcomes, inducing endogeneity or sample selectivity.

The objective of causal analysis is to learn about the features of marginal distri-

butions of potential outcomes Yd. For example, fid,d> = EYd — EYd> is the average

treatment effect (ATE). The quantile treatment effect (QTE) is the difference in quan-

tiles of potential outcomes under different potential treatments: 6

Qrd
{r)-Qy

d
,{r).

A main obstacle to learning about the QTE is the sample selectivity or endogeneity.

Early formulations of QTE by Lehmann (1974) and Doksum (1974) axiomatically

interpret QTE as a a measure of interaction of the latent ability t ( "prone to die at

an early age, "prone to learn fast," etc.) and the treatment. The subjects differ in

this latent characteristic and their response to the treatment is described by QTE. An
assumption that allows such interpretation is rank invariance. Rank invariance was

also used by Heckman and Smith (1997) and Koenker and Bilias (2001) in quantile

models without endogeneity. 7

Our model uses similarity as a main restriction that allows to address endogeneity.

Similarity facilitates analogous interpretation of the quantile treatment effects in our

framework and incorporates rank invariance as a special case.

2.2 The Instrumental Quantile Treatment Model.

The first part of the model is a potential outcomes model. The other part relates the

treatment choice to the potential outcomes, accounting for endogeneity.

5See e.g. Heckman and Robb (1986) and Imbens and Angrist (1994).
6 Generally, QTE are more informative than ATE, since they summarize the distributional im-

pact, whereas ATE summarize the impact on the first moment of the distribution. In fact,

fd,d'=/o {Qrdir)-QYdl (T))dT.
7Heckman and Smith (1997) use rank invariance to identify QYd -Y'(T ) — Qyd {^) — Qyd,(

T )-



Assumption 1 (IQT Model) For almost every value of (X, Z) = (x,z),

Al Potential Outcomes. Given X = x, for some Ud ~ U(0, 1),

Yd = q{d,X,Ud ),

such that q(d,x,r) is the r-th quantile of Yd for any < r < 1.

A2 Selection. For unknown function 5 and random process V, given X = x, Z = z,

Dz = 5{z,x,V).

A3 Independence. Given X, {Ud } is independent of Z.

A4 Similarity. For each d and d', given ( V, X, Z)

Ud is equal in distribution to Ud <

A5 Observed variables W consist of ( for U = UD )

( Y = q(D,X,U),

\ D = S(Z,X,V),

{ x,z.

Remark 2.1 Of interest also is a much more restrictive special case of A3 and A4

A3* FULL Independence. {Ud , V}, or equivalently {Yd ,Dz }, are jointly independent

of Z, given X.

A4* Rank Invariance. Ud = Ud > = U for each d.

In Al the conditional r- quantile of Yd is q(d, x, r), given X = x. Our main interest

is the Conditional Quantile Treatment Effect

q(d,x,T)-q(d',x,r),

the difference in quantiles of potential outcomes distributions conditional on x.

In A2, the unobserved random vector V is responsible for the difference in treat-

ment choices Dz across observationally identical individuals. 5() is the (measurable)

selection function. We do not impose any other assumptions on this function. This is

important to accomodate realistic economic examples.

A3 states that potential outcomes are independent of Z, given X. A3 is more

general than A3*, the assumption of selection-LATE models, that requires both {Yd }

and the potential treatments {Dz } to be independent of the instrument Z. A3* is a

strong assumption that can be easily violated when the instrument is measured with

error or there are omitted variables related to Z (a part of the error V) in the selection

equation. Imbens and Angrist (1994) provide additional examples violating A3*.



Given the same observed characteristic x and treatment d, the subjects still differ

in terms of potential outcomes. Their relative Tanking is determined by the rank or

ability vector {Uj}. This vector can be collapsed to a single variable under assumption

A4* - the rank invariance or common error assumption.

A4, similarity, states that given the information (V,Z,X) the expectation of (any

function of) U,i does not vary across the treatment states d. In other words, ex-ante

the ranks are "similar," while ex-post the ranks may differ. Thus similarity allows

substantial ex-post slippage in the ranks, the importance of allowing which was shown

by Heckman and Smith (1997). See Example 3.2 for an example.

A4 also facilitates interpretation of the QTE as a measure of the interaction between

the latent ex-ante ability t and the treatment, following Doksum (1974) and Koenker

and Bilias (2001). Additionally, A4 is a key identification device, leading to the Wald

restrictions in Section 4.

Similarity is the main restriction of the IQT model. It is absent in the conven-

tional LATE/selection models. However, A4 enables a more general selection function

in A2 that requires neither the monotonicity assumption or stronger independence as-

sumptions of the LATE models. Thus, LATE models mainly exploit monotonicity and

stronger independence assumption to address endogeneity, while the present approach

uses the similarity assumption. The value of one versus the other has to be judged in

each particular application.

2.3 A Comparison with a LATE Model with Common Error.

Although the IQT model differs from selection-LATE model, the two do contain a large

common subclass. Indeed, consider the following model:

vi Yd = g{ud {X),U), de{o,i}.

V2 Dz = \{d(z,X) > V) for some real-valued function d.

V3 {Yd, V} (or {Yd,Dz }) are independent of Z, given X.

V4 U does not vary across potential treatments d.

Assume that g is monotone in U, so that error U can be normalized to be uniform.

This model is a special case of the IQT model, with assumption V4 corresponding to

exact rank invariance or common error assumption A4* (see Doksum (1974), Robins

and Tsiatis (1991), Heckman and Smith (1997), and Vytlacil (2000) for various jus-

tifications of rank invariance), and V3 being a stronger version of the independence

assumption A3, in fact corresponding to A3*. Vytlacil (2000) shows such a model

incorporates a wide variety of familiar nonlinear simultaneous equations models. In

turn, the IQT model incorporates the model V1-V4 as an important special case.



3 Economic Examples

The following examples highlight the nature of the IQT model. The discussion is quite

thorough because it underlies the empirical applications in Section 6.

Example 3.1 (Demand with Non-Separable Error) The following is a general-

ization of the classic supply-demand example. Consider the "random coefficient" model

( i. Yp = q(p,U),

I ii. Yp = p(p,z,U), (2)

{ iii. P e{p:q(p,Z,U) = p(p,U)}-

The map p >—> Yp is the random demand function, that is, it is the potential demand

when the price is set (externally) to the value p. Likewise, p >—> Yp is the random

supply function, that is the potential supply when the price is set (externally) to p.

Additionally, Yp and Yp , q(-), and p(-) depend on the covariates X , but this dependence

is suppressed. Random variable U is the level of the demand in the sense that (p, U) <

q(p,U') when U < U'. Demand is maximal when U = 1 and minimal when U = 0,

holding p fixed. Likewise, hi is the level of supply. The r-quantile of the demand curve

p >—> Yp is given by

P ,-*Qvp
(-r) = g(p,r).

Thus with probability t, the curve p i-> Yp lies below the curve p i—> Qyp
(t)-

The quantile treatment effect is characterized by an elasticity d In q(p,r)/d In p. The

elasticity depends on the state of the demand r (low or high) and may vary with r. For

example, this variation could arise when the number of buyers varies and aggregation

induces non-constant elasticity across the demand levels as a process of summation of

individual demand curves, holding the price fixed.

This model incorporates many traditional models with separable error

Yp = q(p) + £, where £ = F-\U). (3)

The model i. is much more general in that the price can affect the entire distribution

of the demand curve, while in (2) it only affects the location of the distribution of the

demand curve.

Condition iii. is the equilibrium condition that generates endogeneity - the selection

of the actual price by the market depends on the potential demand and supply outcomes

i. and ii. As a result P = S(Z,V), where V consists of U, IA, and other variables

(including "sunspot" variables, if the equilibrium price is not unique). Thus what we

observe can be written as simultaneous equations of a general form, with observables8

Y = q(P,U),

P = S(Z,V). w
8To appreciate the generality, note that model incorporates, for example, the simultaneous equa-

tions model of Imbens and Newey(2001), who assume that V is univariate, S is monotone in V, both

V and U are independent of Z
y

if in addition we assume U is uniform. Imbens and Newey (2001)

developed some ingenious identification results using these stronger assumptions.

6



Because of endogeneity, <5vip(t ) 7^ ?(-P. T )> therefore the conventional quantile regres-

sion will be inappropriate to estimate the r-th quantile demand curve. Additionally,

we show in Appendix A that 2SQR is generally not suitable for estimation purposes.

We show that the instrumental variables Z, like weather conditions, that shift the

supply curve and do not affect the level of the demand curve U allows identification

of the r-quantile of the demand function, p >—> q(p,r). Furthermore, the IQT model

allows arbitrary correlation between Z and V. This allows, for example, measurement

error in Z (e.g. in weather conditions). The standard IV approaches (Heckman et al

(2001), Imbens and Angrist (1994)) do not accommodate such a possibility.

Example 3.2 (Education/Training Returns) Let "earnings" in the "education"

states d 6 {0, 1} be determined by a "random coefficients" model

Y1 =q1 (X,U1 ), Y = qo (X,U ).

An individual's training or education decision is given by

D=1MZJ,V)>0)

where unobserved vector V potentially depends on (but is not necessarily determined

by) the ability vector (f/j,t/ ) and arbitrarily on functions q\ and q , X and Z. The

first kind of dependence is endogeneity.

In the standard Roy model, no restrictions are placed on the individual specific

variations in earnings, and the individual observes these before making the schooling

choice. For identification, we impose similarity: conditional on (Z,X,V), £/, equals in

distribution to U . This is more restrictive than the general case, but perhaps not as

restrictive as it may appear. This restriction allows arbitrary correlation between Yq

and Y\ and allows the general treatment impacts through the q\{-) and qo(-) functions.

A main difference between this model and the Roy model is the implicit ex ante nature

of the decision process. Instead of knowing the exact outcomes in any state of the

world, the subject anticipates the same distribution of ability across treatment states

and makes the decision accordingly.9

Indeed, consider a simple example that satisfies similarity A4:

U = r) + v
, Ui=r] + vi,

where 77 is a function of error vector V in the selection equation, and u and and v\

are the slippage terms such that vq ~ v\ given (X,Z,V). Rank invariance A4* is a

degenerate case when v\ = uq = 0.

Finally note that the similarity only need hold conditional on Z, X , and V. This

seems to be a reasonable framework. For example, people generally decide on whether

to attend college or not before they observe their rank/ability among college edu-

cated and non-college educated individuals with observationally identical characteris-

tics. Thus, it seems a plausible approximation that they would anticipate the same

9More precisely, we assume that he has enough information only to anticipate the same distribution

of ability across states. The assumption does not require the subject to have correct beliefs.



distribution of their rank/ability across the treatment states relative to similar

individuals (with the same covariates X and Z).

Another difference with conventional IV model is that the IQT model expressly

allows for dependence to exist between the instrument Z and V whereas the standard

approaches expressly disallow this, as mentioned in the previous example. E.g., consider

the following simple schooling decision rule

D= l{<p(Z) + V >0}.

In the schooling or training context, if Z is a family background, it may be measured

with a sizable error, so independence between Z and V need not hold. V could also

capture omitted variables which are correlated to Z and impact the schooling decision

but not the outcome. Note that measurement error or omitted variables also violate

the monotonicity assumption often used in the IV literature. See Imbens and Angrist

(1994) for other examples of violation.

To summarize, three aspects of the proposed model are highlighted by the above

examples. First, the IQT model allows arbitrarily general quantile treatment effects.

The similarity assumption in no way restricts their shape. Second, under similarity, we

can interpret the QTE as measuring the interaction between the latent ex-ante ability

and the treatment, following Doksum (1974) and Koenker and Bilias (2001). The

similarity seems reasonable in many settings. Third, the similarity allows the selection

in A2-A3 to be more general than that in the popular IV approaches, although this

should be taken as a subsidiary point.

4 Wald IV and Inverse Quantile Regression

Here we establish a link between the IQT model and the Wald-type IV restrictions,

relate those to Koenker and Basset's (1978) quantile regression, and show that the

model is identified without functional form assumptions.

4.1 Main Identification Restriction

The following theorem provides provides an important link of the parameters of the

IQT model to the Wald-type IV estimating equations.

Theorem 1 Suppose A1-A5 hold, and given X,Z
i. ifY is continuously distributed (q(D,X,r) is strictly increasing in r a.s.) then a.s.

P[Y<q(D,X,r)\X,Z} = T,

P[Y <q{D,X, T)\X,Z]=T,

it. otherwise (q(D,X,r) is non-decreasing in t, a.s.), a.s.

P[Y<q(D,X,T)\X,Z}>r,

P[Y<q(D,X,T)\X,Z]<T,

8



with the last inequality being strict if q{D, X,t') = q{D,X,r) for some r' > r with

probability P > given X and Z

.

By linking the IQT model to Wald's IV quantile restrictions, Theorem 1 provides

an empirical and causal content to these restrictions. In this regard, the IQT model

serves the same purpose as the LATE model developed by Imbens and Angrist (1994)

to provide the link between the Wald's IV approach and the (local) average treat-

ment effects. However, our results employ the similarity assumption in place of the

monotonicity assumptions to obtain this link.

As noted, Theorem 1 allows for an arbitrary variable Y, for arbitrary treatment

variable D, and arbitrary instrument Z. Thus equations (5) and (6) lead to natural

ways to estimate any model with endogeneity as long as the corresponding quantiles

of the potential outcome distribution q{d,x
1
r) may be specified. We focus on the

continuous Y, but the discrete case is clearly relevant - see e.g. Manski (1985), Horowitz

(1992), Powell (1986), and Hong and Tamer (2001).

Before proceeding further, it is very important to note that although the IQT model

allows the use of a "conditioning on Z" strategy to estimate the quantile treatment

effects, it is not possible to use the same "conditioning on Z" strategy to estimate other

treatment effects of interest. For example, in order to estimate the average treatment

effect within the IQT model, we first need to estimate the quantile treatment effects

and then integrate them over quantile index r. Conventional linear IV will not work

here. This feature is analogous to that in the selection-LATE models (Heckman 1990).

Example 4.1 (Average Treatment Effects: Failure of 2SLS) Within A1-A5, sup-

pose /i(d) is finite in the equation

Yd = l*(d) + ed , Eed = 0,

where fi(d) is the mean treatment function. It would be natural to expect that

E [Y — fi{D)\Z] = 0, but this is false since generally

E[q(D,U)-n(D)\Z}?0,

because U is not independent of D conditional on Z in general, so that

E [Y = q(D, U)\Z] =11 q{d, u)dP[D = d,U = u\Z\
J J\o,\\

# / f q(d, u)dP[D = d\Z] dP[U = u\Z] = E [fJ-(D)\Z]

.

J J[0,1\

The equality holds if there is no endogeneity or the treatment effect is constant.

4.2 The Inverse Quantile Regression

The main identification restriction of Theorem 1 can be posed as an optimization

problem, which we call the inverse quantile regression for its "inverse" relation to the



(conventional) quantile regression of Koenker and Bassett (1978). This links the IQT
model, the Wald IV restrictions, and quantile regression together.

In order to obtain the link, we note that Theorem 1 states that is the r-th quantile

of random variable Y — q(X,D,r) conditional on (X,Z). Therefore, the problem of

finding a function q(x, d, r) satisfying equations (5) or (6) is the problem of the inverse

quantile regression:

Find a function q(x, d, r) such that is the solution to the quantile regression

problem, in which we regress Y — q{X,D,r) on any function of (Z,X).

Theorem 2 formally states this result.

Theorem 2 For P-a.e. value (x,z) of (X,Z), the following are equivalent state-

ments, for each measurable q'

1. q' satisfies equation (5) or (6) (in place of q).

% Q c\x,z(T ) = °. where e = Y- q'(D, X, t).

3. assuming integrability, q' satisfies

= argminl E [pT (Y — q'(x,d) — v) \x, z]
,

veR

where pT {a) = tu+ + (1 — r)u~

.

4- q' is an argmin U>(x,z) ,
where the minimum is computed over all candidate

(measurable) functions ip, and, assuming integrability,

v(x, z) = argminl E \pT (Y — tp(x, d) — v) \x, z\ .

Remark 4.1 Integrability conditions can be removed by subtracting pT>(Y — q'(x,d)—

v), where v is a fixed number, inside the expectation. The "argminl" above means

"limT 'jr argmin," and is a pure technicality, insuring uniqueness of solution. It is only

needed there for non-continuous Y and at most countably many values of r € (0, 1).

Theorem 2 applies to continuous, discrete, or mixed outcomes, so estimation based

on Theorem 2 can be applied to such data. Theorem 2 is both interpretive and con-

structive. First, any consistent estimator asymptotically solves the inverse quantile

regression problem. Second, Theorem 2 (part 4) suggests a way to construct practical

estimators (in addition to obvious method of moments or minimum distance methods

based on equations (5) and (6)).

4.3 Conditions for (Global) Identification

Here we show that we do not need functional form assumptions to identify QTE as

long as we have a reasonable instrument. We focus on the case of binary D, while the
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appendix contains generalizations. The following analysis is all conditional on X = x,

but we suppress this for ease of notation. Define C{x) as convex hull of the set of

functions if mapping d from {0,1} to (y : fY {y\d) > 0) such that P(Y < ip(D,r)\Z)

belongs to \t — 5,r + 5] a.s. for 6 > 0.

Define the following function

nz (^x) = {P[Y < <p{D)\zi\, P[Y < <p(D)\z2]),

where z = (zj,j = 1,2). Assuming relevant smoothness define

M<p,x) = ^-nz (¥>)
= frM0)\D = 0, Zl )P[D = 0|*i] fy(<p(l)\D = l,z1 )P[D = l\z t ]

fY {<p(0)\D = 0,z2)P[D = OH fY (<p(l)\D = l,zi)P[D = l\z2 )

/r.i>(y(0),0|zi) /y.cMl),l|2i)

/y,o (¥7(0),0|22 ) /y,r.(¥>(l),l|z2)

We will say that rank Jz (ip,x) is full w. pr. > if with positive probability Z =
(Z\,Zi) is such that rank Jz(<p,x) = 2, where Z\ and Z2 are independent replica of

Z, given X = x.

Theorem 3 Suppose A1-A5 hold, and that fyivld, z,x) > and finite over the range

of d t—» q(d,x,r). Then d >—» g(d,x, r) is a unique solution of

P(Y < q(d,x,r)\x,z) = r for P-a.e. z, given X = x, (7)

among C(x) if for any ip £ £(a:) JZ (<P> x ) 2S finite and has full rank w. pr. > 0.

These conditions are akin to the identification of average treatment effects in Abadie

(2001) or Das (2001). The difference is in the weighting by a density. The condition

is easy to verify in many applications. For example, suppose Z = or 1 as in the

JTPA example discussed in Section 6. Then det Jz 7^ is equivalent to a nonconstant

likelihood ratio property:

/r ,
D (y>(0),0|Z = 1) /y ,o (y(0),0|Z = 0)

A,„Mi), i|z = 1) * /y,D Mi), \\z = o)

'

for any (p e C(x). The instrument Z should impact the joint distribution of Y and

D at all relevant points. In the JTPA data P[D = 1\Z = 0] = 0, which means

/v,d(j/i 1|Z = 0) = for any y, so the condition is always true as long as the left-hand-

side is finite. In other cases, the condition is simply plausible.

5 Estimation

In this paper, it is natural to focus on estimating the basic linear model, which covers

a wide area of applications. In this model a conditional r-quantile of the potential

outcome is given by (or approximated by)

QYdlx (T) = d'aT + X'pT , (8)

11



where d is an I x 1- vector of treatment variables (possibly interacted with covariates)

and x is a A: x 1 vector of (transformations of) covariates. This model is a specialization

of Al, and is a foundation of quantile regression research (see e.g. Koenker and Hallock

(2000) and Buchinsky (1998) for reviews).

Using Theorem 2 we offer the inverse quantile regression estimator as a finite-

sample analog of the inverse quantile regression in the population. In the appendix, for

completeness and comparisons, we also provide the results for the generalized empirical

likelihood estimators. The presented estimator is perhaps the only practical estimator

that can be applied to reasonably general cases. Other strategies such as method of

moments or empirical likelihood are typically infeasible,
10

as explained below.

To state the idea clearly, first suppose we have no covariates or simply treat co-

variates as the part of vector d above. In this case, a simple analog of the population

inverse quantile regression is as follows:

Find 3 by minimizing a norm of 7(a) over a subject to 7(0] solving the quantile

regression of Y — D'a on Z: j[a] = argmin i
Y^=i Pr^Xi ~ D'

{
a — Z[^f).

Now suppose we have covariates Xt . Then the procedure can be modified as follows:

Find a by minimizing a norm of 7(0] over a subject to (7(a), /3[q]) solving the

quantile regression of Y — D'a on Z and X:
(7[a], j9[a]) = argmin,,, £ ££., pr(Y - D[a - Xtf - Z'a)-

The estimate of j3 can be obtained as a usual quantile regression of Y — d'a on X.

In order to improve efficiency, we allow the observations to be weighted differently

and allow for estimated instruments. Define the weighted quantile regression objective

function:

1
n

Qn (a,/3n ) = ~zZHy
* - D'^ ~ X'^ ~^9] >

where

5=]

$i = $(Xi, Zi), where $ is a smooth r x 1 vector function of instruments,

$; = <S?(Xi,Zi), where $ is a smooth consistent estimate of $, satisfying R5,

V; = V(Xi,Zi) > 0, where V is a smooth weight function,

Vi = V(Xi, Zi) > 0, where V is a smooth consistent estimate of V, satisfying R5.

Note that one may simply set $, = Zi or V; = 1, which will give us the simpler ver-

sions above. Efficient estimation is described in Corollary 1. We can use a wide variety

of nonparametric estimators and parametric approximations of V and $, satisfying a

standard smoothness condition, stated as a technical assumption R5 in appendix G.

We also assume (aT ,(3T ) belongs to a compact set Ay. B. Other technical conditions

10Note, however, that EL has many good properties and purportedly performs well in finite samples.

A possible feasible approach is as follows. In the first stage, IQR estimates of the parameters could be

obtained. Then, in the second stage, the estimates could be recomputed using EL limiting the domain
to a neighborhood around the estimates obtained in the first stage.
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are stated as assumptions R1-R5 in the appendix. Most of them are standard in the

quantile regression literature.

Now let's formally define the estimation procedure as follows:

a = arg inf 7[q]^47[q], such that (9)

(/?[<*], 7[a])= arginf Qn {a,p,j). iw\

(/3,7)esxc;
v '

where Q = [— <5, 5]
r
for 8 > and A -^-> A is a positive definite matrix. A final estimate

of j3T is obtained as

/3 = arginfQn (S,/3,0). (n)

Equations (9) -(10) are a finite sample inverse or instrumental quantile regression

(IQR). (10) is the quantile regression step, and (9) is the "inverse" step.

This formulation allows one to effectively reduce the dimensionality of a potentially

difficult optimization problem to the dimension of a. In GMM, the objective function

is highly multi-modal and has zero derivative almost everywhere, implying the need to

perform a grid search over a subset ofR^ where K = dim(i)-l-dim(a) (e.g. in Example

2 of the next section dim(x) + dim(a) = 16). Such an estimator is infeasible, except

perhaps when dim(i) = 2 or 3. In contrast, a simple implementation of inverse quantile

regression would require only a grid search over a subset of Rdlm (Q '. The regression

quantile steps are solved as fast as OLS by interior point methods combined with

preprocessing, see Portnoy and Koenker (1997). The computations may be improved

further by employing parametric programming. In this approach the quantile regression

in (10) is initially solved for some qo, then one solves for P\a\ and 7(0] for nearby a

using a standard sensitivity analysis.

We now turn to the theoretical properties of the estimator. In the appendix we also

study the properties of the generalized empirical likelihood estimators.

Theorem 4 Under assumptions R1-R6 listed in the appendix

V^(a-ar)-^KAT(0,S),

where convergence is joint, and 7V(0, S) is normal vector with mean and variance

S = t(1-t)£$$', where K = {J'aHJa )- l
J'QH, H = J^AJ-,, L = J^ l

[Ik : 0]M, M =
I - JaK, $ = V • [X' : $']', Ja = E [/«(0|X, D, Z)<S>D'} and J = E [/«(0|X, Z)XX'),

where t = Y- DaT - X'/3T . Finally, Je = E\\/V /«(0|X, Z)**'], where [J' : J;]' is

the partition of Jg , such that Jp is a k x (k + r) matrix and J7 is a r x (k + r) matrix.

Corollary 1 Generally, when the number of instruments $ equals that of enodogenous

regressors D, the joint asymptotic variance of a and (3 has a simple form

J'^SJ- 1

, (12)
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for J = E[f,(0\X.D,Z)<b[D' : X'}}. Choice of A is irrelevant. Further, if $ = $* =

E[D v\Z,X]/V*, where v = ft [0\D,Z,X], and V = V* = fe (0\X,Z), the asymptotic

variance of a and (3, simplifies to

t(1-t)£[^***']- 1
,
where V* = V* [X', $*']'•

(
13

)

Corollary 2 If the number of instruments $ is larger than the number of enodogenous

regressors D, choice of weighting matrix A matters. An optimal choice of A is given by

A = \Jg
] 22
= (J-, Jg J-,)

-1
, an r x r matrix. In this case the joint asymptotic variance

of a and J3 equals NSN', where N = {J'
J~ l J)' 1 J'

J~ l
. If in addition, V = V* , the

joint variance equals (JS J) .

(13) is the efficiency bound for the GMM estimators under conditional moment

restrictions as in Theorem 1. This is the efficiency bound in the sense of Amemiya

(1977), Chamberlain (1987), or Newey (1990). See also Newey and Powell (1990).

Corollary 1 suggests a reasonable approach to estimation and inference.

First of all, in section 6, we used a simplest and most transparent strategy, projecting

D on Z with OLS to form the instrument $, and setting V; = 1. We used methods

described in Koenker (1994) to obtain the estimates of standard errors based on the

simple formula (12). Powell (1986)'s methods also apply without modification.

Generally, we can use many established methods to either approximate or imple-

ment exactly the optimal procedure. We can estimate /£ (0|) by the kernel methods

described in Andrews (1994) or quantile regression differencing as in Koenker (1994),

and E[Dv\Z, X] can be estimated using series estimation (e.g. OLS of Dv on Z, X
and their powers), as in Newey (1997) and Andrews and Whang (1990). Assumption

R5 allows for a wide variety of nonparametric and parametric estimation procedures -

Andrews (1994) discusses a number of them.

In practice, it is often reasonable to use parametric approximations, cf. Amemiya

(1975). For example, we may use conditional normality for /e (|) to get an approxima-

tion of the standard errors and optimal weights in the quantile regressions above. On
the other hand, E[Dv\Z, X] can be approximated by polynomial functions in Z, X and

estimated by OLS. As long as approximation of the optimal procedure is accurate, the

standard errors, based on (13) or on a more robust formula (12), will also be accurate.

When there is a compelling reason to use instruments $ of dimension larger than

that of D, Corollary 2 describes the choice of the weighting matrix A that simplifies

the asymptotic variance.

The documented computer programs in programming languages R (free software

available from www.r-project.org) and Matlab that implement the estimation and in-

ference are available from the authors. The programs implement both the optimal and

sub-optimal instrument cases.
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6 Empirical Applications

This section presents the empirical illustration to the economic models presented in

section 3. The first example is a market demand model, and the second example is an

evaluation of a job training program.

6.1 Demand for Fish

In this section, we present estimates of demand elasticities which may potentially vary

with the level of demand, r. The data contain observations on price and quantity of

fresh whiting sold in the Pulton fish market in New York over the five month period

from December 2, 1991 to May 8, 1992. These data were used previously in Graddy

(1995) to test for imperfect competition in the market and later in Angrist, Graddy,

and Imbens (2000) to illustrate use of the conventional IV estimator as a weighted

average of heterogeneous demands. The price and quantity data are aggregated by

day, with the price measured as the average daily price for the dealer and the quantity

as the total amount of fish sold that day. The data also contain information on the

day of the week of each observation and variables indicating weather conditions at sea,

which are used as instruments to identify the demand equation. The total sample

consists of 111 observations for the days in which the market was open.

The demand function we estimate takes a standard Cobb-Douglas form:

Qin(yp )|x(T) = aT \np + X'PT ,

where Yp is demand when price is p. The elasticity aT varies across the quantiles

t of demand level. Following discussion in section 3, this is a demand model with

non-separable error and random elasticity.

The top two panels of Figure 1 provide the estimates of elasticities obtained by

IQR of ln(Y) on ln(P) using wind speed as the instrumental variable, while the lower

panels depict standard quantile regression (QR) estimates. The shaded region around

the point estimates represents the 80 percent confidence interval. While the reported

estimates are for a model without covariates, the estimated elasticities are not sensitive

to the inclusion of dummy variables for the days of the week or other covariates.

The price effect on quantities sold, as estimated by QR, appears to be approximately

constant across the entire range of quantiles. The magnitudes of the effects are also

quite small, in all cases much less than unity. IQR estimates, on the other hand,

range from -2 to -.5, with the median elasticity of -1, indicating variation of elasticities

with the level of demand. Except at high quantiles, the IQR elasticities are uniformly

greater in magnitude than the price effects predicted by QR. This is clearly shown

in the demand curves plotted in Figure 2. Note that the interpretation of IQR and

QR estimates is very different. IQR estimates a (causal) demand model, while QR
estimates the conditional quantiles of the equilibrium quantity as a function of the

equilibrium price.

The IQR estimates of the demand elasticities aT illustrate heterogeneity across the

demand levels. The results indicate that demand elasticity is quite high in magnitude
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at low quantiles, but is decreasing in the quantile index. While there are many possible

explanations for this demand behavior, it does cast doubt on the hypothesis that the

aggregate demand in this market is a sum of the demand curves of numerous identical

price-taking agents who randomly arrive at the market. The estimates may also suggest

that a single statistic may be insufficient to truly capture the demand function variety.

6.2 Evaluation of a JTPA Program

The impact of job training programs on the earnings of participants, especially those

with low income, is of great interest to economists, but evaluating the causal effect of

training programs on earnings is difficult due to the self-selection of treatment status.

However, data available from a randomized training experiment conducted under the

Job Training Partnership Act (JTPA) provides a mechanism for addressing this issue.

In the experiment, people were randomly assigned the offer of JTPA training services,

but because people were able to refuse to participate, the actual treatment receipt

was self-selected. Of those offered treatment, only 60 percent participated in the

training. There was also a small number of individuals from the control group who
received training. The random assignment of the training offer provides a plausible

instrument for a person's actual training status. Adadie et. al. (2000) and Heckman

and Smith (1997) provide detailed information regarding data collection procedures

and institutional details of the JTPA. We limit the analysis to the adult males.

To capture the effects of training on earnings, we estimate a linear model:

QYd \x(T) = daT + X'pT ,

where d indicates training status and is instrumented for by assignment to the control

group, the potential outcomes Yd are earnings, and X is a vector of covariates. The

data consist of 5,102 observations with data on earnings, training and assignment

status, and other individual characteristics. Earnings are measured as total earnings

over the 30 month period following the assignment into the treatment or control group.

We also include dummies for black and Hispanic persons, a dummy indicating high-

school graduates and GED holders, five age-group dummies, a marital status dummy,
a dummy indicating whether the applicant worked 12 or more weeks in the 12 months

prior to the assignment, a dummy signifying that earnings data are from a second

follow-up survey, and dummies for the recommended service strategy. 11

Results for standard quantile regression are illustrated in Figure 4 and IQR esti-

mates in Figure 3. The shaded region represents the 90 percent confidence interval

for the point estimates. The first panel in each figure shows the estimated impact of

the participation in the training program across various quantiles. A quick compari-

son of the two sets of results shows that the standard quantile regression estimates of

the statistical impacts of training are well above the treatment effect. The quantile

regression estimates are uniformly larger than the IQR estimates, and in many cases

the difference is quite substantial. This difference is perhaps most important in the

n The recommended service strategy was broken into three categories: classroom training, on-the-job

training and/or job search assistance, and other forms of training.
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low to middle quantiles where the conventional quantile regression estimates indicate

a relatively large statistical impact of training on the earnings of participants.

The differences in the standard QR and the IQR estimates, as well as the distri-

butional impacts of the program, are made even more apparent when one considers

the impact of training in percentage terms. 12 Quantile regression estimates indicate

large percentage impacts, especially in the lower quantiles. The IQR estimates, on

the other hand, indicate that the percentage causal impact of the training program is

relatively constant and low, between 5 and 10 percent, along the whole distribution.

This is interesting since the supposed intent of job training programs is to raise the

incomes of low income individuals. However, we observe that the impacts were actually

the greatest for the upper quantiles.

Coefficient estimates for several of the covariates are also included in the figures.

None of the results are particularly surprising. Being Hispanic has no significant impact

on potential earnings at any point in the distribution, while at medium and high

quantiles, blacks earn significantly less than whites. We also see that education, as

measured by high school graduation or having a GED, has a positive impact along

almost the entire distribution, with the impact growing monotonically in the quantile

index. This pattern is also observed for the marriage effect, which tapers off in the

highest quantiles. The effect of having worked little in the previous year runs in

almost exactly the opposite direction, impacting earnings negatively at all quantiles

and decreasing earnings substantially in the upper tail of the distribution.

We next compare our results with those in Abadie et al.(2001). Since identification

in two models comes through different assumptions and the estimated treatment ef-

fects are for different populations (the Abadie et al's model is for the sub-population of

LATE-compliers), the estimation results need not agree. However, the JTPA is an ex-

ample where both sets of assumptions appear to hold. Independence and monotonicity

are almost certainly satisfied, and it seems reasonable that, relative to others with sim-

ilar characteristics, similarity assumption is also fulfilled.
13 Under these conditions,

the models overlap and the results should indeed be comparable if the subpopulation

of LATE-compliers is representative of the entire population. This appears to be the

case in the present example.

Lastly, consider the results of Heckman and Smith (1997). The model of Heckman

and Smith (1997) did not incorporate endogeneity (it had a different point). Thus their

results correspond to our QR results (fig 4), and differ from the IQR results (fig 3).

6.3 Numerical Performance

The objective functions for selected quantiles from Examples 1 and 2 are graphed

in Figure 5. The upper three panels in the figure illustrate the objective functions

from the fish example, while the lower panels correspond to the JTPA example. The

12The percentage impact of training is calculated for both whites, Percentage Impact I, and black,

Percentage Impact II. Percentages are calculated for married high-school graduates aged 30 to 35.

Note that conditioning on covariates weakens the required similarity condition requiring that

similarity only hold for people with the same covariate values.
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objective functions are very well-behaved, especially in the JTPA example. Each of

the objective functions from the fish example does have many local minima, which is

attributable to the small sample size. However, in all cases, the functions have an

obvious unique global minimum.

7 Conclusion and Future Research

This paper offered two contributions. First, it proposed a model of quantile treatment

effects which allows for treatment endogeneity. The model exploits the similarity as a

main identification restriction. The resulting model differs from both Heckman's non-

parametric selection model and Imbens and Angrist's LATE model. From this model

we derive a Wald IV estimating equation. We show that the model does not require

functional form assumptions for identification. Second, we characterized the quantile

treatment function as solving an inverse quantile regression problem and suggested

its finite-sample analog as a practical estimator. This estimator, unlike generalized

method-of-moments, can be easily computed by solving a series of conventional quan-

tile regressions, and does not require grid searches over high-dimensional parameter

sets. A properly weighted version of it is also efficient. We applied this estimator to

characterize quantile treatment effects in a market demand model and evaluation of a

job training program.

An important feature of the proposed model is that even though one may not be

interested in quantile treatment effects, one may still have to estimate them. Indeed,

the average treatment effects can not be estimated by conventional IV methods, as

shown in example 5.1.
14 Instead, quantile treatment effects have to be estimated first

and then integrated over the quantile index. Alternatively, one may estimate only the

median treatment effects, using the proposed model and estimator.

In companion works, we consider a number of directions. In a joint work with Whit-

ney Newey and Guido Imbens, we explore fully non-parametric estimation, which poses

an interesting problem. Other research directions are also considered. For example,

an important research question is how to estimate policy-relevant treatment effects in

an expected utility framework, given particular social loss functions, known program

costs, and effects on choice probabilities (cf. Heckman et al (2001)).

*Note that the local average treatment effect may still be identified without estimating the QTE.
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Figure 1: Inverse Quantile Regression and Quantile Regression Results for fish data. The

quantile treatment effect, estimated by IQR, is the elasticity of the T-th quantile demand

curve. It tends to be much higher than the "price effect" on the r-quantiles of quantities sold,

estimated by QR.
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Figure 3: Inverse Quantile Regression results on JTPA data.
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Figure 5: A. IQR objective functions for the fish example. B. IQR objective functions for

the JTPA example.



A Definitions and Lemmas

We use the following empirical processes in the sequel, for W = (Y, D, X, Z)

f -> E„/(W) = -f] f(Wt ), f ~ G„/(W) = 4=V (/(WO - £/(Wi))

For example, if / is estimated function, Gn/(W) means: ^= £"=1 (/(Wi) - Ef(Wi))f=j.
Outer and inner probabilities, P* and P, are defined as in van der Vaart (1998). In this paper

-^-> means convergence in (outer) probability, and — means convergence in distribution. We
will say that process {I i—* vn (l),l £ C} is stochastically equi- continuous (s.e.) in £°°(C) if for

each e > and 77 > 0, there is <5 > :

limsup P*( sup \vn (l) — v„(l')\ > 77) < €

ti—*oo p(Z,l')<<5

for some pseudo-metric p on £, such that (C,p) is totally bounded pseudo-metric space.

The following results are from Knight (1999). They allow general discontinuities and R -

valued objective functions. Related literature is Rockafellar and Wets (1998).

Lemma A.l (Geyer's Lemma) Suppose {Qn} is a sequence of lower-semi-continuous con-

vex Ik-valued random functions, defined on R , and let V> be a countable dense subset of R .

If Qn converges to Qoo in R on T>, in finite dimensional sense, where Qoo is Isc convex and

finite on an open non-empty set a.s., then

arginf Q„(z) — arginf Qoo(z),

provided the latter is uniquely defined a.s. in R .

Lemma A.2 (Approximate Argmins) Suppose

i. Zn is S.t. Qn{Zn ) < >nfzeRd Qn(z) + in, in \ 0; Zn = Op (l).

ii. Zoo s argminz£Rd Qoa(z) is uniquely defined inM.d a.s.

Hi. Qn () => <3oo() in t°°(K) over any compacts K, where Qoo is continuous. Then

Zn * Zoo.

B Two-Stage Quantile Regression: Inconsistency when

QTE varies with r

The model proposed by Amemiya consists of two equations

(t) Y = D'6 + X'(3 + U,
(14)

(ii) D = Z'-y + V,

where D is an endogenous vector, i.e. D depends on the real-valued U, X is a vector of

exogenous or predetermined variables, U and V are independent of X and Z, and U and V
are jointly symmetric and absolutely continuous.
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Parameters (/3,5) can be estimated by two-stage LAD, Amemiya (1982). by projecting

D on Z to get 7, and using the median regression of Y on (Z'^y,X). Another valid second

stage is the quantile regression, cf. Chen and Portnoy (1996), known as two-stage quantile

regression (2SQR).

Model (14) imposes the constant QTE. The treatment variable, if assigned externally, shifts

the location of the outcome variable, but does not affect the scale or shape of its distribution.

This severely limits the treatment variety.

The assumptions of constant QTE is crucial for validity of 2SQR. If QTE effects are

non-constant, 2SQR does not consistently estimate them. Unfortunately a rather extensive

empirical literature has used 2SQR to estimate the non-constant QTE.

To explain the inconsistency, it suffices to consider an example with no endogeneity. Sup-

pose for some increasing one-to-one map 5():

Y = DS(U),U = U(0,1),

D = Z'f + V, (15)

Z, U, V are mutually independent.

Assume that V, V have densities conditional on Z and that D > 0. To pin down 7 we may
assume E[V] = 0. It is sufficient to show that 6(t) is generally not the optimum in the

population 2SQR problem. That is, there is no a such that

i. E(l(Y<a + 5(T)Z'y)-T)=0,

ii. E (l(y < a + 5(j)Z'-y) - t) Z'-y = 0.

By definition {Y < a + S(r)Z'-y} = {V5(U) + Z'-y{5{U) - 6(t)) < a}. Equation i. implies:

Q = Qm(t), where M = V8(U) + Z'-y (6(U) - 5(r)),

thus it remains to check whether

£(1(M<Qm (t))-t).Z'7 = 0. (17)

Generally (17) is false. Equation (17) holds when M is T-quantile independent of Z:

Qm\z{t) = Qm(t) Pa.e.«?[M <Qm(t)\Z] = t P a.e.

This necessarily happens when <5(t) = 5, the constant treatment effect case, or, for example,

when t = 1/2 and M is symmetric given Z, as in Amemiya (1982).

Simple examples suffice to confirm that (17) indeed fails. The first example involves no

endogeneity:

• V = 5 + N(0, 1), truncated to be positive,

• Z'-y = 5 + N(0, 1), truncated to be positive,

. 5(U) = N(0, 1)/100, D = Z'-f + V, Y = D 6(U).

The following computation uses monte-carlo integration using 500, 000 simulations.

. E{1(M < Qm{t)) -T)Z'-y = 0.34, for r = .7 with s.e. of .003

The second example involves endogeneity:

• V = 5 + N(0, 1), truncated to be positive,
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• Z'"f = 5 + iV(0, 1), truncated to be positive,

. S(U) = V/100, D = Z'-y + V. Y = D - 6(U).

The following computation uses monte-carlo integration using 500, 000 simulations.

• E (1(M < Qm{t)) - t) Z'-y = 0.38, for r = .7 with s.e. .003

C Comparison with Abadie et al's Model

In Abadie, Angrist, and Imbens (2001), henceforth AAI, the treatment variable D and the

instrument Z are both binary. The binary nature of D is critical, and extensions to the

general case are not known. The general, non-binary case is clearly important. This approach,

however, is well suited to many experimental studies.

The potential outcomes Yd are indexed by the treatment status d € {0, 1}, and the potential

treatments D2 are indexed by the instrument status z e {0, 1}. The realized outcome is

Y = Yd, while the realized treatment is D = Dz- AAI impose the independence condition

(Y , Ylt Di, Do) are independent of Z, (18)

and the monotonicity assumption:

Di > Do a.s. (19)

For example, let

Dz = l(v(Z) > V), where Z is independent of V, (20)

i.e. Do = l(y>(0) + V) and Di = 1(^(1) + V). V may depend on the potential outcomes Yo

and Vi. Model (20) along with (18) satisfies the independence and monotonicity assumption.

(Vytlacil (2001) also shows the converse is true as well, in the sense of distribution equivalence.)

Exploiting that D and Z are binary, independence, and monotonicity, AAI show that in

the subpopulation of compilers, where D\ > Do, the realized treatment D is independent of

potential outcomes:

(Yi, Yo) are independent of D \X, D\ > Do-

The compilers are manipulated by the instrument and, therefore, randomly receive a treat-

ment status. That is, the treatment status is given to them independently of their potential

responses Vo and Vj, conditional on observed covariates X. That is, endogeneity is removed

in this subpopulation.

Let Qy\x,c(t) denote the r-quantile for the population of compilers conditional on (X, D\ >
Do)- The quantile treatment effect <5(r) is a difference in the conditional r-quantiles of Y\ and

Vo for compliers:

Qy Ix.c(t)=6(t)D + X'P(t).

AAI suggest an ingenious weighting scheme that "finds compliers" (compliers are unobserved)

and interpret their estimator as a re-weighted Koenker and Bassett's quantile regression.

The main differences with our approach are the following.

First, our model's QTE is defined relative to the population, while AAI's QTE is defined

relative to compliers. The compliers may substantially differ from the entire population. For

example, in Angrist and Krueger (1992), the compliers are those whose education level is

affected by their birthdate. Thus, the 90% QTE in AAI's model may differ substantially from
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the 90% QTE in our model. The QTE's of two models may coincide if compilers in AAPs
mode! are representative of the population and other assumptions overlap as well.

Second, AAI's model applies to binary cases only, while the present approach applies to

general cases. Third, the estimation procedure are fundamentally different. Fourth, we use

similarity or rank invariance to identify QTE while AAI use the monotonicity and stronger

independence conditions.

D Proof of Theorem 1

Part (a). Conditioning on X = x is suppressed. For P-a.e. value z of Z

P[Y<q[D,T]\Z = z]

(=} P[q[D,UD] < q[D,r]\Z = z]

(
J? P[UD <t\Z = z],

l2> f P[UD < t\Z = z, V = v] dP [V = v\Z = z]

W
J p [cV,„, < t\Z = z, V = v] dP [V = v\Z = z]

(5)
f P[U < t\Z = z, V = v] dP [V = v\Z = z]

(=)
P[L/ <r|Z = z]

(7)= r.

Equality (1) is by Al and A5. Equality (3) is by definition. Equality (4) is by A2. Equality

(5) is by the similarity assumption A4: for each d, conditional on (V = v, X = x, Z = z)

Us(z,v) equals in distribution to U .

Equality (6) is by definition and equality (7) is by A3. Note that equality (2) is immediate

when r i-> q{d, r) is continuous, since we assumed that r >-* q(d, r) is strictly increasing. To

show (2) holds more generally, simply note that for t 6 (0, 1) the event {UD < t} implies

the event {q [D,Uo] < <j[Di T]} by t h q\d, r] non-decreasing on (0, 1) for each d. On the

other hand, the event {q[D, UD ] < q\D, t]} implies the event {Ud < t}, since t i-> q[d, t] is

strictly-increasing and left-continuous
15

in (0, 1) for each d.

Finally, since r i-> q\d, r] is strictly increasing, left-continuous, we have

P[q[D,UD ] = q[D,T]\Z = z]=0,

so that P-a.e.

P[Y<q[D,r]\Z] =P[K <q[D,r]\Z}.

3 r t—* q [d
y
r] is said to be left-continuous if HmT /j T q [rf, r'\ = q [d,r].
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Part (b). Conditioning on X = x is suppressed. For P-a.e. value z of Z

P[Y <q[D,T]\Z = z]

{l) P[g[D
>
UD]<q{D,r}\Z = z}

(2) (22)
> P[UD <t\Z = z],

(3)

> P [U < t\Z =z]=t,

where the equalities (1) and (3) are by the same arguments as in the proof of part (a), and

equality (2) follows because the event {UD < t} is a subset of the event {q [D, UD ] < q [D, r]}

by t i—> q [d, t] non-decreasing for each d. On the other hand,

P[Y < q[D,r]\Z =.z]

]<q[D,r]\Z = z]

(23)

®P[q [D,UD]<q[D,r]\Z = z]

= (ar<)P[UD <t\Z = z]

<&P\U <t\Z = z]=t,

where the equalities (4) and (6) are by the same arguments as in the proof of part (a). (5)

holds as an equality if q [D, t] is strictly increasing at r, P-a.e., conditional on Z = z, since

the event {q [D, UD ] < q[D,r]} equals the event {UD < t} P-a.e. If on the other hand, if

q[D, t] is flat at t, P-a.e., conditional on Z = z, with prob > 0, conditional on Z = z, then

{g [.D, UD ] < q [D, t]} is a strict subset of the event {UD < r} by r >— q [d, t] non-decreasing

and left-continuous for each d.

E Proof of Theorem 2

First show that statement (1) 4=> statement (2). Let e = Y — q'(d,X,r). This follows imme-

diately by definition Q e\x,z(T ) — inf{m : P[t < m\X, Z] > t}.

We next show that statement (2) •!=> statement (3). = Q e [r\x, z] is the conditional

quantile. Therefore, it is a best predictor under asymmetric absolute loss, cf. Manski (1985),

p. 55. We need to show a stronger fact — (2) & (3) — extending his argument. Write for

any v <

E[pr (e - v)\x, z]-E \pT (<r) \x, z]

= (1 - t) [ v dFe [e\x, z]+
J

[e- tv] dFe [e\x, z]

+ t [ {-v)dFe [e\x,z]

J\o,<

(24)

l,oo)

= (l-r) v P[e < v\x,z] + (1 -r) v P[e G (v,0)\x,z\ - rvP[e >Q\x,z]

+ [ (e-v) dFc [e\x,z]

= v((l -r)P[e <0\x,z] -P[e >0\x,z]r) + [ (e - v) dFc [e\x,z] > 0.

(25)
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(25) > 0, since v < and (i) P[e < 0|x,z] < r and (ii) f°(e - v) dFc [e\x,z] > 0, and one of

these inequalities must be strict. Indeed, if P[e = 0|x, z] > 0, the inequality (i) is strict. If on

the other hand, P[e = 0|x, z] = 0, then the inequality (ii) must be strict. Indeed, in this case

/ (e - v)dFe \e\x, z] = occurs only if Pe [e|x,2] is flat (assigns no mass) on (v, 0), which given

that there is no mass at 0, contradicts to = Q c
\
Xiz(t)-

Next, for any v >

E [pT {e-v)\x,z\- E[pT {e)\x,z\

= (1-t)/ v dFe [e\x 1
z]+

J
[(l-T)v-e] dFe [e\x,z]

+ t f (-v) dFt [e\x,z]

7["' oo)
(26)

= (1 - t) v P[e < 0|x, z]-t v P[ee (0, v)\x, z] - tv P[e > v\x, z]

+ f [v-e] dF,[e\x,z]
J(0,u)

= ^((1 - r) P[e < 0\x, z]-t P[e > 0|x, 2]) + / [v-e] dFc [e\x, z] >
>(0,v)

(26) > since v > and P[e > 0|x, z] < 1 - r and /"[t; - e] dFe [e|x, 2] > 0. (26) = if (i)

P[e > 0|x, 2] = 1 — r, thus P[e < 0|x,2] = r and (ii) the second term is zero, (ii) happens

iff t 1—» Ft (t\d, 2) is flat at (0, t>). When (26) = 0, is not the unique predictor under pT loss.

Since r h-> Q£
|
x , s (t) is left-continuous, for any sequence r^jrwe have qm = Qe|i, !: (''"m) T

and for any v > 0, denoting em = € — qm

E [pT ,m (em - «) |x, 2] - E
[PtL (em ) |x, 2]

= v((1-t^) P[em <gm |x,2]-r^ P[em >gm |i,z]) + / [u - e]<*F£m [e|x, 2] > 0,
v ' J(0,v)

since both of the terms are non-negative by the earlier arguments, and
J"(0

, [v—e]dPem [e|x,2] =

/( „+ )[
v ~ e ~ Qm\dFe [e\x,z] > 0, since = Q £ |i,z (t) e {qm ,v + qm ) for sufficiently large

m. In other words, the last statement implies that Pe [|x,2] has to assign positive mass to

(qm , v + qm ) for large m. In addition, by arguments like in (25) for any v <

E [pTin (tm - v) |x, z] - E [pT ,m (em) |x, 2] > 0.

Thus, <5,[t4,|x,2] are unique best predictors for for large m, and limx '

j T Qtm {T'm \x,z] = 0.

Thus, we demonstrated the equivalence of statement (2) and statement (3). is the unique

(modified by the limit operation) best predictor under asymmetric absolute loss. Note that

the limit operation is only needed for at most countably many r in (0, 1).

Finally, equivalence (3) -» (4) is obvious.

F Proof of Theorem 3

The proof is a special case of Theorem 5 in section I

G Assumptions R.1-R.6

The following assumptions are maintained for the inverse quantile regression.
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Rl Wr = (Yi,Di,Xi,Zj) are iid and (Di,Xi,Zi) take values in a compact set.

R2 (q t ,/?t ) S interior V, where V = AxB is compact, convex, and {aT ,(3T ) is unique (a,0)

: E<pr(Yi - D[a - X[0)^>i = 0, where tf; = Vt - \X[ : *;]' and >pT (u) = (l(u < 0) - r).

R3 y has bounded conditional density given X, D, Z, uniformly over support of (X, D, Z).

R4 J(ir) = a(Q , g, y)
£ [¥>T (V - £>'<* - A''/? - $'7)*] has full column rank and is continu-

ous at each (a, 0,^) in Ax B x Q, where Q is an open ball in Rd,m <T' at zero.

R5 Functions (z,x) 1—> $>(z,x) and (z,x) >—» V(z, x) belong to a set T wp — 1; F is

set of boundedly differentiate functions C 7

^ ,
with smoothness order 77 > dim(z,x)/2 16

*() -*-» #(•), V(-) -=-> V(-) £ 5", uniformly over compact sets. V(-) > 0.

Remark G.l All assumptions, but R5, are analogous to the standard assumptions for quan-

tile regression. They may be refined at a cost of more complicated notation and proof.

Remark G.2 Smoothness in R5 needs to hold only for the non-discrete sub-component of

(x, z). As discussed in the text condition R5 allows for a wide variety of nonparametric and

parametric estimators, as shown by Andrews (1994). Ideally, we would like to approximate

the optimal instruments and the optimal weight as closely as possible using non-parametric or

parametric methods. There is a wide variety of estimators that satisfy assumption R5, such as

smooth parametric approximation to V(X, Z) and $>(X, Z) or, alternatively, various smooth

kernel estimators and smooth series estimators. See Andrews (1994), (1995), Newey (1997),

(1990), and Newey and Powell (1990) for a catalogue of estimators that satisfy condition R5.

H Proof of Theorem 4

1. In the proof IV denotes (Y,D,X,Z). Define for = (0,-y) and O = (A-,0) and <pr (u) =
(l(u<0) -t)

f(W, a, 9) = >fr{Y - D'a - X'0 - $'7)f

,

f(W, a, 9) = <p-r(Y - D'a - X'0 - $'7)*,

where * = V (X' ,
*')', * = *(X, Z), * = V {X', *)', 5 ee $(X, Z);

g(W, a, 9) = pT (Y - D'a - X'0 - $'f)V,

g(W, a, 9) = pT (Y - D'a - X'0 - $'f)V,

where pT (u) = (t — l(u < 0))u. Let

Qn (a,9)=Eng(W,a,9), Q(a, 9) = Eg(W, a, 6),

and for ee B x Q

0(a) = (J3(a), 7(a)) = arg inf Qn (a, 9),

0(a) = (0(a), 7 (q)) = arg inf Q (a, 0),

a = arg inf ||7(a)ll, "* = arg inf ||7(<*)ll-

6 See page 154 in van der Vaart and Wellner (1996).
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By Theorem 1 (i), the true parameters (a T ,/3T ) solve the equation

EipT {Yi - D',ar - Xi/3T - *;0)*, = 0.

On the other hand, by R3 9(a) satisfies the equation:

EtpT (Yi - D[a - X[p{a) - *h(Q))*i = 0.

We need to find a* such that this equation holds and the norm of 7(a) is as small as possible.

a' = a T makes the norm of 7(0*) = equal zero. Thus a* = a T is a solution; by R2 it is

unique. Additionally, by R2 P(a") = f3T .

2. For each a and 9, by a LLN ( lemma K.l )

En [g(W, oc, 9) - g(W, aT , §)] -^ E[g(W, a, 9) - g(W, aT ,9)},

for some fixed 9 (the subtraction of the terms is to make the summands bounded functions of

W). The lhs is a finite convex function in 9 and a, at least wp —> 1. Therefore the convergence

is uniform over compact sets. Hence by lemma A.l

9(a T )
-£-> 9-r and 9(a) -^9T ,

provided 5 -^- aT .

3. 3 -^-> aT . ( shown below).

4. By the computational properties of quantile regression estimator 9(a„), for any a„ in a

small ball at aT

0(K/V^) = V^E„f(W,an,e(an )). (28)

By lemma K.l, the following expansion of r.h.s. is valid for any a„ -£-» aT :

lr

V^Enf(W,an ,9(an ))sG„f(W,a„,9(<Xn)) + V^Ef(W,an ,9n (c<r,))

= G„f(W
1
aT ,9T ) + ov (\) + V^Ef(W, an ,9(an ))

Expanding the last line further

= G„f(W,aT ,9T ) + op (l)

+ (Je + op (l))^(9(an)-8T )
(30)

+ (Ja + op (l))y/n(an - aT ).

In other words for any a„ —> aT

V^(9(an ) - 9T ) = -Jg 1G„f(W,aT ,9T )
- J^ l Ja [l + o„(l)]v/r7(a„ - aT ) + op (l), i.e

Vn(l(an ) - 0) = -JyGnf(W,a T ,9T )
- J7 J [1 + op (l))^fc(a„ - aT ) + op (l).

Over a shrinking ball at qt , denoted Bn (aT ), wp — 1, for 11x11^ = x'Ax

S = arg inf ||7(Q»)IU-
n»EB„(or)

Observe that

V^IRKJIU = l|Op(l) - J-,Ja [l + op(1)]v^(q„ - aT )IU+0p( .,,

17 Note that by convention in empirical process theory Ef(W) means (Ef(W)),_j.
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Since J-, Ja and A have full rank, y/n(a — a T ) = Op (l). Hence by lemma A.

2

Vn(S - Q x ) = argm{\\ — J-,Gn f(W,a T ,9T )
- J-,Ja n\\ A .

where = means that the limit distributions of the lhs and rhs agree. Conclude that:

V^(5 - qt )

L= -(J'a J^Aj-,Jay 1
J^J'yAJ1G nf(W,a T) eT ) and

V^(8 - 8r)
L= -Jg'll - Ja(J'a JyAJ.y

Jar i

J'a J^AJ1 }Gnf(W,a T ,eT )

with Gnf(W,ar ,0r) -^ N(Q,S) by CLT.

Finally, the consistency and asymptotic representation for j3 follows analogously to that of

/3(2), except that in the definition of instead of 7 we use its plim 0. Therefore, analogously

to (40)- (42):

yfiUft-flr)
L= -Jg'lh : 0][7 - Ja (J'aJ^AJ1 Jay 1

J'a J!1 AJ^]Gnf(W,aT ,0T ). U

Proof of step 3. The argument is just slightly more complicated than usual consistency

arguments, cf. Amemiya (1985) or Newey and McFadden (1994). For some 9, 6(a) maximizes

Q n (a,9) = -En [g(W,a,9) -g(W,aT ,9)] -^ Qx (a,9) = -E[g(W, a, 9) - g(W, aT ,0)] (31)

where the convergence is uniform in (9, a) over compact sets, using step 2. For any e > 0,

wp — 1, uniformly in a 6 A [i] On(a,0(a)) > Qn (a,8(a)) by definition, [ii] 0=c(a, 9(a)) >

Q„ (a, 6(a)) - e/2 by (31), [hi] Qn (a,9(a)) > Qx (a,9(a)) - e/2 by (31). Hence wp -> 1

0=o (a, 6(a)) > Q„(a,B(a)) - e/2 > On (a, 0(a)) - e/2 > Ooo(a,0(a)) - e.

Let {B(a),a £ A) be a collection of balls with diameter <5, each centered at 9(a). Then

e = infce.4 [Qoo(0(a)) — supese ^ B(o ) O°o(0)] > 0, by assumption R4 and concavity in 9 for

each a. It now follows wp —> 1, uniformly in a

Qoo(0(a)) > Ooo (0(a)) -Qoo (0(a)) + sup Q~(0(a)) = sup Q=°(0).
ege\B(a) fl€e\B(a)

Thus wp — 1, supQe ^, ||0(a) - 0(a)|| < 5, for any 5 > 0. This implies that supae^ |||7(a)||^ -

||7(a)||/i| —» 0, which by Lemma A. 2 implies 3 -£-» a*.

I Identification Results: Generalizations

The following statements and functions are all conditional on the event X = x. For notation

sake, we suppress this conditioning. Suppose support of D is a finite set of discrete values in

R'. We can label the points of the support as {1, ..., J}. Define C(x) as the convex hull of

functions <p mapping d from {1, ...J} to (y : fy(y\d) > 0) such that P(Y < <p(D, t)\Z) belongs

to [t — 5,t + <5] a.s. for small 6 > 0. Define the following function

z h-> n2 (v>,x) = [P[Y < <p(D)\zjl 1 < j < J],

where z = (zj, 1 < j < J). Define, assuming relevant smoothness Jz (<£>,z) = -j-Tl^ip)

fy(<p(l)\D=l,Z 1 )P[D = l\z 1 ]
... fy(<p(J)\D = J,Z 1 )P[D=J\zi}

fr(<p(l)\D=l,zj)P{D=l\zj} ... fY (<p(J)\D = J,zj)P[D = J\zj]
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The statement that rank Jz(tp,x) is full w. pr. > means that with positive probability

rank Jzifjx) = J, where Z = {Zj} are independent replica of Z, given X = x.

Theorem 5 (Discrete D) Suppose A1-A5 hold, and that fy(y\d,z,x) > and finite over

the range of d>—> q(d,x,r). Then d i—» q{d,x,r) is a unique solution of

P(Y < q(d,x,'r)\x, z) = T for P-a.e. z, given X = x, (32)

among £(x) if for any <p £ C(x) Jz(f, x) is finite and has full rank w. pr. > 0.

Proof. Condition on the event X = x. We know that q(d, x,t) solves (32) from Theorem

1, hence it belongs to C(x). Suppose there exits q" 6 £(x) that also solves (32) such that

d »-» q*(d) and d i—» q(d,x, t) disagree on {1, ..., J}. Then

riz(<7*,x) = It and IIz(<7,x) = It, P — a.s.,

for a conformable vector of l's, 1. Then for any vector A € R J
\ {0} Taylor expansion gives

A' (Uz (q",x) - nz (q,x)) = A'

J

z (gJ, x) = 0, P - a.s.

where gj 6 'C( a; ), which is impossible by the full rank assumption.

Finally, we consider continuous D. 18 As Newey and Powell (2001) shown, in the model

E(Y — fi(D)\Z) = 0, the condition for identification of /x is the Lehmann-Scheffe completeness

condition:

LI E[A(D)\z] = P a.e. => A(D) = V a.e.,

where V is a collection of Fd[-|-z] as z varies over support of Z given X = x. Lehmann (1954)

provided a sufficient "happy family" condition:

L2 P[D = d\z] is a full rank exponential family h(d) exp(r/(^)'T(d) + A(z)).

The full rank condition requires 77(2) to vary over an open rectangle in Kdlm (T ('i" and T(d) not

to satisfy a linear constraint. L2 allows for a broad variety of non-parametric distributions.

The statements are conditional on the event X = x but we suppress this conditioning.

Define C(x) as a convex hull of functions m that map a d from the set £>(x), the support of D,

to (2/ : f(y\d) > 0) such that P[Y < m(D)\Z] e [t - S, t + 6] a.s., for small S > given X = x.

Solution q is said to be unique if any other solution m = q V — a.e., where V is defined above.

Theorem 6 Suppose A1-A5 hold, and that fy{y\d,z,x) > and finite over the range of

d 1—> q(d, x, t), uniformly in z. Then d t—» q(d, x, r) is a unique solution of (32) among C(x) if

i. for any A(d) = m(d) — q(d, x, t) such that m £ C(x) and e = Y — q(d, x, t) and indepen-

dent standard uniform C, E [fe (C,A(D)\D, z)A(D)\z] = P-a.e. => A(D) = V-a.e.

ii. sufficient condition for i. is f(t, d\z) set -1
[P€ [f.|<f, 2] — Pe [0|d, z]] fo[d\z\ oc h(d, t)

exp(r)(z)'T(d,t)) is an exponential family of full rank.

In the last expression, /(0, d\z) = lirat^o f(t,d\z). Condition ii. is a plausible non-parametric

condition, with rhs motivated as a Taylor approximation of the log of lhs.

18To be removed and is given here for completeness. The full treatment is to be given in the joint

work with Whitney Newey and Guido Imbens
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Proof. By hypothesis there is m £ C(x) such that P[Y < m(D)\z] = r P a.e. Then the

difference = P[Y < m{D)\z] — P[Y < q{D)\z] equals by Taylor expansion

jo
EA(D) ft (5A{D)\D,z)d8 = EMC&(D)\D,z)[A(D)] = 0, (33)

Jo

where £ is a uniform variable on [0, 1], independent of Z, D and A = m—q. (33) is proportional

to E*[A(D)\z] where E* is the expectation distorted by fe ((A(D)\D, z). For uniqueness we

need that (33)=0 implies A(D) = V -a.e. This proves i.. To prove ii. is sufficient, by L2

condition ii. implies (also using f(t(d), d\z) = <=> fo{d\z) = 0)

E/(t(
d),d|z)A(d) = == A(rf) = P - a.e. (34)

for any measurable function t(d), since f(t(d), d\z) remains a full dim(d)-rank exponential fam-

ily. Thus if t(d) = A(d), (34) still holds. Now note f* fY_ q{D) {^{D)\D,z)dC, equals {P[Y -

q(D) < A(D)\D, z] - P[Y - q(D) < 0\D, z])/A(D), so Ef(Md)td
\
z) A{d) = lhs of (33).

J Additional Results: Empirical Likelihood

Here we treat the generalized empirical likelihood. Define for $ = (a, /3), ipT (u) = t — l(u < 0)

7(W,i?) s <^T (y - D'q - A"^)f , where

J = ^{X, Z) is a smooth function of an instrument,

\& = ^(X , Z) is a smooth consistent estimate of such function, satisfying L5.

1 "
Define also Q„(t?,7) = ~f= 2J s[/(W,i?)'7],

v n i=l

7 = arginfQ„(i?,7), 5 = argsup[inf Q„(i9,7)]. (35)

Function s() equals a strictly convex, finite, and four times differentiable function so on an

open interval of K containing 0, and equals +00 outside it. Normalize [9
J s(t;)/9ii :

'](0) = 1 for

j = 1,2. Functions so(u) = — ln(l — u),exp(i>), (1 + v)
2
/2 lead to the well-known empirical

likelihood, exponential tilting, and continuous up-dating GMM estimator. See Imbens (1997),

Newey and Smith (2001), and Kitamura and Stutzer (1997).

Just as GMM, GEL is infeasible in our settings with two or more covariates. It may be

useful in low-dimensional settings or as a refinement of the IQR estimator. The latter can be

used to bring the estimates to a right neighborhood, and the GEL can be recomputed over

such a neighborhood. For this purpose, GEL are known to have good finite sample properties.

The pivotal objective function of GEL can be used for construction of confidence intervals.

Assumptions L.1-L.6 The following assumptions are maintained

LI Wi = (Yi,Di,Xi,Zi) is i.i.d. and (Di,X% , Z,) take values in a compact set.

L2 t? = (aT ,/3T ) G interior A x B, a compact convex set.

L3 tfo is unique 1? s.t. E<pT (Y - D'a - X'/?)* = 0, in V = A x B.

L4 5(i?) = EipT (Y - D'a - X'/3)
2**' is positive definite for each i)eV. (S = S(i9 ))
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L5 {z,x) >—> 'I'fjjX) 6 T, wp -• 1, J is a set of boundedly differentiable functions CJJ,,

with smoothness order r\ > dim(z,x)/2. 19
<£(•) —> >£() e T, uniformly over compacts.

L6 J(-d) = £E [<pT (Y - D'a - X'P)*] = E [/y--D' Q-x< 5 (0|X, D, Z)^\D' : X')) is defined,

finite, has full column rank and continuous at each a,/? in A x B.

Remark J.l All assumptions, but L5, are fairly standard. L5 allows for a wide variety of

nonparametric and parametric estimators. See Remark G.2.

Theorem 7 (GEL) In the linear model (8) and assumptions L1-L6 listed above

n/™7

o, (J's-tj)-'1

o, o s-^s-JiJ's-tj)-1^- 1

where S = r(l - t)EW and J = E[f,{0\X,D,Z)^[D' : X']}, <f = Y - D'a{r) - X'j3{r).

Corollary 3 Further, if we set ** = V* [X', **']', where ** = E[D v\Z,X]/V, v =

fe [0\D, Z,X], and V = fe (0\X,Z), the asymptotic variance of a and f3, simplifies to the

efficiency bound

t(1-t)E[****']
-:1

.

Proof. The proof extends the arguments of Kitamura and Stutzer (1997) and Christoffersen,

Hahn, and Inoue (1999). 1. Define

f(W,-d) = <pT(Y - D'a - X'p)V, /(W,i?) = <pT (Y - D'a - X'/3)$,

where by ^ and * we denote vectors "if(X, Z) and ty(X, Z). Define also

Q„(i? )7 ) = E„s[/(W,i?)'7], Q(-d, 7) = E s[/(W,0)'7], and

7(1?) = arginf Q„(i?,7), -0 = argsupinf Qn(i?,7),

7(i9) = arginf-, <3($,7), i9* = argsup^gv inf., Q($,7). By arguments of Kitamura and Stutzer

(1997) or Newey and Smith, -0* = i9 and 7(1?*) = 0.

2. By Lemma K.l, in R, for any i?„ -^-> do E„s[f(W,tin )'j] -^> Es [f(W,d )'i\ for each 7 in

a dense countable subset of Rdlm '7\ Hence by convexity lemma A.l, since Es[f(W, i?o)'7] is

finite over an open set by LI

7(i?o) -^ 0, 7(5) -^ 0, provided S -^ i9 .

3. By lemma K.l and consistency proof of Kitamura and Stutzer (1997) or e.g. Newey and

Smith (2001) and references therein that do not require smoothness of /: -d ——* i?o-

4. Step 4, proved below, shows y/nE„f(W,ti) = Op (l).

5. In view of steps 2-3, by Lemma K.l and properties of s, the following expansion of the

first order conditions is valid, wp—> 1 for (y„,i9n) = (7, i5) or (7,1, i?n) = (7(^0), #0),

= Vn~Enf(W,dn )s[f(W,d n )ln ]

= [v^E„/(W,i9n )] + Enf(W,dn)f(W,0n )''vW. + Op (v^||7n||
2
) (36)

= [JREn f{W, 1J0) + (J + Op (l))V£(tfn ~ tft))] + (S + Op(l))'V^7n + Op (^|]7n||
2
).

9See page 154 in van der Vaart and Wellner (1996).
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By step 4, (36), and L4, V"7n = Op (l), i.e.

v^7 = Op (l) and v^7(tfo) = Op (l). (37)

and by (36), (37), and L6,

v^(5-i?o) = Op (l). (38)

6. Step 6, proved below, shows

v/^J
,

7 = oP (l)- (39)

7. Prom (36) V™7 = -S-1
>/JJEn/(VMo) - S_1 J^n(d - # ) + op (l), which when put into

(39) gives J'S- 1
VSE„/(W,i?o) + J'5- 1 J %/S(5-i? ) + op (l) = 0, which yields

07(tf - i?o) = -(J'S
-1

J)
-1

J'S
-1

v^nEn/CW.tfo) + op(l) -^ iV(0, (J'S"
1
J)"

1

),

n/^7 = -[5
_1 - 5

_1
J(J'5

_1
J)

-1
J'5"

1
]VnE„/(W, l? ) + op (l)

-^ 7V(0, S
_1

[S - JiJ'S-
1^- 1

J'15"
1

),

and also jointly, with asymptotic covariance between \fn{-d — -do) and ^/n'f equal 0.

Proof of step 4. By definition, for any g„ = Op(l/y
/n),

-n(E„s[7(W, £)'(?„] - s(0)) < -n(E„s[/(W,5)'7] - s(0))

< -7i(E„s[7(VMo)'tW] - s(0)).

By Lemma K.l, wp —» 1 the following expansions are valid (by steps like in (36))

rhsof(40) =^Er,[/(W, 19 )]7(^o)V^+^7W57(tfo)v/^

+ OP (n||7 (tf
)||

3
) = Op (l),

(since ^7(^0) = Op (l) and VE"„[7(VMo)] = -^[/(W.tfo)] by Lemma K.l ), and

lhsof(40) =^E4f(W,d)}gnV^+lV^9'r>SgnV^ + Op (n\\g„\\
3
). (42)

By (40)- (42), because gn = Op (l/y/n) is arbitrary, we have y/nE„f(W,S) = Op (l).

Proof of step 6. For any $„ = Op {\/s/n), by definition

-n(E„s[f(W, 5)'y] - s[0]) < -n(E„s[7(W, tfn ) 7] - s[0]). (43)

By Lemma K.l and step 5, the following expansions (by steps like in (36)) are valid

lhs of (43) = -v^En7(W, d YiJn - iV^y'Sr^ + °p(1),

rhs of (43) = -VnE„f(W, -d„)'^y/n - \ y/nrj'S^y/n + op (l),

(40)

(44)

(45)

and by Lemma K.l

Vae„7(VM„) = VnEn/(Wr
,tf„) + J(tf„-#)v^ + °P (l)>

VnE„f(W,0) = ^E„/(W,i? ) + J'(S - t?)v^ + op (l).

Putting (43) - (45) together, we have

^(tf„ - Syj'iy/Z < op (l). (46)

Because (46) holds for any tf„ = Op (\/y/n), (46) implies J'^y/n = op (l).
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K A Lemma
This lemma uses empirical process arguments to obtain some of stochastic relationships.

Lemma K.l (Expansions) Under assumptions L1-L6, as $n i?o, for any real-valued

function m that is Liphitz over the range of f(W)

i. G„/(VM„)=Gn/(W,iM + op (l),

ii. 'E„m[f(W,tfn )]
-^-» Em[f(W, #o)] ( in particular, for m(x) = xx' etc.),

Hi. E„s[f(W,i!f„y-y] > Es[f(W, i?o)'7] fOT ^ach -y in a countable dense subset o/R ""'"''.

Under assumption R1-R6,

iv. For each (a,9), E„[g(W, a,0) - g(W,aT ,§)] -?-> E\g(W,aT ,0) -g(W,aT ,0)].

v. Gnf{W,an ,8(an )) = Gn f{W,a,,9T ) + op (l), for any an -^aT .

Proof. Denote 7r = (a, /?, 7) and n = A x B x Q where Q is a ball at 0. The class of functions

n =
{
(*, *, tt) >-> y T (Y - D'a - x'p - *(x, Z)'-r)*(Jf, Z), tt e n, * e F, * e f}

is Donsker. The bracketing number of T by Cor 2.7.4 in van der Vaart and Wellner (1996) is

logJVN (
e,^,£2 (P)) = o(

7 )

=0
(7

for some 6' < 0. Thus T is Donsker. By Cor 2.7.4 in van der Vaart and Wellner (1996) the

bracketing number of

X= {(*,tt)i- (D'a-X'P-$(X,Z)'~f), iren,$ef}

is O [logN\ |(e, T, L,2{P))), because it has the same smoothness properties. Exploiting the

monotonicity and boundedness of indicator function and assumptions R4 or L6, the bracketing

number of

V = l(4>,n) <-><Pt(Y - D'a- X'/3 - HX^Y-y), jr€n,$ef]

is O (log ^[.[(e,^7 , Z/2(P))) as well. Therefore V is Donsker. Class ri is formed as a product

of these two uniformly bounded (by LI or Rl and L5 or R5) classes:

Ti = FV,

so the product is Lipshitz over (T x V), and by Theorem 2.10.6 in van der Vaart and Wellner

(1996) H is Donsker.

Now we show i. using the established Donskerness. Define the process

h = (*, 1?) h-> G„<pT (Y - D'a - X'/3)#(X, Z).

Since \t ——» ^>o uniformly over compacts and i?n -^-> -do, we have p(h, h) —> 0, where p is

denned by the L2 (P) seminorm p[h) = E\\ipT (Y - D'a - X'/3)*(X, Z)||, so that

Gn <pT (Y - D'an - X'/9„)*(X, Z) - G n <pT {Y - D'a - X'/3)*(X, Z) = op (l)
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By the above analysis G„Tn[f(W,-& n )] is Donsker (asymptotically Gaussian) as well, using

Theorem 2.10.6 in van der Vaart and Wellner (1996) (m is Lipshitz over bounded subsets to

which f(W, $ n ) belongs wp —
> 1 by assumption.) From this ii. is immediate.

The proof of v. and iv. follows exactly as i. and ii., respectively, using that H is Donsker.

To show iii. note that 7 is either such that Es[f(W, d )' f] = +°o or Es[f(W, 3o)'i\ <
00. By convexity and lower-semicontinuity of s, the latter set, say F, is convex, open, and

its boundary is nowhere dense in Kd,m< "'
)

. Thus for 7 g F, Es[f(W,ti)'-y]\
v_vf_f < 00,

wp —
> 1. Conditional on this event, step ii. gives E„s[f(W, d-nY'y] -^-* Es[f{W, tioYl] < 00.

Similarly take 7 in Fc
, where F denotes the closure of F. The analogous argument delivers,

Ens[f(W, i?n )'7] -^-» Es[f(W, i?o)'7] = 00. So iii. follows by taking all the rationals not in the

boundary of F.
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