ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Multiplexed Method to Calibrate and Quantitate Fluorescence Signal for Allergen-Specific IgE

View Author Information
Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215, United States
Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s Street, Boston, Massachussetts 02215, United States
§ Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Milano, Italy
Pulmonary Center, Boston University School of Medicine, 715 Albany Street, Boston, Massachusetts 02118, United States
Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
Phone: 617-353-9046. E-mail: [email protected]
Cite this: Anal. Chem. 2011, 83, 24, 9485–9491
Publication Date (Web):November 7, 2011
https://doi.org/10.1021/ac202212k
Copyright © 2011 American Chemical Society

    Article Views

    872

    Altmetric

    -

    Citations

    29
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Using a microarray platform for allergy diagnosis allows for testing of specific IgE sensitivity to a multitude of allergens, while requiring only small volumes of serum. However, variation of probe immobilization on microarrays hinders the ability to make quantitative, assertive, and statistically relevant conclusions necessary in immunodiagnostics. To address this problem, we have developed a calibrated, inexpensive, multiplexed, and rapid protein microarray method that directly correlates surface probe density to captured labeled secondary antibody in clinical samples. We have identified three major technological advantages of our calibrated fluorescence enhancement (CaFE) technique: (i) a significant increase in fluorescence emission over a broad range of fluorophores on a layered substrate optimized specifically for fluorescence; (ii) a method to perform label-free quantification of the probes in each spot while maintaining fluorescence enhancement for a particular fluorophore; and (iii) a calibrated, quantitative technique that combines fluorescence and label-free modalities to accurately measure probe density and bound target for a variety of antibody–antigen pairs. In this paper, we establish the effectiveness of the CaFE method by presenting the strong linear dependence of the amount of bound protein to the resulting fluorescence signal of secondary antibody for IgG, β-lactoglobulin, and allergen-specific IgEs to Ara h 1 (peanut major allergen) and Phl p 1 (timothy grass major allergen) in human serum.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional information as noted in text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 29 publications.

    1. Ugur Aygun, Oguzhan Avci, Elif Seymour, Hakan Urey, M. Selim Ünlü, and Ayca Yalcin Ozkumur . Label-Free and High-Throughput Detection of Biomolecular Interactions Using a Flatbed Scanner Biosensor. ACS Sensors 2017, 2 (10) , 1424-1429. https://doi.org/10.1021/acssensors.7b00263
    2. Xiaoqin Zhong, Liang Qiao, Natalia Gasilova, Baohong Liu, and Hubert H. Girault . Mass Barcode Signal Amplification for Multiplex Allergy Diagnosis by MALDI-MS. Analytical Chemistry 2016, 88 (12) , 6184-6189. https://doi.org/10.1021/acs.analchem.6b01142
    3. Natalia Gasilova and Hubert H. Girault . Component-Resolved Diagnostic of Cow’s Milk Allergy by Immunoaffinity Capillary Electrophoresis–Matrix Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry 2014, 86 (13) , 6337-6345. https://doi.org/10.1021/ac500525n
    4. Sunmin Ahn, David S. Freedman, Paola Massari, Mario Cabodi, and M. Selim Ünlü . A Mass-Tagging Approach for Enhanced Sensitivity of Dynamic Cytokine Detection Using a Label-Free Biosensor. Langmuir 2013, 29 (17) , 5369-5376. https://doi.org/10.1021/la400982h
    5. Margo R. Monroe, George G. Daaboul, Ahmet Tuysuzoglu, Carlos A. Lopez, Frédéric F. Little, and M. Selim Ünlü . Single Nanoparticle Detection for Multiplexed Protein Diagnostics with Attomolar Sensitivity in Serum and Unprocessed Whole Blood. Analytical Chemistry 2013, 85 (7) , 3698-3706. https://doi.org/10.1021/ac4000514
    6. Monireh Bakhshpour-Yucel, Sinem Diken Gür, Elif Seymour, Mete Aslan, Nese Lortlar Ünlü, M. Selim Ünlü. Highly-Sensitive, Label-Free Detection of Microorganisms and Viruses via Interferometric Reflectance Imaging Sensor. Micromachines 2023, 14 (2) , 281. https://doi.org/10.3390/mi14020281
    7. Roberto Frigerio, Angelo Musicò, Alessandro Strada, Alessandro Mussida, Paola Gagni, Greta Bergamaschi, Marcella Chiari, Luisa Barzon, Alessandro Gori, Marina Cretich. Epitope Mapping on Microarrays Highlights a Sequence on the N Protein with Strong Immune Response in SARS-CoV-2 Patients. 2023, 209-217. https://doi.org/10.1007/978-1-0716-2732-7_15
    8. Alessandro Strada, Roberto Frigerio, Greta Bergamaschi, Paola Gagni, Marina Cretich, Alessandro Gori. Membrane-Sensing Peptides for Extracellular Vesicle Analysis. 2023, 249-257. https://doi.org/10.1007/978-1-0716-2732-7_18
    9. Monireh Bakhshpour, Elisa Chiodi, Iris Celebi, Yeşeren Saylan, Nese Lortlar Ünlü, M. Selim Ünlü, Adil Denizli. Sensitive and real-time detection of IgG using interferometric reflecting imaging sensor system. Biosensors and Bioelectronics 2022, 201 , 113961. https://doi.org/10.1016/j.bios.2021.113961
    10. Hyogu Han, Junhyun Park, Jun Ahn. Immunoglobulin E Detection Method Based on Cascade Enzymatic Reaction Utilizing Portable Personal Glucose Meter. Sensors 2021, 21 (19) , 6396. https://doi.org/10.3390/s21196396
    11. Sergi Morais, Luis A. Tortajada-Genaro, Ángel Maquieira, Miguel-Ángel Gonzalez Martinez. Biosensors for food allergy detection according to specific IgE levels in serum. TrAC Trends in Analytical Chemistry 2020, 127 , 115904. https://doi.org/10.1016/j.trac.2020.115904
    12. Ignacio J. Ansotegui, Giovanni Melioli, Giorgio Walter Canonica, Luis Caraballo, Elisa Villa, Motohiro Ebisawa, Giovanni Passalacqua, Eleonora Savi, Didier Ebo, R. Maximiliano Gómez, Olga Luengo Sánchez, John J. Oppenheimer, Erika Jensen-Jarolim, David A. Fischer, Tari Haahtela, Martti Antila, Jean J. Bousquet, Victoria Cardona, Wen Chin Chiang, Pascal M. Demoly, Lawrence M. DuBuske, Marta Ferrer Puga, Roy Gerth van Wijk, Sandra Nora González Díaz, Alexei Gonzalez-Estrada, Edgardo Jares, Ayse Füsun Kalpaklioğlu, Luciana Kase Tanno, Marek L. Kowalski, Dennis K. Ledford, Olga Patricia Monge Ortega, Mário Morais Almeida, Oliver Pfaar, Lars K. Poulsen, Ruby Pawankar, Harald E. Renz, Antonino G. Romano, Nelson A. Rosário Filho, Lanny Rosenwasser, Mario A. Sánchez Borges, Enrico Scala, Gian-Enrico Senna, Juan Carlos Sisul, Mimi L.K. Tang, Bernard Yu-Hor Thong, Rudolf Valenta, Robert A. Wood, Torsten Zuberbier. IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. World Allergy Organization Journal 2020, 13 (2) , 100080. https://doi.org/10.1016/j.waojou.2019.100080
    13. S. Sievers, M. Cretich, P. Gagni, B. Ahrens, G. Grishina, H. A. Sampson, B. Niggemann, M. Chiari, K. Beyer. Performance of a polymer coated silicon microarray for simultaneous detection of food allergen‐specific IgE and IgG 4. Clinical & Experimental Allergy 2017, 47 (8) , 1057-1068. https://doi.org/10.1111/cea.12929
    14. George G. Daaboul, David S. Freedman, Steven M. Scherr, Erik Carter, Alexandru Rosca, David Bernstein, Chad E. Mire, Krystle N. Agans, Thomas Hoenen, Thomas W. Geisbert, M. Selim Ünlü, John H. Connor, . Enhanced light microscopy visualization of virus particles from Zika virus to filamentous ebolaviruses. PLOS ONE 2017, 12 (6) , e0179728. https://doi.org/10.1371/journal.pone.0179728
    15. , , . Chapter 15: Advances in Biosensor Technologies for Food Allergen Monitoring and Diagnosis. 2017, 289-310. https://doi.org/10.1201/9781315151786-16
    16. Nese Lortlar Ünlü, Fulya Ekiz Kanik, Elif Seymour, John H. Connor, M. Selim Ünlü. DNA-Directed Antibody Immobilization for Robust Protein Microarrays: Application to Single Particle Detection ‘DNA-Directed Antibody Immobilization. 2017, 187-206. https://doi.org/10.1007/978-1-4939-6848-0_12
    17. Yan-Ming Liu, Jiu-Jun Yang, Jun-Tao Cao, Jing-Jing Zhang, Yong-Hong Chen, Shu-Wei Ren. An electrochemiluminescence aptasensor based on CdSe/ZnS functionalized MoS2 and enzymatic biocatalytic precipitation for sensitive detection of immunoglobulin E. Sensors and Actuators B: Chemical 2016, 232 , 538-544. https://doi.org/10.1016/j.snb.2016.03.165
    18. , , , Ugur Aygun, Oguzhan Avci, Elif Seymour, Derin D. Sevenler, Hakan Urey, M. Selim Ünlü, Ayca Yalcin Ozkumur. Low cost flatbed scanner label-free biosensor. 2016, 969906. https://doi.org/10.1117/12.2214113
    19. Paola Gagni, Marina Cretich, Luisa Benussi, Elisa Tonoli, Miriam Ciani, Roberta Ghidoni, Benedetta Santini, Elisabetta Galbiati, Davide Prosperi, Marcella Chiari. Combined mass quantitation and phenotyping of intact extracellular vesicles by a microarray platform. Analytica Chimica Acta 2016, 902 , 160-167. https://doi.org/10.1016/j.aca.2015.10.017
    20. Sébastien Bergeron, Veronique Laforte, Pik-Shan Lo, Huiyan Li, David Juncker. Evaluating mixtures of 14 hygroscopic additives to improve antibody microarray performance. Analytical and Bioanalytical Chemistry 2015, 407 (28) , 8451-8462. https://doi.org/10.1007/s00216-015-8992-8
    21. Lulu Zheng, Yongfeng Fu, Xiran Jiang, Suqin Man, Wei Ran, Meng Feng, Sixiu Liu, Xunjia Cheng, Guodong Sui. Microfluidic system for high-throughput immunoglobulin-E analysis from clinical serum samples. Talanta 2015, 143 , 83-89. https://doi.org/10.1016/j.talanta.2015.05.014
    22. Oguzhan Avci, Nese Ünlü, Ayça Özkumur, M. Ünlü. Interferometric Reflectance Imaging Sensor (IRIS)—A Platform Technology for Multiplexed Diagnostics and Digital Detection. Sensors 2015, 15 (7) , 17649-17665. https://doi.org/10.3390/s150717649
    23. Marina Cretich, Francesco Damin, Marcella Chiari. Protein microarray technology: how far off is routine diagnostics?. The Analyst 2014, 139 (3) , 528-542. https://doi.org/10.1039/C3AN01619F
    24. A. P. Reddington, M. R. Monroe, M. S. Ünlü. Integrated imaging instrument for self-calibrated fluorescence protein microarrays. Review of Scientific Instruments 2013, 84 (10) https://doi.org/10.1063/1.4823790
    25. Paola Gagni, Laura Sola, Marina Cretich, Marcella Chiari. Development of a high-sensitivity immunoassay for amyloid-beta 1–42 using a silicon microarray platform. Biosensors and Bioelectronics 2013, 47 , 490-495. https://doi.org/10.1016/j.bios.2013.03.077
    26. Rosa Pilolli, Linda Monaci, Angelo Visconti. Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. TrAC Trends in Analytical Chemistry 2013, 47 , 12-26. https://doi.org/10.1016/j.trac.2013.02.005
    27. Xiaobo Yu, Garrick Wallstrom, Dewey Mitchell Magee, Ji Qiu, D. Eliseo A. Mendoza, Jie Wang, Xiaofang Bian, Morgan Graves, Joshua LaBaer. Quantifying Antibody Binding on Protein Microarrays using Microarray Nonlinear Calibration. BioTechniques 2013, 54 (5) , 257-264. https://doi.org/10.2144/000114028
    28. Marina Cretich, Margo R. Monroe, Alex Reddington, Xirui Zhang, George G. Daaboul, Francesco Damin, Laura Sola, M. Selim Unlu, Marcella Chiari. Interferometric silicon biochips for label and label‐free DNA and protein microarrays. PROTEOMICS 2012, 12 (19-20) , 2963-2977. https://doi.org/10.1002/pmic.201200202
    29. M. Bronnert, J. Mancini, J. Birnbaum, C. Agabriel, V. Liabeuf, F. Porri, I. Cleach, A. Fabre, I. Deneux, V. Grandné, J.‐J. Grob, P. Berbis, D. Charpin, P. Bongrand, J. Vitte. Component‐resolved diagnosis with commercially available D . pteronyssinus D er p 1, D er p 2 and D er p 10: relevant markers for house dust mite allergy. Clinical & Experimental Allergy 2012, 42 (9) , 1406-1415. https://doi.org/10.1111/j.1365-2222.2012.04035.x

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect