Skip to main content
Andreas May
  • Germany

Andreas May

Three different aspects are presented that can motivate people to work for the preservation of creation. All three motivations are closely linked to Christianity, so that Christianity could become the key to solve the global problems. The... more
Three different aspects are presented that can motivate people to work for the preservation of creation. All three motivations are closely linked to Christianity, so that Christianity could become the key to solve the global problems. The three motivations are 1. the admiration and the praise of creation, 2. the personal relationship with the God of Christianity and 3. the planet Earth is precious because of Jesus Christ. The third motivation results from the incarnation, death and resurrection of Jesus Christ. Every suffering and death of every human being and every other living being gets its meaning, value and redemption through the suffering, death and resurrection of Jesus Christ. This is explained using the keywords enabling, participation, solidarity and resurrection. This salvation event took place on this planet and the Creator of the universe became a human being, a creature of this planet. Through this, all human beings, but also all the other living beings on Earth and even the entire planet Earth are sanctified in an extraordinary way. In this way, all living beings on Earth and the entire planet have an inalienable dignity and a supreme value that is established, defended and restored by the Creator of the universe.
May, A. (2024a): Possible Motivations for Christians to Preserve Creation. - Studia Ecologiae et Bioethicae, vol. 22 (1): p. 49-62; Warszawa. Abstract: Three different aspects are presented that can motivate people to work for the... more
May, A. (2024a): Possible Motivations for Christians to Preserve Creation. - Studia Ecologiae et Bioethicae, vol. 22 (1): p. 49-62; Warszawa.

Abstract: Three different aspects are presented that can motivate people to work for the preservation of creation. All three motivations are closely linked to Christianity, so that Christianity could become the key to solve the global problems. The three motivations are 1) the admiration and the praise of creation, 2) the personal relationship with the God of Christianity and 3) the planet Earth is precious because of Jesus Christ. The third motivation results from the incarnation, death and resurrection of Jesus Christ. Every suffering and death of every human being and every other living being gets its meaning, value and redemption through the suffering, death and resurrection of Jesus Christ. This is explained using the keywords enabling, participation, solidarity and resurrection. This salvation event took place on this planet and the Creator of the universe became a human being, a creature of this planet. Through this, all human beings, but also all the other living beings on Earth and even the entire planet Earth are sanctified in an extraordinary way. In this way, all living beings on Earth and the entire planet have an inalienable dignity and a supreme value that is established, defended and restored by the Creator of the universe.

Keywords: ecotheology, Christology, preservation of creation, incarnation, religion and ecology, Christianity and ecology
May, A. (2024b): “You will be like God”-The Fall of Man Once and Today. - Jurnal Jaffray, vol. 22 (1): p. 22-55; Makassar (Indonesia). *** Abstract: Reasons are given as to why the narrative of the fall of man in Genesis 3:1–24 refers... more
May, A. (2024b): “You will be like God”-The Fall of Man Once and Today. - Jurnal Jaffray, vol. 22 (1): p. 22-55; Makassar (Indonesia).  ***

Abstract: Reasons are given as to why the narrative of the fall of man in Genesis 3:1–24 refers to a real event. The fall of man presumably took place more than 600,000 years ago. Genesis 3:1–24 describes in a very vivid way how the devil seduces people to disobey God. A central point in the devil’s strategy is the promise “you will be like God”. Wanting to be like God is hubris. The best medicine against hubris is the virtue of humility. Just as in Genesis 3:1–24, also today the devil wants to seduce people to disobey God to enslave and destroy them. Time and again, the devil manages to seduce people into evil under the guise of good with his promise “you will be like God”. Concepts and behaviours that at first glance appear to be philanthropic and liberating can be very destructive. As examples of this, four thematic complexes are considered. In the first two issues (atomisation of society, propagation of gender ideology and homosexuality), people are increasingly uprooted and lose more and more of their identity. With abortion and euthanasia, people want to play God at the margins of life and relativise the clear imperative “you shall not murder” and replace it with their own criteria of good and evil. Transhumanism creates serious obstacles in the relationship with God.
Deutscher Entwurf eines Artikels, der in englischer Sprache erschienen ist in: May, A. (2024a): Possible Motivations for Christians to Preserve Creation. – Studia Ecologiae et Bioethicae, Bd. 22 (1): im Druck; Warszawa. –... more
Deutscher Entwurf eines Artikels, der in englischer Sprache erschienen ist in: May, A. (2024a): Possible Motivations for Christians to Preserve Creation. – Studia Ecologiae et Bioethicae, Bd. 22 (1): im Druck; Warszawa. – http://doi.org/10.21697/seb.5802

Abstract: Es werden drei verschiedene Aspekte vorgestellt, die Menschen dazu motivieren können, sich für die Bewahrung der Schöpfung einzusetzen. Alle drei Motivationen sind eng mit dem Christentum verknüpft, so dass das Christentum zum Schlüssel für die Lösung der globalen Probleme werden könnte. Die drei Motivationen sind 1) die Bewunderung und der Lobpreis der Schöpfung, 2) die persönliche Beziehung zum Gott des Christentums und 3) der Planet Erde ist wertvoll durch Jesus Christus.
Die dritte Motivation ergibt sich aus der Menschwerdung, dem Tod und der Auferstehung Jesu Christi. Jedes Leiden und jeder Tod jedes Menschen und jedes anderen Lebwesens bekommt durch Leiden, Tod und Auferstehung Jesu Christi seinen Sinn, seinen Wert und seine Erlösung. Es wird dies anhand der Stichworte Ermöglichung, Teilhabe, Solidarität und Auferstehung erläutert. Dieses Heilsgeschehen fand auf diesem Planeten statt und der Schöpfer des Universums wurde zu einem Menschen, einem Geschöpf dieses Planeten. Dadurch werden alle Menschen, aber auch alle Lebewesen auf der Erde und sogar der gesamte Planet Erde auf außerordentliche Weise geheiligt. Auf diese Weise haben alle Lebewesen der Erde und der gesamte Planet eine unaufgebbare Würde und einen überragenden Wert, der von dem Schöpfer des Universums begründet, verteidigt und wiederhergestellt wird.

https://doi.org/10.13140/RG.2.2.23746.96964
Deutscher Entwurf eines Artikels, der in englischer Sprache in der Zeitschrift „Jurnal Jaffray“ erschienen ist: May, A. (2024b): “You will be like God”–The Fall of Man Once and Today. – Jurnal Jaffray, vol. 22 (1): p. 22–55, Makassar... more
Deutscher Entwurf eines Artikels, der in englischer Sprache in der Zeitschrift „Jurnal Jaffray“ erschienen ist: May, A. (2024b): “You will be like God”–The Fall of Man Once and Today. – Jurnal Jaffray, vol. 22 (1): p. 22–55, Makassar (Indonesia). – https://doi.org/10.25278/jj.v22i1.910  ***

Abstract Es wird begründet, warum sich die Erzählung vom Sündenfall in Genesis 3, 1–24 auf ein reales Geschehen bezieht. Der Sündenfall hat  vermutlich vor mehr als 600.000 Jahren stattgefunden. Genesis 3, 1–24  beschreibt auf sehr anschauliche Weise, wie der Teufel die Menschen zum Ungehorsam gegenüber Gott verführt. Ein zentraler Punkt in der Strategie des Teufels ist das Versprechen „ihr werdet sein wie Gott“. Wie Gott sein zu wollen, ist Hochmut. Die beste Medizin gegen Hochmut ist die Tugend der Demut. Ebenso wie in Genesis 3, 1–24 möchte auch heute der Teufel die Menschen zum Ungehorsam gegenüber Gott verführen, um sie versklaven und zerstören zu können. Immer wieder schafft es der Teufel mit seinem Versprechen „ihr werdet sein wie Gott“ Menschen unter dem Deckmantel des Guten zum Bösen zu verführen. In Konzepten und Verhaltensweisen, die auf den ersten Blick menschenfreundlich und befreiend aussehen, kann etwas sehr Destruktives stecken. Als Beispiele dafür werden vier Themenkomplexe betrachtet. Bei den beiden ersten Themenkomplexen  (Atomisierung der Gesellschaft, Propagierung von Gender-Ideologie und Homosexualität) werden die Menschen mehr und mehr entwurzelt und sie verlieren mehr und mehr ihre Identität. Bei Abtreibung und Euthanasie will man an den Rändern des Lebens Gott spielen und den eindeutigen Imperativ „Du sollst nicht morden“ relativieren und durch die eigenen Kriterien von Gut und Böse ersetzen. Der Transhumanismus baut schwerwiegende Hindernisse in der Beziehung zu Gott auf.
May, A. (2023a): The significance of freedom in God’s plan. - HTS Teologiese Studies / Theological Studies, vol. 79 (2): p. a8090; Cape Town, South Africa. - https://doi.org/10.4102/hts.v79i2.8090 Abstract: By means of a synthesis of... more
May, A. (2023a): The significance of freedom in God’s plan. - HTS Teologiese Studies / Theological Studies, vol. 79 (2): p. a8090; Cape Town, South Africa. - https://doi.org/10.4102/hts.v79i2.8090 

Abstract: By means of a synthesis of Christian faith, theology and natural sciences, the significance of freedom in God’s plan of creation and redemption was contemplated. The triune God is the foundation of all freedom. The freedom of his creatures is extremely important to God. Despite the Angelic Fall, he created our universe, in which on the path of evolution human beings were given the freedom to choose for or against God. Possibly, the humans who committed the Adamic Fall belonged to the species Homo heidelbergensis. Through the perfect obedience of Jesus Christ to the point of death on the cross, the power of evil was overcome. The goal of all creation is ‘the freedom of the glory of the children of God’ (Rm 8:21). This will complete the freedom that God has placed in his creation from the beginning. It can be surmised that ‘the freedom of the glory of the children of God’ includes being integrated into the intra-Trinitarian communion. It is important for the fulfilment of God’s plan of redemption that more and more people follow Jesus Christ and try to become more and more like him. A crucial point in following Christ is obedience. Obedience and freedom are not a contradiction, but the two sides of a coin, and the metal of this coin is love.
Contribution: The synthesis of Christian faith, theology and natural sciences made it possible to see more clearly how extraordinarily important human freedom is for God. This is not only important for theological research, but also has practical consequences for human beings.
Keywords: theology and nature, freedom, evolution, Christology, Angelic Fall, Adamic Fall, theodicy, eschatology.
May, A. (2023): God in dialogue with His creation. - Khazanah Theologia, vol. 5 (1): p. 21-42; Bandung City, Indonesia. http://dx.doi.org/10.15575/kt.v5i1.20197. Abstract: Christian faith, theology and natural sciences are brought... more
May, A. (2023): God in dialogue with His creation. - Khazanah Theologia, vol. 5 (1): p. 21-42; Bandung City, Indonesia.

http://dx.doi.org/10.15575/kt.v5i1.20197.

Abstract: Christian faith, theology and natural sciences are brought into conversation with each other to analyse different aspects of the dialogue between God and his creation. The methodological approach consists of bringing research results from theology and the natural sciences documented in current publications as well as philosophical considerations into a dialogue with the Christian faith. Furthermore, the chronological development is given special attention. Both philosophical considerations and physical observations show that this universe was created by a transcendent intelligent supreme being, the Christian God, and that it is very important for this supreme being to communicate with the intelligent living beings in this universe. God entered and continues to enter into an ever more intense and intimate dialogue with his creation in various ways, both in Earth history and evolution, and in the history of the people of Israel, as well as today in the Christian era. To remove all possible barriers and obstacles to dialogue, God himself became man in Jesus Christ. The incarnation of Jesus Christ is the culmination of the dialogue between God and his creation. The incarnation and resurrection of Jesus Christ had a very great impact on the triune God. God gives himself so much to the dialogue with his creation that he takes into his innermost being the human body of Jesus Christ, which is a part of his creation marked by time. At the end of time, all human beings who have chosen God will live eternally with each other and with the triune God in comprehensive and fulfilling communion. This all-encompassing and all-fulfilling dialogue of love will originate from the triune God and will fill and glorify the whole of creation. The article shows that dialogue is central to understanding the relationship between God and his creation. The intra-Trinitarian dialogue of love between the three persons of God is the starting point, model and goal of both creation and God's dialogue with his creation. Contribution: The synthesis of Christian faith, theology and natural sciences makes it possible to see more clearly how much God is in dialogue with his creation. This can help us to recognise more deeply God's love for his creation and especially for us humans, and to act from this insight. Keywords: Christology, dialogue, evolution, incarnation, theology and nature, Trinitarian God.
Deutscher Entwurf eines Artikels, der in englischer Sprache erschienen ist in: May, A. (2023): The significance of freedom in God’s plan. – HTS Teologiese Studies / Theological Studies, Bd. 79 (2): a8090, Cape Town, South Africa. –... more
Deutscher Entwurf eines Artikels, der in englischer Sprache erschienen ist in: May, A. (2023): The significance of freedom in God’s plan. – HTS Teologiese Studies / Theological Studies, Bd. 79 (2): a8090, Cape Town, South Africa. –  https://doi.org/10.4102/hts.v79i2.8090 

Abstract:  Mittels einer Synthese aus christlichem Glauben, Theologie und Naturwissenschaften wird die Bedeutung der Freiheit in Gottes Schöpfungs- und Erlösungsplan betrachtet. Der dreieinige Gott ist die Grundlage aller Freiheit. Die Freiheit seiner Geschöpfe ist für Gott äußerst wichtig. Trotz des Falls der Engel hat er unser Universum geschaffen, in dem den Menschen auf dem Weg der Evolution die Freiheit gegeben wurde, sich für oder gegen Gott zu entscheiden. Möglicherweise gehörten die Menschen, die den Sündenfall begingen, zur Art Homo heidelbergensis. Durch den vollkommenen Gehorsam Jesu Christi bis hin zum Tod am Kreuz wurde die Macht des Bösen überwunden. Das Ziel der gesamten Schöpfung ist  die „Freiheit und Herrlichkeit der Kinder Gottes“ (Römer 8,21). Damit wird die Freiheit, die Gott von Anfang an in seine Schöpfung gelegt hat, vollendet. Es lässt sich vermuten, dass die „Freiheit und Herrlichkeit der Kinder Gottes“ das Hineingenommen-Sein in die innertrinitarische Gemeinschaft beinhaltet. Für die Verwirklichung des Erlösungsplans Gottes ist es wichtig, dass immer mehr Menschen Jesus Christus nachfolgen und versuchen, ihm immer ähnlicher zu werden. Ein entscheidender Punkt in der Nachfolge Christi ist der Gehorsam. Gehorsam und Freiheit sind kein Widerspruch, sondern die zwei Seiten einer Medaille, und das Metall dieser Medaille ist die Liebe.
Contribution: Die Synthese von christlichem Glauben, Theologie und Naturwissenschaften macht es möglich, deutlicher zu sehen, wie außerordentlich wichtig die menschliche Freiheit für Gott ist. Dies ist nicht nur für die theologische Forschung wichtig, sondern hat auch praktische Konsequenzen für die Menschen. 
Keywords: theology and nature, freedom, evolution, Christology, Angelic Fall, Adamic Fall, theodicy, eschatology.
Deutscher Entwurf eines Artikels, der in englischer Sprache in der Zeitschrift „Khazanah Theologia“ erschienen ist. May, A. (2023): God in dialogue with His creation. – Khazanah Theologia, vol. 5 (1): p. 21-42, Bandung City, Indonesia.... more
Deutscher Entwurf eines Artikels, der in englischer Sprache in der Zeitschrift „Khazanah Theologia“ erschienen ist.
May, A. (2023): God in dialogue with His creation. –  Khazanah Theologia, vol. 5 (1): p. 21-42, Bandung City, Indonesia. –  https://doi.org/10.15575/kt.v5i1.20197 

Abstract: Christlicher Glauben, Theologie und Naturwissenschaften werden miteinander ins Gespräch gebracht, um verschiedene Aspekte des Dialogs zwischen Gott und seiner Schöpfung zu analysieren. Sowohl philosophische Überlegungen als auch physikalische Beobachtungen zeigen, dass dieses Universum von einem transzendenten intelligenten höheren Wesen, dem Gott des Christentums, geschaffen wurde und dass es diesem höheren Wesen sehr wichtig ist, mit den intelligenten Lebewesen in diesem Universum zu kommunizieren. Gott trat und tritt auf verschiedene Weise mit seiner Schöpfung in einen immer intensiveren und intimeren Dialog, sowohl in Erdgeschichte und Evolution, als auch in der Geschichte des Volkes Israel, als auch heute in der Zeit des Christentums. Um alle möglichen Barrieren und Hindernisse für den Dialog auszuräumen, wurde Gott selbst Mensch in Jesus Christus. Die Menschwerdung Jesu Christi ist der Höhepunkt des Dialogs zwischen Gott und seiner Schöpfung. Die Menschwerdung und Auferstehung Jesu Christi hatte einen sehr großen Impakt auf den dreieinigen Gott. Gott gibt sich so sehr dem Dialog mit seiner Schöpfung hin, dass er mit dem menschlichen Körper Jesu Christi einen von der Zeit geprägten Teil seiner Schöpfung in sein Innerstes aufnimmt. Am Ende der Zeit werden alle Menschen, die sich für Gott entschieden haben, auf ewig miteinander und mit dem dreifaltigen Gott in umfassender und erfüllender Gemeinschaft leben. Dieser allumfassende und alles erfüllenden Dialog der Liebe wird vom dreieinigen Gott ausgehen und die gesamte Schöpfung erfüllen und verherrlichen. Der Artikel zeigt auf, dass der Dialog eine zentrale Bedeutung für das Verständnis der Beziehung zwischen Gott und seiner Schöpfung hat. Der inner-trinitarische Dialog der Liebe zwischen den drei Personen Gottes ist Ausgangspunkt, Vorbild und Ziel sowohl der Schöpfung als auch des Dialogs Gottes mit seiner Schöpfung.
The need to protect and sustain environmental resources for future generation remains sacrosanct in global sustainability agenda. This study was aimed at exploring the interplay between environmental conservation and spirituality from a... more
The need to protect and sustain environmental resources for future generation remains sacrosanct in global sustainability agenda. This study was aimed at exploring the interplay between environmental conservation and spirituality from a multicultural perspective. While studies on "spirituality" have monumentally gained global attention, a growing number of evidence underscore the critical role of spiritual resources available for ensuring environmental stewardship. In this present study, attempt was made to respond to some critical questions: Is there any significant association between spirituality and environmental responsibility? What is the impact of spiritual leadership on environmental conservation? What key messages do spiritual leaders need to prioritize to encourage environmental conservation? And what are some of the spirituality-related predictors of willingness to engage in global environmental conservation efforts among the respondents? To determine this nexus between spirituality and environmentalism, a cross-sectional study design was adopted. Primary data were collected by means of a validated and adapted instrument from various literature searches. Data collected from a sample of 1,438 respondents were entered on Excel spreadsheet and eventually exported on SPSS version 21 for further analysis. Every segment of the instrument used yielded a Cronbach's alpha reliability test result of no less than 0.70. Descriptive statistics and ordinal logistics regression analysis were employed. The findings revealed that majority of respondents expressed a high level of spirituality (p value < 0.05). Majority (70%) of the respondents believe that everyone has a duty of care toward nature. More than two-third (> 60.0%) would be more inclined to observing environmental conservative measures if their spiritual leaders would continue to give exemplary teachings on environmental conservation. While a few indicators of spirituality yielded direct correlation with the willingness to engage in global environmental conservation efforts, most of the selected indicators reflect willingness. Some of these (predictors) include how often respondents pray, meditate, and fast; caring about people, animals, and the planet; being just happy to be alive; etc. In conclusion, this study reasoned that spirituality could indeed serve as a foundation for environmental conservation campaigns and could reinforce pro-environmental behaviors.
May, A. (2022b): Why were reefs and stromatoporoids so rare in the Lower Devonian? - Sciences of Europe, vol. 104: p. 24–32; Praha. https://doi.org/10.5281/zenodo.7298618 Abstract: In the middle Lower Devonian, the Pragian, reefs were... more
May, A. (2022b): Why were reefs and stromatoporoids so rare in the Lower Devonian? - Sciences of Europe, vol. 104: p. 24–32; Praha. https://doi.org/10.5281/zenodo.7298618

Abstract: In the middle Lower Devonian, the Pragian, reefs were very rare worldwide and stromatoporoids were rare and little diverse. As an explanation for this phenomenon, it is not sufficient that the global sea level had its low for the Devonian period during the Pragian and Lower Emsian. Therefore, three stromatoporoid-bearing reefs from the Pragian of Western and Central Europe were studied: Koněprusy in the Czech Republic, Seewarte in Austria and Zújar in Southern Spain. The following possible causes for the extreme rarity of reefs in the Pragian emerged: 1) Conspicuously high or low water temperatures that were not conducive to the growth of stromatoporoid reefs. 2) Stromatoporoid groups, which were of central importance in the Givetian and Frasnian reefs, were only at the beginning of their evolution and expansion in the Pragian – particularly mentioned are the branching stromatoporoids, the thinly encrusting stromatoporoids and the order Stromatoporellida. 3) There is evidence that the Syringopora commensals increased the reef-building potential of the stromatoporoids. There seems to have been a break in the Syringopora commensalism of the stromatoporoids in the uppermost Silurian or deepest Devonian. In the Pragian, Syringopora commensals were very rare and the Devonian Syringopora commensalism began with the primitive initial stage of Syringopora praehanshanensis May, 2005.
May, A. (2022): Since when have humans had a soul? - HTS Teologiese Studies / Theological Studies, vol. 78 (2): p. a7311; Cape Town, South Africa. An attempt is made to determine when humans have had a soul. For this purpose, mind and... more
May, A. (2022): Since when have humans had a soul? - HTS Teologiese Studies / Theological Studies, vol. 78 (2): p. a7311; Cape Town, South Africa.

An attempt is made to determine when humans have had a soul. For this purpose, mind and soul are distinguished from each other. This clarification of terms makes it possible to criticise the emergentist view, which assumes that the soul arises naturally from the biological organism. The existence of a soul is inferred from the mental activities of humans, which are directed towards the transcendent. Special significance is given to burials. Burials have been practised for at least 448 000 years. Not only Homo sapiens, but also Homo naledi, Homo heidelbergensis steinheimensis and Homo neanderthalensis buried their dead. Therefore, there is good reason to assume that Homo heidelbergensis and all its descendants possessed (and still possess) a soul. Moreover, one can suppose that Homo erectus and Homo naledi also possessed a soul. Contribution: The clear distinction between the immanent mind and the transcendent soul makes us aware that we humans are beings equally at home in immanence and transcendence. Humans have possessed a soul for a very long time, and not only Homo sapiens but also his ancestors and related species.

Keywords: soul, mind, burials, human evolution, palaeoanthropology, theology, tripartite view of humans, emergentism.
May, A. (2021c): History and future of life on Earth - a synthesis of natural sciences and theology. - Dialogo, vol. 8 (1): p. 233-251; Constanta, Romania. ABSTRACT: A synthesis of research results of modern natural sciences and... more
May, A. (2021c): History and future of life on Earth - a synthesis of natural sciences and theology. - Dialogo, vol. 8 (1): p. 233-251; Constanta, Romania.

ABSTRACT:  A synthesis of research results of modern natural sciences and fundamental statements of the Christian faith is attempted. The creation of the universe is addressed. Four important events in the history of the Earth as well as the diversity of living beings are shortly discussed. There are good reasons to believe that the universe was created by a transcendent superior being, which we call God, and that this superior being intervened in evolution and Earth history to promote the development of intelligent life. Furthermore, it can be concluded that intelligent life is very rare in the universe. This is the explanation for the “Fermi paradox”. Intelligent life on planet Earth has cosmic significance.
The overabundance of this universe inspires the hope for participating in the fulfilled eternity of the Creator in transcendence. Prehistoric humans had long had hope for life after biological death. While scientific speculation about the end of the universe prophesies scenarios of destruction, the Christian faith says that humanity is destined to be united with Jesus Christ. Furthermore, all evolution will be completed with the Creator in transcendence. Then the whole of creation will “obtain the freedom of the glory of the children of God”. From the first primitive living cell, an abundance of the most diverse living beings has evolved. Comparably, humanity has differentiated into a plethora of different cultures. This entire abundance will find its unification and fulfilment in transcendence with the Creator of the universe, without its diversity being erased.

Keywords: Earth history; intelligent life; palaeontology; Fermi paradox; astrophysics; Christianity; Christology; eschatology; human evolution.
May, A. (2021b): What can Earth history and Evolution tell about the Creator of the Universe?. - International Journal of Theology, Philosophy and Science, vol. 8: p. 19-41; Târgoviște, Romania. ABSTRACT Conclusions about the Creator of... more
May, A. (2021b): What can Earth history and Evolution tell about the Creator of the Universe?. - International Journal of Theology, Philosophy and Science, vol. 8: p. 19-41; Târgoviște, Romania.

ABSTRACT Conclusions about the Creator of the universe are drawn from the evolution and diversity of living beings. Furthermore, four events of the Earth's history are addressed. From them, it can be concluded that the Creator actively intervened in the history of the Earth to promote the development of intelligent life. Following characteristics of the Creator are observed: He is patient, creates an exuberant fullness, and gives freedom to his creation. He uses causal links and seemingly random events to steer the course of his creation. The Creator is in constant dialogue with his creation to lead it into ever greater abundance and freedom. He uses evolutionary processes, which are not goal-oriented, to achieve his goals. The observed characteristics of the Creator fit very well with the Judeo-Christian God. The question is raised whether the Creator is timeless or not. 

Keywords: Earth history, intelligent life, palaeontology, Christianity, freedom, dialogue, natural theology, theistic evolution,

*****************

RESEARCH PROJECT "CHRISTIANITY AND EVOLUTION"

The paper presents some important results of my research project "Christianity and Evolution".
The goal of this research project is to write a book on Christianity, evolution and related topics in German language as well as in Spanish language.
Information in English language is posted in my Researchgate project: https://www.researchgate.net/project/Christianity-and-Evolution
Information in Spanish language is posted in https://www.facebook.com/may.devonian
Information in German language is posted in https://www.facebook.com/DAM-Wissenschaft-und-Glaube-106731404884228

Other first results of this project are following short papers:

a) A paper in German language on "Billions of years of_evolution - gift and mission"
https://www.academia.edu/42123885/Milliarden_Jahre_Evolution_Geschenk_und_Auftrag._Billions_of_years_of_evolution_-_gift_and_mission_

b) A document in English language. It deals with religion, evolution and the purpose of human evolution. It is seen from the point of view of a palaeontologist, computer scientist and Christian.
You can download the document from https://www.academia.edu/32064139/Comment_concerning_religion_on_the_Researchgate_project_Has_human_evolution_a_purpose_of_Bogdan_G%C3%B3ralski
or alternatively from
https://www.researchgate.net/publication/315654521
Stichling, S. & Becker, R. T. & Hartenfels, S. & Aboussalam, Z. S. & May, A. (2022): Drowning, extinction, and subsequent facies development of the Devonian Hönne Valley Reef (northern Rhenish Massif, Germany). - Palaeobiodiversity and... more
Stichling, S. & Becker, R. T. & Hartenfels, S. & Aboussalam, Z. S. & May, A. (2022): Drowning, extinction, and subsequent facies development of the Devonian Hönne Valley Reef (northern Rhenish Massif, Germany). - Palaeobiodiversity and Palaeoenvironments, p. in press; Berlin, Heidelberg (Springer).


The Hagen-Balve Reef is one of the largest Devonian carbonate complexes in the Rhenish Massif exposed in many former or active, economically significant quarries, especially in the Hönne Valley region at its eastern end. The timing and patterns of reef drowning, final extinction, and the middle Frasnian to middle Famennian post-reefal facies history, including details of the global Kellwasser Crisis, were studied based on two boreholes (HON_1101 and B102) and one outcrop at the Beul near Eisborn. More than 100 conodont samples provided a fine biostratigraphic framework and included new forms left in open nomenclature. The ca. upper 80 m of the new Asbeck Member of the Hagen-Balve Formation consists of relatively monotonous lagoonal successions assigned to four microfacies types. The local diversity of reef builders, mostly stromatoporoids, is low. Fenestral microbialites indicate very shallow and rather hostile back-reef settings. Near the Middle/Upper Devonian boundary, the eustatic pulses of the global Frasnes Events led to a significant backstepping of the reef margin, with reef core/outer slope facies overlying lagoonal facies. This flooding drastically reduced the carbonate accumulation rate and enabled the invasion of drowned back-reef areas by open-water organisms, such as polygnathid conodonts. Within this Eisborn Member, five microfacies types and numerous subtypes are distinguished including lowdiversity "coral gardens" and a final, top lower Frasnian parabiostrome dominated by tabulate and colonial rugose corals. There was no cap stage ("Iberg Facies"). Two phases of the Basal Frasnes Event are marked by dark, organic rich limestones with subordinate reef builders. Based on conodont fauna from overlying nodular limestones of the new, (hemi-)pelagic Beul Formation, the final Hönne Valley reef extinction was caused by the eustatic Middlesex Event at the lower/middle Frasnian boundary. Within the Beul Formation, eight subphotic submarine rise microfacies types are distinguished. After a lower middle Frasnian phase of extreme condensation, rich conodont faunas enable the recognition of most upper Frasnian to middle Famennian zones. The global semichatovae Event led to a regionally unique intercalation by four phases of organic-rich, laminated black shales and intervening thin limestones in core HON_1101. The Lower Kellwasser Event is represented in HON_1101 by atypical, moderately C org-rich, recrystallized, peloidal ostracod-mollusk pack-grainstones. The Upper Kellwasser level begins with an ostracod bloom, followed either by recrystallized mollusk wacke-packstones (HON_1101) or laminated, argillaceous mudstones (B102). The first indicates a rarely documented shallow subphotic, better oxygenated setting than typical Upper Kellwasser facies. As elsewhere, the top-Frasnian conodont extinction was severe. The lower/middle Famennian carbonate microfacies of the Beul Formation is relatively monotonous and typical for an oxic, pelagic submarine rise. The youngest recorded nodular limestones fall in the Palmatolepis marginifera utahensis Zone. Regionally uniform lydites of the Hardt Formation show that the local palaeotopography was levelled before the base of the This article is a contribution to the special issue "The Rhenish Massif: More than 150 years of research in a Variscan mountain chain"
Löw, M. & Söte, T. & Becker, R. T. & Stichling, S. & May, A. & Aboussalam, Z. S. & Zoppe, Z. S. (2022): The initial phase of the Hönne Valley Reef at Binolen (northern Rhenish Massif, Middle Devonian). - Palaeobiodiversity and... more
Löw, M. & Söte, T. & Becker, R. T. & Stichling, S. & May, A. & Aboussalam, Z. S. & Zoppe, Z. S. (2022): The initial phase of the Hönne Valley Reef at Binolen (northern Rhenish Massif, Middle Devonian). - Palaeobiodiversity and Palaeoenvironments, vol. in press; Berlin, Heidelberg (Springer).

https://doi.org/10.1007/s12549-022-00540-4.

ABSTRACT: The Hagen-Balve Reef Complex of the northern Rhenish Massif, Germany, is one of the best examples for the globally widespread Givetian to Frasnian reefs. At its eastern end, in the Hönne Valley, it reaches up to 1000 metres in thickness. In general, there is limited knowledge concerning the faunas and palaeoecology of Rhenish initial reef phases. A unique section at Binolen exposes the sharp boundary between the underlying, siliciclastic Upper Honsel Formation and the lower part of the reefal Hagen-Balve Formation. A ca. 14 m thick succession is assigned to the new Binolen Member and investigated in terms of carbonate microfacies, micro-, and macrofaunas. Seven microfacies types (MF) characterise a crinoidal coral-stromatoporoid garden setting (MF-2 toMF-6) or allobiostrome of an initial open platformturning upsection into a coral parabiostrome (MF-7/8). The base of the Asbeck Member is locally defined by the appearance of back-reef facies types, such as fenestral limestones (MF- 9), which indicate the transformation into a bioherm. Low-diversity conodont faunas prove an influx of open shelf organisms for the Binolen Member and suggest a lower Givetian age (probably Polygnathus timorensis Zone). There are two new Givetian conodont biofacies types characteristic for open biostrome settings, the Bipennatus Biofacies and a Simple Cone Biofacies. Thin sections reveal over 40 different reef builders (rugose and tabulate corals, stromatoporoids, and chaetetid sponges). Around 4200 microfossils from conodont residues consist of agglutinating foraminifers, calcareous sponge spicules (e.g. Heteractinida), scolecodonts, echinoderms (mostly crinoid ossicles and holothurian sclerites), pyritised benthic ostracods, assumed calcified moulds of chitinozoans, subordinate microvertebrates, and other groups. They were analysed quantitatively in order to document changing distribution patterns and environments through time.We distinguish sixmicrofossil-based biofacies types (BF), namely the Ostracoda Biofacies (BF-O), Foraminifera Biofacies (BF-F), Scolecodont Biofacies (BF-S), Chitinozoa Biofacies (BF-C), Porifera-Scolecodont Biofacies (BF-PS), and Porifera-Echinodermata Biofacies (BF-PE). Microfacies and microfossil assemblages led to a reconstruction of the local facies development, consisting of seven successive depophases with further subdivisions.
May, A. (2021): Fossils explained 79: Rugose corals. - Geology Today, vol. 37 (1): p. 31-38; Hoboken, NJ. Abstract: Rugose corals are an extinct group of marine animals that are frequently found in Palaeozoic shallow marine sediments.... more
May, A. (2021): Fossils explained 79: Rugose corals. - Geology Today, vol. 37 (1): p. 31-38; Hoboken, NJ.

Abstract: Rugose corals are an extinct group of marine animals that are frequently found in Palaeozoic shallow marine sediments. Just like their counterparts the stony corals (the Scleractinia) do today, during the Palaeozoic the ru gose corals were important constructors of reefs. Although at first glance rugose corals look very similar to the Scleractinia, they differ in important details. The rugose corals are a very special group whose relationships have been disputed for a long time. They were restricted to the Palaeozoic Era and experienced an exciting evolutionary history of victories and defeats; there were times when they built up huge reefs (and were valuable in stratigraphy), and other times when they suffered through extinction events.
May, A. (2020): Milliarden Jahre Evolution – Geschenk und Auftrag. – In: Dienberg, T. & Winter, S. [eds.]: Mit Sorge – in Hoffnung. Zu Impulsen aus der Enzyklika Laudato Si’ für eine Spiritualität im ökologischen Zeitalter. – pp. 175–183;... more
May, A. (2020): Milliarden Jahre Evolution – Geschenk und Auftrag. – In: Dienberg, T. & Winter, S. [eds.]: Mit Sorge – in Hoffnung. Zu Impulsen aus der Enzyklika Laudato Si’ für eine Spiritualität im ökologischen Zeitalter. – pp. 175–183; Regensburg (Verlag Friedrich Pustet).

This paper with the translated title “Billions of years of evolution - gift and mission” is a contribution to a book about spirituality in the ecological age.

EXTENDED SUMMARY:
Although the Earth is only a grain of dust in the universe, it is something very special, because an overabundance of different living beings lived and lives here. We human beings are extraordinary because on the one hand we perceive the magnificence and beauty of creation and on the other hand because we ask for the meaning, the where from and the where to. These questions direct to the  transcendence. The contemplation of creation leads to the question about the Creator and to the praise of the Creator. Creation is a hymn of praise to the Creator, and for this reason creation has a value and is worthy to be protected.
Our planet is covered with an abundance of the most diverse creatures, an exuberant wealth of forms that biology has not yet been able to grasp fully. This is the result of 3.9 billion years of evolution. From the first primitive cell has evolved the abundance of life on Earth - including us, the human beings. In order for this first primitive cell to develop into the fullness and beauty of life and human civilization that we can observe today, the following circumstances and events, which can only be described as extremely extraordinary, were necessary, among others, in the course of the Earth's history:

1. About 4.53 billion years ago, a planet with approximately the size of Mars collided with the Earth.
2. The beginning and the strength of the release of oxygen by water-splitting photosynthesis was such that the Earth always had a temperature that was conducive to life.
3. The impact of a huge meteorite 66 million years ago caused the mass extinction at the end of the Cretaceous period.
4. Shortly after Homo sapiens had emigrated from Africa, was an interbreeding with Homo neanderthalensis.

Although there are an immense number of suns and planets in the universe, it is not likely that there are many planets with intelligent life. When we look at the series of events and circumstances that were necessary to bring forth what we now see on our blue planet, it is hard to imagine that many planets remain. The events are so extraordinary and the necessity that they had to happen at a certain time or at least in a certain period of time is so compelling that the probability of other intelligent life becomes very small. It is possible that planet Earth is the only planet in the whole universe that has produced intelligent life.
If there really would be intelligent life only on our planet n the whole, vast universe, in his case it would be understandable to call human beings the crown of creation (cf. Genesis 1:28).
To an atheist, these considerations may give food for thought: How is it possible that this sequence of events occurred at exactly the right time? Certainly, life on this planet and humanity could be the accidental result of an unlikely chain of events that happened at exactly the right time. But for a human being willing to consider the existence of a Creator, the abundance and diversity of life on Earth becomes the first revelation about the Creator.
In the eyes of faith, the contemplation of the evolution of life on this planet profiles the image of a Creator who continuously guides His creation and, if necessary it reorients by means of apparently random events. It is a Creator who, in a process that is not yet complete, continually renews his creation. The evolution spanning billions of years sketches a Creator who has patience with his creation. He accompanies it lovingly and patiently so that it can develop freely. This creator can wait until his creation has unfolded its full beauty in freedom.
Furthermore, to the question of the Creator, there is also the question of eternity, of fulfilment in eternal life. We may expect that at the end of time, God, together with human beings, will also lead the whole of creation to completion and in this way complete evolution. This calls us to commit ourselves resolutely to the preservation of creation.
Our growing knowledge of Earth history and of evolution allows us to sing the Canticle of the Creatures of Francis of Assisi anew and in greater depth. We and the living beings that surround us are the result of billions of years of evolution, which tells everyone who can hear it of the greatness, love and patience of the Creator. In this way, creation becomes an ever new gift and the first revelation of God for us. This extraordinary value of the living beings created by evolution means that we have the obligatory task of protecting them.
English summary of important results of the research project on weathering durability and weathering of limestone as natural building-stones. This project was performed by Andreas May 1991-1997. Concerning the project see also... more
English summary of important results of the research project on weathering durability and weathering of limestone as natural building-stones. This project was performed by Andreas May 1991-1997.

Concerning the project see also https://www.researchgate.net/project/Weathering-durability-of-limestone
Abstract: The purpose of human evolution seen from the point of view of a palaeontologist, computer scientist and Christian. Resumen: La meta de la evolución humana desde el punto de vista de un paleontólogo, informático y cristiano.... more
Abstract: The purpose of human evolution seen from the point of view of a palaeontologist, computer scientist and Christian.

Resumen: La meta de la evolución humana desde el punto de vista de un paleontólogo, informático y cristiano.

Kurzfassung: Das Ziel der menschlichen Evolution aus der Sicht eines Paläontologen, Informatikers und Christen.
May, A. (1996a): Relationship among sea-level fluctuation, biogeography, and bioevents of the Devonian: an attempt to approach a powerful, but simple model for complex long-range control of biotic crises. - Geolines, 3: 38-49, 2 figs.;... more
May, A. (1996a): Relationship among sea-level fluctuation, biogeography, and bioevents of the Devonian: an attempt to approach a powerful, but simple model for complex long-range control of biotic crises. - Geolines, 3: 38-49, 2 figs.; Praha.

ABSTRACT. Connections among changing sea-level, development of marine biogeography and appearance of bioevents in Devonian times are emphasised. Decreasing Devonian provincialism of the marine fauna reflects rising sea-level of global ocean. Whereas the Emsian sea-level lowstand was accompanied by strong provincialism of the marine communities, the Frasnian highstands were linked to an unusual decrease of provincialism. As generally documented, the partial but intensive transgressional events (often related to bioevents) were usually associated with a decrease of the provincialism. The best explanation for the majority of Devonian bioevents is the effect of oceanic anoxia. A model suggested herein operates with a fast transgression related to fast ocean sea-level rise. A direct consequence of this fast transgression was the increased primary biomass production (caused by both increased infiux of nutrients and increased total surface of shallow seas). Decreased oxygen supply of oceans continued this process being caused by the global temperature increase which resulted from the albedo decrease. These consequences of these combined factors produced an oceanic anoxic event which started the extinction processes of the bioevent. The well-documented pattern of intensified biological crises during the Devonian, time-slice by time-slice (from Emsian to Frasnian), is explained as a direct result of decreased provincialism of the marine fauna. Both decrease of the provincialism and increased intensity of the Devonian bioevents can be deduced directly or indirectly from changes of global sea-level. This simply constructed but very complex explanation yields two advantages: first, it needs only very few infiuencing factors, second, it can basically renounce incalculable influences (e.g. meteorite impacts). The suggested concept of oceanic anoxic events can explain also other major bioevents of the Earth history.

KURZFASSUNG: Der Artikel versucht, Zusammenhänge zwischen den Veränderungen des Meeresspiegels, der Entwicklung der marinen Biogeographie und den Bioevents im Devon herauszuarbeiten und zu erklären. Die Entwicklung des Faunen-Provinzialismus im Devon ist ein Ergebnis der Entwicklung des globalen Meeresspiegels. Im Emsium war der Meeresspiegel niedrig und der Provinzialismus der Meeresfauna gross, im Frasnium war der Meeresspiegel hoch und der Provinzialismus sehr gering. Insbesondere einige Trangressions-Schübe, die sich auch als Bioevents bemerkbar machten, führten zu schnellen Abnahmen der Grösse des Provinzialismus. Die beste Erklärung für die meisten devonischen Bioevents ist das Auftreten von ozeanischen anoxischen Events. Das hier vorgestellte Modell setzt bei schnellen Transgressionen an, die durch schnelle Meeresspiegel-Anstiege verursacht wurden. Die Konsequenzen einer schnellen Transgression waren gesteigerte Primär produktion organischer Substanz und geringere Sauerstoff- Versorgung der Ozeane, was zusammen zum ozeanischen anoxischen Event und zum Bioevent führte. Der Umstand, dass die Intensität der Bioevents vom Emsium zum Frasnium zunahm, wird durch die Abnahme des Provinzialismus der Meeresfauna in dieser Zeit erklärt. Sowohl die Entwicklung des Provinzialismus der marinen Fauna als auch das Auftreten und die Intensität der Bioevents im Devon lassen sich direkt oder mittelbar aus der Entwicklung des globalen Meeresspiegels ableiten. Dieser sehr umfassende Erklärungsansatz hat den Vorteil, mit sehr wenigen Einfiussfaktoren auszukommen und auf unkalkulierbare Einwirkungen (wie z.B. Meteoriten-Einschläge) völlig verzichten zu können. Vermutlich ist das hier entwickelte Konzept eines ozeanischen anoxischen Events auch auf andere Bioevents übertragbar.

KEYWORDS: Devonian, Kellwasser Event, ecosystems, biogeography, sea level fiuctuation.
Localities of orchids in  Spain and the Pyrenees 2007-2015
Löw, M. & Söte, T. & Becker, R. T. & May, A. & Stichling, S. (2021): Microfauna and microfacies from the initial reef stadium of Binolen in the Hönne valley (Sauerland, Middle Devonian). - In: Abstracts of the 92 Annual Meeting of the... more
Löw, M. & Söte, T. & Becker, R. T. & May, A. & Stichling, S. (2021): Microfauna and microfacies from the initial reef stadium of Binolen in the Hönne valley (Sauerland, Middle Devonian). - In: Abstracts of the 92 Annual Meeting of the Paläontologische Gesellschaft, Vienna, Austria, September 27 to October 1, 2021. - Berichte der Geologischen Bundesanstalt, vol. 142: p. 54; Wien.


MICROFAUNA AND MICROFACIES FROM THE INITIAL REEF STADIUM OF BINOLEN IN THE HÖNNE VALLEY (SAUERLAND, MIDDLE DEVONIAN) Löw, M.1, Söte, T.1, Becker, R.T.1, May, A.2 & Stichling, S.3 1Westfälische Wilhelms-Universität Münster, Institut für Geologie und Paläontologie, Münster, Germany, m_loew07@uni-muenster.de 2Unna, Germany 3Geologischer Dienst NRW, Krefeld, Germany The Middle Devonian was a phase of extensive reef systems on a global scale. In this context, one of the best-known examples is the Givetian-Frasnian Hönne Valley Reef Complex in the northern Rhenish Massif, Germany. While there are several studies on the reefal faunal composition and stratigraphy, there is a great lack of knowledge concerning microfaunal compositions of reef limestones including their potential use as a biofacies proxy. The initial stadium of Rhenish reefs is largely unexplored in terms of its microfossil content. Therefore, a section at Binolen is examined, which exposes the lower part of the Hagen-Balve Formation (“Massenkalk”) concerning its marine microfauna. A total of 4097 representatives of the Foraminifera, Porifera, Scolecodonta, Echinodermata, and other, partly problematic, microfossils were analysed quantitatively to visualize distribution patterns through the stratigraphic column and to reconstruct possible changes of the paleo-habitat. Furthermore, the taxonomical classification revealed an unexpected broad diversity spectrum within the initial reef. The quantitative microfossil analysis was able to distinguish 6 different biofacies types, namely the Porifera-Scolecodonta-biofacies, Porifera-Echinodermatabiofacies, Foraminifera-biofacies, Scolecodonta-biofacies, Chitinozoa-biofacies, and Ostracoda-biofacies. A correlation between reef microfacies analysis and the fluctuating microfossil assemblages is only partly comprehensible.
Eichholt, S. & Becker, R. T. & Aboussalam, Z. S. & El Hassani, A. & May, A. & Jansen, U. & Ernst, A. & El Kamel, F. (2021): Devonian of the Mechra Ben Abbou region (Rehamna) – new data on the reef succession, microfacies, stratigraphy,... more
Eichholt, S. & Becker, R. T. & Aboussalam, Z. S. & El Hassani, A. & May, A. & Jansen, U. & Ernst, A. & El Kamel, F. (2021): Devonian of the Mechra Ben Abbou region (Rehamna) – new data on the reef succession, microfacies, stratigraphy, and palaeogeography. - Frontiers in Science and Engineering, vol. 10 (2): p. 109-152; Rabat, Maroc.

Abstract  The Devonian of the northeastern Rehmna, from Mechra Ben Abbou in the NW to the area north of Aïn el Melah in the southeast, has been dealt with in numerous publications and theses, but the precise ages, sedimentology, and terminology of numerous lithostratigraphic units were far from being resolved. Based on sampling for conodonts, brachiopods, other macrofauna, and microfacies, we report some progress. At Sakhrat et Taïra in the SE, a new shallow-water faunule with Howellella cf. mercurii confirms that significant synsedimentary block movements occurred locally in the lower Lochkovian. It is followed by a level with limestone turbidites and hostile shelf basin facies before quartzites indicate regression. The facies development differs clearly from the Lochkovian of Koudiat ed Diab in the north. The Pragian and Emsian of the whole region is characterized by neritic, storm-influenced, non-reefal shelf successions. This includes in the NE the Emsian Oued Kibane Formation, which may range just into the lower Eifelian. But the Foum el Mejez region lacks so far evidence of undoubted Middle Devonian fossils. The Middle Devonian Mechra Ben Abbou Formation is defined as a compact succession of shallow-water limestones. It is subdivided into the thin- to medium-bedded, upper Emsian to middle Eifelian, mostly crinoidal Bouchhada Member, the cherty and bioclastic upper Eifelian or lower Givetian Koudiat El Gara Member, and the lower/middle Givetian, massive, reefal Sidi bou Talaa Member. At Sidi bou Talaa, the latter is assigned to four facies assemblages: reef core limestone, seismically induced inner platform reef breccias, fenestral limestones, and thin-bedded lagoonal limestones. 38 species of reef builders (tabulate corals, chaetetids, stromatoporids, calcimicrobes) are regionally identified, 17 of them for the first time in Morocco. Due to regional uplift, non-deposition, condensation or reworking, there is no in-situ Rehamna record of upper Givetian and Frasnian strata. The silty-sandy middle part of the Oued Ater Member of the Foum el Mejez Formation yielded a new middle Famennian brachiopod fauna. It represents a fault-controlled narrow basin with prodelta facies and high subsidence that has no equivalents anywhere else in the Rehamna. At Gare Mechra Ben Abbou, the Givetian reef limestone was erosionally truncated in the upper Famennian, with stromatolite encrustations, karstification, and breccia formation by rockfall, followed by quartzites with Mesoplica praelonga coquinas. This Douar Nahilat Formation correlates with the quartzites of the Dalaa Member of the Foum el Mejez region to the east. A survey of the clast spectrum in the at least 500 m thick reddish breccia at Koudiat ed Diab yielded limited evidence for a Givetian and upper Frasnian age of eroded reefal limestone. Carboniferous clasts are rare but a brachiopod-bryozoan pebble with Rhabdomeson suggests that a part of the regional upper Viséan carbonate platform was reworked, too. This supports the long assumed post-orogenic age of the thick unit that represents massive rockfall talus after the main Variscan relief had formed.
Becker, R. T. & Aboussalam, Z. S. & El Hassani, A. & Baidder, L. & Hüneke, H. & Mayer, O. & Cozar, P. & Helling, S. & Seyffert, K. & May, A. (2021): Devonian and the Carboniferous transgression in the Skoura region, Sub-Meseta Zone,... more
Becker, R. T. & Aboussalam, Z. S. & El Hassani, A. & Baidder, L. & Hüneke, H. & Mayer, O. & Cozar, P. & Helling, S. & Seyffert, K. & May, A. (2021): Devonian and the Carboniferous transgression in the Skoura region, Sub-Meseta Zone, Morocco. - Frontiers in Science and Engineering, vol. 10 (2): p. 229-311; Rabat, Maroc.

Abstract:  The Sub-Meseta Zone forms the transition between the southern Meseta of the main Variscides and the Anti-Atlas realm. The Skoura region at the southern foot of the High Atlas includes a west-east, discontinuous sequence of Devonian and Lower Carboniferous outcrops, from Tizi-n´Tichka East in the NW of Ouarzazate to Asserhmo in the NE. Based on detailed logging, microfacies, conodont and macrofauna sampling, especially at Taliouine and Tizi n-Ouourti, the regional Devonian litho, bio- and event stratigraphy and facies development is revised. The Lochkovian is marked by a change from unfossiliferous black shales (Lower Member of new Tizi-n-Tichka Formation) to condensed, discontinuous, black, detrital Orthocone Limestones (Upper Member, middle Lochkovian) deposited under strong bottom current influence (contourites). Slumps and a subsequent erosional disconformity mark the regional tectonic episode Sk-TP-1a, followed by a distinctive “Antevariscan” conglomerate and reworking interval (Sk-TP 1b) that falls in the lower Pragian (Member 1 of new Imi-n-Tazaght Formation). The higher Pragian and lower Emsian are represented by cyclic, coarsening upwards successions of nodular limestones with trilobites and early goniatites (Members 2 and 3). At the top, Member 4 contains a Mimagoniatites marker level, partly interbedded within cross-bedded dacryoconarid calcarenites. The global Daleje Event is regionally very pronounced and led to an abrupt change to poorly fossiliferous green silty shales of the new Tizi-n-Ouourti Formation (Lower Member). The anarcestid-rich, nodular Upper Member is only locally well-developed, especially at Tizi-n-Ouourti. It is truncated at the top by the next regional Eovariscan erosion, unconformity, reworking and slumping phase that began in the Eifelian (Sk-TP 2a). The sedimentary record ended locally near the top of the Eifelian (Tizi-n-Ouourti) or a second slumping phase (Sk-TP 2b) began after the top-Eifelian Kačák Event Interval (Member 1 of new Taliouine Formation). The lower Givetian (Member 2) consists of well-bedded to nodular mudstones with some brief reworking episodes (Sk-TP 2c) near the base. The middle Givetian Member 3 includes hypoxic marls with maenioceratid faunas that strongly resemble the succession of the Tata region (Ahrerouch Formation) in the eastern Dra Valley. From the top of the middle to the upper Givetian, a third regional phase of Eovariscan block faulting (Sk-TP 3) caused the intercalation of thick, polymict conglomerate units (Member 4), followed by still poorly known Frasnian strata. Only in the east, the Asserhmo Formation is developed, a thick sequence of polymict conglomerates with reworked Ordovician to upper Famennian pebbles and isolated reef corals. It represents Sk-TP 4 and its origin may correlate with the similar breccia units of the Tinerhir region in the eastern Sub-Meseta Zone. In all of the Skoura region, a significant pre-middle Viséan erosion cut variable into Devonian or even Silurian beds. The oldest Carboniferous beds differ from place to place. At Taliouine, ca. 10 m of very fossiliferous neritic limestones with abundant brachiopods, large euomphalid gastropods, and bryozoans yielded very abundant foraminifers that provide a correlation with the middle Viséan V2a (Cf5α) fauna from Assif n´Tanzouzmine. The Skoura Devonian and Lower Carboniferous records an individual crustal development at the Meseta-Anti-Atlas transition, with lateral facies similarities fluctuating strongly in time, constrained by the repeated synsedimentary tectonic movements.
Becker, R. T. & Aboussalam, Z. S. & Stichling, S. & May, A., & Eichholt, S. (2016): The Givetian-Frasnian Hönne Valley Reef Complex (northern Sauerland) – an outline of stratigraphy and facies development. In: Becker, R. T., Hartenfels,... more
Becker, R. T. & Aboussalam, Z. S. & Stichling, S. & May, A., & Eichholt, S. (2016): The Givetian-Frasnian Hönne Valley Reef Complex (northern Sauerland) – an outline of stratigraphy and facies development. In: Becker, R. T., Hartenfels, S., Königshof, P., & Helling, S. (eds): Middle Devonian to Lower Carboniferous stratigraphy, facies, and bioevents in the Rhenish Massif, Germany - an IGCP 596 Guidebook. - Münstersche Forschungen zur Geologie und Paläontologie, vol. 108: p. 126-140, 20 figs.; Münster.

ABSTRACT: The northern margin of the 1st order Remscheid-Altena Anticline (northern Sauerland) is characterized between Hagen in the W and Balve in the ESE by an elongated, thick Givetian reef complex, the Hagen-Balve Reef, which can be divided into partial reefs. In the roughly N-S running Hönne Valley, between Oberrödinghausen and Eisborn (see huge Asbeck quarry), it reaches its maximum thickness of almost 1000 m.
This paper gives data on localities showing:
- initial reef stadium abruptly overlying the lower Givetian Upper Honsel Formation
- first coral biostrome (Hönne forest track)
- fossiliferous platform facies with Stringocephalus banks and intercalating tuff (Emil Quarry)
- overview of thick, cyclic main reef (Asbeck)
- first reef drowning in the course of the global Frasnes Events (Beul)
- final middle Frasnian reef extinction (Beul)
The Middle to Late Devonian Khoshyeilagh Formation successions are here reported from the Khoshyeilagh neck, Alborz Mountains, Northeastern Iran. This formation is very fossiliferous. The rugose coral Hexagonaria davidsoni occurs within... more
The Middle to Late Devonian Khoshyeilagh Formation successions are here reported from the Khoshyeilagh neck, Alborz Mountains, Northeastern Iran. This formation is very fossiliferous. The rugose coral Hexagonaria davidsoni occurs within Frasnian strata and is the first report of this species from the Khoshyeilagh Formation.
Research Interests:
Love, sexuality, marriage and chastity -- I have written this document thinking in my four daughters. The oldest of them is 13 years old and has just started to read it. I am planning to add this document to the small book on... more
Love, sexuality, marriage and chastity --

I have written this document thinking in my four daughters. The oldest of them is 13 years old and has just started to read it. I am planning to add this document to the small book on Christianity, evolution and related topic, what I am writing – for more details see https://www.researchgate.net/project/Christianity-and-Evolution

This document wants to give some hints concerning love, sexuality, marriage and chastity. Many people think, that Christian sex morals are outworn and repressive. Therefore I start with some biological facts and anthropological observations. From these I deduce some principles and suggestions. Finally I conclude that these principles and suggestions have much in common with Christian sex morals. Important additions from Christianity are the appreciation of the celibacy in close community with God, the remission of sins and the indissolubility of marriage. 

This document is especially – but not only – directed to young adults. It tries to give some helpful advice. It is written in German language. Up to now I did not make English summaries of the parts of the document, because to be added to the small book on Christianity etc., the text has to be rearranged probably.
May, A. (1997g): Ein Modell zur Erklärung der Bio-Events und der biogeographischen Entwicklung im Devon durch den Meeresspiegel. - Dortmunder Beiträge zur Landeskunde, Naturwissenschaftliche Mitteilungen, 31: 137-174, 5 figs.; Dortmund.... more
May, A. (1997g): Ein Modell zur Erklärung der Bio-Events und der biogeographischen Entwicklung im Devon durch den Meeresspiegel. - Dortmunder Beiträge zur Landeskunde, Naturwissenschaftliche Mitteilungen, 31: 137-174, 5 figs.; Dortmund.

Abstract: The attempt is made, to show and to explain connections between the changing sea-Ievel, marine biogeography, and bio-events within the Devonian. The Devonian development of marine faunal provincialism is the result of changes in global sea-Ievel. Within the Emsian sea-Ievel was low and marine faunal provincialism was strong, while within the Frasnian sea-Ievel was high and marine faunal provincialism was weak. Some particular transgressive intervals made themselves felt as bio-events, conducive to fast decreases in the intensity of provincialism. Starting with the Daleje Event of the Emsian and ending with the Kellwasser Event of the Frasnian, the bio-events are discussed in detail. In this context new data concerning the Middle Devonian of the Eastern Rhenish Massif are presented. The best explanation for most Devonian bio-events is the occurrence of oceanic anoxic events. The model presented here uses fast transgressions caused by rapid sea-Ievel rises (see fig. 1). Fast transgression increased primary biomass production (caused by an increased influx of nutrients and an increased area of shallow sea) and decreased oxygen supply in the oceans (caused by global temperature increase resulting from albedo decrease). Both factors together resulted in the oceanic anoxic event conducive to the bio-event. The fact, that bio-event intensity increased from the Emsian to the Frasnian is explained by the decrease of marine faunal provincialism within this time. Both the development of provincialism and the occurrence and intensity of bio-events within the Devonian can be deduced directly or indirectly from the changes in global sea-Ievel. This comprehensive attempt at explanation has the advantage of needing only a few influencing factors and renouncing incalculable influences (e. g. meteorite impacts). Possibly, the model of oceanic anoxic events presented is also transferable to other bio-events (e. g.: bio-events of the Famennian, Cenomanian/Turonian Event). Kurzfassung: Der Artikel versucht, Zusammenhänge zwischen den Veränderungen des Meeresspiegels, der Entwicklung der marinen Biogeographie und den Bio-Events im Devon herauszuarbeiten und zu erklären. Die Entwicklung des Faunen-Provinzialismus im Devon ist ein Ergebnis der Entwicklung des globalen Meeresspiegels. Im Emsium war der Meeresspiegel niedrig und der Provinzialismus der Meeresfauna groß, im Frasnium war der Meeresspiegel hoch und der Provinzialismus sehr gering. Insbesondere einige Trangressions-Schübe, die sich auch als Bio-Events bemerkbar machten, führten zu schnellen Abnahmen der Größe des Provinzialismus. Die Bio-Events vom Daleje-Event des Emsiums bis zum Kellwasser-Event des Frasniums werden detailliert besprochen. In diesem Zusammenhang werden auch neue Daten zum Mitteldevon des Rechtsrheinischen Schiefergebirges gegeben. Die beste Erklärung für die meisten devonischen Bio-Events ist das Auftreten von ozeanischen anoxischen Events. Das hier vorgestellte Modell setzt bei schnellen Transgressionen an, die durch schnelle Meeresspiegel-Anstiege verursacht wurden (siehe Abb. 1). Die Konsequenzen einer schnellen Transgression waren gesteigerte Primärproduktion organischer Substanz und geringere Sauerstoff-Versorgung der Ozeane, was zusammen zum ozeanischen anoxischen Event und zum Bio-Event führte. Der Umstand, daß die Intensität der Bio-Events vom Emsium zum Frasnium zunahm, wird durch die Abnahme des Provinzialismus der Meeresfauna in dieser Zeit erklärt. Sowohl die Entwicklung des Provinzialismus der marinen Fauna als auch das Auftreten und die Intensität der Bio-Events im Devon lassen sich direkt oder mittelbar aus der Entwicklung des globalen Meeresspiegels ableiten. Dieser sehr umfassende Erklärungsansatz hat den Vorteil, mit sehr wenigen Einflußfaktoren auszukommen und auf unkalkulierbare Einwirkungen (wie z. B. Meteoriten-Einschläge) völlig verzichten zu können. Vermutlich ist das hier entwickelte Konzept eines ozeanischen anoxischen Events auch auf andere Bio-Events übertragbar.
May, A. (1998c): Verwitterung und Verwitterungsbeständigkeit von Naturbausteinen aus Kalkstein am Beispiel des Osnabrücker Wellenkalks (Trias). - Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 208: 637-651, 6 figs.;... more
May, A. (1998c): Verwitterung und Verwitterungsbeständigkeit von Naturbausteinen aus Kalkstein am Beispiel des Osnabrücker Wellenkalks (Trias). - Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 208: 637-651, 6 figs.; Stuttgart.

Abstract: New results about the weathering decay and weathering resistance of limestone building stones are presented by the example of the Osnabrücker WeIlenkalk (Lower Muschelkalk), an important building stone in the vicinity of Osnabrück (Northern Germany). Weathering decay and weathering resistance of its varieties are investigated at stones from two building walls in Osnabrück. The limestones are mainly damaged by fissures essentially based on frost phenomena. The dimensions of the building stone influence its weathering decay. Remarkable differences of the weathering resistance are visible between the six distinguished varieties (microfacies types A-F). The mircofacies types A and B are best resistant against weathering, because they are not laminated, and the quantities of the cold water absorption, the Schurecht ratio (ratio cold/boiling water absorption), and the residue insoluble by hydrochloric acid are relatively low.

Zusammenfassung: Neue Forschungsergebnisse zur Verwitterung und Verwitterungsbeständigkeit von Mauersteinen aus Kalkstein werden am Beispiel des Osnabrücker Wellenkalks (Unterer Muschelkalk), einem wichtigen Naturbaustein, dargestellt. Die Verwitterung und Verwitterungsbeständigkeit seiner Varietäten werden an Mauersteinen aus zwei Gebäuden in Osnabrück untersucht. Die Mauersteine werden hauptsächlich durch (lang aushaltende) Risse geschädigt, die im wesentlichen auf Frost- Tau- Wechsel-Prozessen und Frostsprengung beruhen. Es lassen sich deutliche Unterschiede in der Verwitterungsbeständigkeit der sechs im Osnabrücker Wellenkalk unterschiedenen Gesteinsvarietäten (Mikrofaziestypen A-F) erkennen. Am verwitterungsbeständigsten sind die Mikrofaziestypen A und B, die geringmächtige Lagen bilden. Die Mik.rofaziestypen A und B sind so verwitterungsbeständig, da sie nicht feingeschichtet sind und freiwillige Wasseraufnahme, Schurecht-Ratio (= freiwillige Wasseraufnahme geteilt durch effektive Porosität) sowie der Gehalt an salzsäureunlöslichem Rückstand relativ gering sind.
May, A. (1997a): Verwitterungsbeständigkeit und Verwitterung von Naturbausteinen aus Kalkstein. - Geologie und Paläontologie in Westfalen, vol. 48: p. 3-185, 94 figs., 2 tabs., pl. 1-11; Münster. Abstract: Weathering durability and... more
May, A. (1997a): Verwitterungsbeständigkeit und Verwitterung von Naturbausteinen aus Kalkstein. - Geologie und Paläontologie in Westfalen, vol. 48: p. 3-185, 94 figs., 2 tabs., pl. 1-11; Münster.

Abstract: Weathering durability and weathering process of natural building stones from the Lower Muschelkalk, the Upper Muschelkalk, and the Devonian have been investigated. Various properties of each building stone and its limestone material are measured (microscopy, SEM, porosity, ultrasonic velocity, geochemical methods). Defined microfacies types show clear differences in their weathering durability. The quantities of the cold water absorption, the Schurecht ratio (= ratio cold/boiling water absorption), and the residue insoluble by hydrocloric acid strongly affect the weathering durability. Together with the investigation of thin-sections, these properties enable prognoses about the weathering durability. A diagram of correlation between coldwater absorption and Schurecht ratio is developed, which is able to discriminate more durable and less durable limestones by a boundary line (Fig. 59-60).The limestones are mainly damaged by fissures which harm the unity of the stone. Probably these fissures are mainly based on frost phenomena. Connections between the sedimentary environment and the weathering durability are recognizable: generally limestones of the agitated (shallow) marine are more durable than other limestones.

Kurzfassung: Es wurden die Unterschiede in der Verwitterungsbeständigkeit zwischen verschiedenen Varietäten jeweils eines Kalksteins untersucht. Beprobt wurden Kalksteine des Muschelkalks im Raum Osnabrück-Bielefeld und des Devons im Sauerland in Bauwerken und Aufschlüssen. Eine neue Klassifikation des Verwitterungszustandes von Kalkstein-Mauersteinen wurde entwickelt. Die Oberflächenschäden auf der Außenseite sind nur ± gering und stellen bloß ein "kosmetisches" Problem dar. Die Stärke der Schädigung des inneren Zusammenhaltes des Mauersteins durch Risse ist viel wichtiger, da sie die Sicherheit und Stabilität des Bauwerks gefährdet. Die Untersuchung von Dünnschliffen ermöglichte es, insgesamt 17 Mikrofaziestypen zu definieren und erstmalig Unterschiede in der Verwitterungsbeständigkeit zwischen den verschiedenen Mikrofaziestypen eines Kalksteins zu erkennen. Kalksteine, die in ± turbulentem (und damit ± flachem) Meereswasser abgelagert wurden, sind tendenziell verwitterungsbeständiger als solche aus anderen Ablagerungsräumen. Mit der Auftriebsmethode wurden wichtige Porositätsparameter festgestellt. Freiwillige Wasseraufnahme und Schurecht-Ratio (= Quotient freiwillige Wasseraufnahme / effektive Porosität) beeinflussen die Verwitterungsbeständigkeit sehr stark, wenn ihre Größe zunimmt, nimmt die Verwitterungsbeständigkeit ab. Die Ultraschall-Untersuchungen zeigten, daß in Kalksteinen Spannungen viel weiter geleitet werden als in Sandsteinen und deshalb zu (lang aushaltenden) Rissen führen. Die rasterelektronenmikroskopische Untersuchung erlaubte Aussagen über einzelne Aspekte des Verwitterungsprozesses. Die im salzsäurelöslichen Gesteinsanteil gemessenen Element-Konzentrationen spielen keine Rolle für die Verwitterungsbeständigkeit der Kalksteine.  Die Verwitterungsbeständigkeit der bearbeiteten Kalksteine wird am stärksten von freiwilliger Wasseraufnahme und Schurecht-Ratio beeinflußt. Der Einfluß des Gehaltes an salzsäureunlöslichem Rückstand ist erheblich geringer. Darüber hinaus spielen auch die Merkmale Feinschichtung und Kristallgröße (Mikritl Sparit) eine gewisse Rolle. Die Entwicklung von Stylolithen hat nur nachrangige Bedeutung. Einen sehr großen praktischen Nutzen für Prognosen über die Verwitterungsbeständigkeit verspricht die erstmalig ermittelte Grenzlinie Schurecht-Ratio/freiwillige Wasseraufnahme, die unabhängig vom Probenkollektiv überdurchschnittlich und unterdurchschnittlich verwitterungsbeständige Kalkstein-Mauersteine mit ziemlich großer Schärfe voneinander trennt. Darauf aufbauend wurden leicht durchzuführende Verfahren zur Auswahl besonders verwitterungsbeständiger Kalksteine entwickelt. Im Gegensatz zur vorherrschenden Literaturmeinung werden Kalksteine im wesentlichen durch Risse geschädigt, die wahrscheinlich aufgrund von Frosterscheinungen (bzw. Frost-Tau-Wechsel-Prozessen) entstehen und hauptsächlich durch Frostsprengung vergrößert werden. Da die Schädigung der Gesteinsoberfläche ± gering ist, kann die chemische Verwitterung für Kalksteine nicht wichtig sein. Hierdurch unterscheiden sich Kalksteine in ihrem Verwitterungsverhalten sehr stark von Kalksandsteinen.
May, A. (1998a): Die Verwitterung von karbonatischen Naturbausteinen in Mitteleuropa. - Geoökodynamik, 19 (1/2): 71-88, 4 figs.; Bensheim. SUMMARY: Calcareous sandstones are severely damaged by acid rain and dry depostion of... more
May, A. (1998a): Die Verwitterung von karbonatischen Naturbausteinen in Mitteleuropa. - Geoökodynamik, 19 (1/2): 71-88, 4 figs.; Bensheim.

SUMMARY: Calcareous sandstones are severely damaged by acid rain and dry depostion of acid-producing pollutants both at and just below the stone surface. This appears to be normal for a carbonatic rock, which, however, is largely due to quite different properties unrelated to their carbonate content, such as pore space, the dynamic modulus of elasticity and the percentage of quartz and clay minerals contained in the rock. Their effect is further increased by other weathering processes also unrelated to air pollution. The situation is totally different for limestone weathering. Limestone building stones are primarily damaged by frost-fissuring, whereas the role of solution processes at the surface, which in the opinion of most authors do most of the damage, is in fact only low. This can also be explained by specific stone properties, especially the dynamic modulus of elasticity. The fact, that the disastrous damage done to limestone by frost-fissuring has been overlooked by almost all authors so far can only be explained by the fact that studies largely concentrated on superficial damage to limestones and that experiments measuring the damage concentrated on air pollutants (cf. MAY 1997: 132-134). These mistakes could have been avoided by not only concentrating on the function of the objects, but the types of damage as weil that particularly affect it.  The weathering process in carbonatic building stones are very complex and must thus be studied separately for each group of stones, for which some geological knowledge is mandatory. Calcareous sandstones are especially sensitive to anthropogenic air pollution. Consequently the reduction of air pollution achieved so far, above all by S02, has recognizably slowed down the rate of stone decay. It had only a minor effect on limestones, as for them frost is the major problem. The effect global warming by air pollution is likely to have on building stone decay in central Europe is difficult to assess, for example, the frequency of freeze and thaw cycles is more important than frost intensity.

ZUSAMMENFASSUNG: Werksteine aus Kalksandstein werden durch den "Sauren Regen", bzw. die trockene Ablagerung säurebildender Bestandteile der Luft an und nahe der Gesteinsoberfläche stark geschädigt. Kalksandsteine verhalten sich dabei so, wie es für Karbonatgesteine allgemein erwartet wird. Dies liegt allerdings nicht nur an ihrem Karbonatgehalt, sondern zu einem wichtigen Teil an ganz anderen Gesteinseigenschaften (z. B. dem Porenraum, dem dynamischen Elastizitäts-Modul und den Quarz- und Tonmineral-Anteilen), die davon unabhängig sind. Außerdem verstärken andere Verwitterungsprozesse, die nicht von der Luftverschmutzung abhängig sind, deren Wirkung. Ganz anders verhält sich die Kalkstein-Verwitterung: Diese Bausteine werden hauptsächlich durch frostbedingte Risse zerstört, während die Lösungserosion der Gesteinsoberfläche, die von den meisten Bearbeitern als hauptsächliche Schädigungsursache angesehen wird, beim Kalkstein nur gering ist. Auch dieses Verhalten erklärt sich aus den Gesteinseigenschaften (insbesondere dem dynamischen Elastizitäts-Modul). Daß die viel verheerendere Schädigung des Kalksteins durch Risse von fast allen Autoren bisher ignoriert wurde, läßt sich nur dadurch erklären, daß vorwiegend Oberflächenschäden an Kalksteinen untersucht und Experimente zur Messung der Schädigung von Kalksteinen vorzugsweise auf Luftschadstoffe bezogen wurden (vgl.: MAY 1997: 132-134). Diese Fehlentwicklung hätte vermieden werden können, wenn bei den Untersuchungen auch die Funktion des Objekts und die Art der Schäden, die diese besonders stark beeinträchtigen, nachgefragt worden wäre. Die Verwitterung der in Bauwerken verwandten karbonatischen Natursteine ist zudem sehr komplex und muß für jede Gesteinsgruppe getrennt beantwortet werden. Dazu sind geologische Kenntnisse unbedingt notwendig. Während Kalksandsteine sehr empfindlich auf die anthropogen verursachte Luftverschmutzung reagieren, ist diese bei Kalksteinen kein großes Problem. Die Bekämpfung der Luftverschmutzung bzw. die dabei schon erzielten Erfolge (insbesondere durch Reduzierung des S02) schlagen sich deshalb nur bei Kalksandsteinen in einer erkennbaren Verlangsamung des Steinzerfalls nieder (GRIMM 1992:255-256, Abb. 8), auf die Verwitterung der Kalksteine haben sie nur geringen Einfluß, denn dort ist die Frosteinwirkung das größte Problem, Welche Folgen die mit der Luftverschmutzung verknüpfte globale Erwärmung auf die Gesteinsverwitterung in Mitteleuropa hat und haben wird, läßt sich nicht abschätzen, denn z. B. für die Intensität der Frostschädigung ist die Häufigkeit des Frost-Tau-Wechsels wichtiger als die Intensität des Frostes.
May, A. (1994a): Microfacies controls on weathering of carbonate building stones: Devonian (northern Sauerland, Germany). - Facies, 30: 193-208, 1 figs., 2 tabs., pl. 37-39; Erlangen. Summary: The Beisinghausen Limestone (Upper... more
May, A. (1994a): Microfacies controls on weathering of carbonate building stones: Devonian (northern Sauerland, Germany). - Facies, 30: 193-208, 1 figs., 2 tabs., pl. 37-39; Erlangen.

Summary:    The Beisinghausen Limestone (Upper Givetian to Frasnian) in the Eslohe-Reiste area (northern Sauerland), used in the past as building stone, corresponds to proximal carbonate turbidites which have been derived from the Attendom-Elspe ‘reef’ complex. The particles of this allodapic limestone originated in different parts of the carbonate complex as shown by facies-diagnostic microfossils (foraminifera, calcisphaeres, calcareous algae, microproblematica). The fossils as well as the other dominating grain types (lumps, peloids) point to source areas located within lagoonal and slope environments. Reef-derived material is rare.  The turbidites exhibit four microfacies types, differentiated by composition and size of the grains as well as by micrite content and corresponding to the common vertical and lateral textural variation of limestone turbidites.  These MF types were recognized in outcrops as well as from building stones used in building the St. Pankratius church in Eslohe-Reiste (northern Sauerland) in 1849 and in the renovation of the church in 1963/64.  The comparison of microfacies and the degree of the destruction of ‘old’ and ‘new” building stones by weathering (macroscopically described by the ◂Fabric Index’: Product of the ‘Rock Destruction Risk’ and the ‘Rock Preparation Destruction Degree’) shows that intrabioclastic rudstones (MF type 1) and bioclastic grainstones (MF type 2), both characterizing the basal parts of the turbidite beds, are more resistant to weathering destruction originating from freezing and thawing than packstones (MF type 4). Weathering of micritic facies types (e.g., MF 4) is more intensive due to the stronger development of joint systems affecting not only the surface of the building stones but the entire dimension stone.  Porosity or the existence and amount of stylolites seem to have had no significant impact on the weathering of the building stones studied. The stronger weathering of building stones used in the original construction of the church as compared with the stones applied in this century is caused by the greater time interval available for mechanical weathering connected with freezing and thawing.  The consideration of microfacies of limestone turbidites should facilitate the exploitation of weathering-resistant carbonate building stones.
May, A., & Rodríguez, S. (2012): Pragian (Lower Devonian) stromatoporoids and rugose corals from Zújar (Sierra Morena, southern Spain). - Geologica Belgica, 15/4: 226-235, 2 figs., pl. 1-3; Bruxelles. ABSTRACT. The locality Zújar at the... more
May, A., & Rodríguez, S. (2012): Pragian (Lower Devonian) stromatoporoids and rugose corals from Zújar (Sierra Morena, southern Spain). - Geologica Belgica, 15/4: 226-235, 2 figs., pl. 1-3; Bruxelles.

ABSTRACT. The locality Zújar at the boundary between the Badajoz and Córdoba provinces belongs to the Obejo-Valsequillo-Puebla  de la Reina Domain. Within the fossiliferous reefal carbonates of Pragian age cropping out in Zújar, 10 stromatoporoid species and 7  rugose coral species are identified. The new rugose coral species Martinophyllum miriamae n. sp. is described. Hexagonaria soraufi  Rodríguez García, 1978 is a subspecies of Martinophyllum ornatum Jell & Pedder, 1969. The Pragian fauna of Zújar is a typical fauna of  the Old World Realm with remarkably close relationships to Arctic Canada and Australia. Most species have been recorded for the first  time from Spain. No significant relationships to the Eastern Americas Realm are visible. Remarkable is, that none of the stromatoporoid  species of Zújar is known from the famous Pragian reef complex of Koněprusy in Bohemia, meanwhile the rugose coral fauna (e. g.  Joachimastraea barrandei Galle, Hladil & May, 1999) shows some relations. Some of the species found are ancestors of important  constructors of the Middle Devonian reef complexes, demonstrating that the roots of the Givetian-Frasnian reef complexes reach down  to the Pragian. 

KEYWORDS: Biogeography, reef, Anthozoa, Porifera, Devonian, Spain, Obejo-Valsequillo-Puebla de la Reina Domain, new species.
May, A. (1994c): Paleoecology and paleobiogeography of corals and other reef-builders from the Middle Devonian of the Sauerland (Germany). - In: Proceedings of the VI. International Symposium on Fossil Cnidaria and Porifera held in... more
May, A. (1994c): Paleoecology and paleobiogeography of corals and other reef-builders from the Middle Devonian of the Sauerland (Germany). - In: Proceedings of the VI. International Symposium on Fossil Cnidaria and Porifera held in Münster, Germany 9.-14. September 1991, Volume 2,Courier Forschungsinstitut Senckenberg, 172: 147-159, 6 figs., 1 tabs.; Frankfurt am Main.

Abstract: In the NW Sauerland the coral limestone horizons of the uppermost Eifelian and the Lower Givetian show a very rich content of fossils: 28 tabulate coral species, 21 rugose coral species, 21 stromatoporoid species, 2 chaetetid species, and 16 calcareous algae species were identified by the author. They generally lived in a warm, normal marine environment in the shallow euphotic zone. An analysis of the lagoonal Massenkalk sediments (upper Lower Givetian to Frasnian) shows intertidal to subtidal cyclic sedimentation. Herein several reef-builder associations can be recognized. Their composition and distribution depend on water depth as weil as on the restriction of their environment. The Upper Eifelian and Lower Givetian reef-builder fauna of the Saueriand corresponds to the fauna of the Eifel Hills and the Ardennes, but a few of the Saueriand species are up to now only known from occurrences east of it. The "Rhenohercynian Basin" was a marginal sea, into which faunas from the Asiatic part of the "Old Worid Realrn" immigrated. A marine connection to the "Eastem Americas Realrn" was opened in the Upper Givetian.
May, A. (1992a): Paleoecology of Upper Eifelian and Lower Givetian Coral Limestones in the Northwestern Sauerland (Devonian, Rhenish Massif). - Facies, 26: 103-116, 2 figs., 2 tabs., pl. 21-22; Erlangen. Summary: The prevailing... more
May, A. (1992a): Paleoecology of Upper Eifelian and Lower Givetian Coral Limestones in the Northwestern Sauerland (Devonian, Rhenish Massif). - Facies, 26: 103-116, 2 figs., 2 tabs., pl. 21-22; Erlangen.

Summary: The prevailing sandy/silty lower part of the Middle Devonian in the northwestern Sauerland includes two coral limestone horizons, which contain a rich fauna of corals, stromatoporoids, and calcareous algae. The Ihmert-Formation is subdvided into three parts. The older coral limestone horizon is the Grünewiese-Member of the Ihmert-Formation (uppermost Eifelian), the younger is in the Bredenbruch-Member of the Unterhonsel-Formation (lower Lower Givetian).  Conclusions about the environmental constraints are drawn from the sedimentology and the fossil content of the coral limestones. Predominant biostromes are built between storm wave base and normal wave base. Only the few bioherms grew above the normal wave base. These coral limestones were deposited in a tropical or subtropical normal marine environment in the shallow euphotic zone. Among the reef-builders epoecism is very frequent, and until now this phenomenon has not been investigated in detail. Fragile rugose and tabulate corals lived as commensals with stromatoporoids. Some other aspects of paleoecology are concisely presented.
Ernst, A., & May, A., & Marks, S. (2012): Bryozoans, corals, and microfacies of Lower Eifelian (Middle Devonian) limestones at Kierspe, Germany. - Facies, 58: 727-758, 11 figs., 8 tabs.; Erlangen.... more
Ernst, A., & May, A., & Marks, S. (2012): Bryozoans, corals, and microfacies of Lower Eifelian (Middle Devonian) limestones at Kierspe, Germany. - Facies, 58: 727-758, 11 figs., 8 tabs.; Erlangen.

http://link.springer.com/article/10.1007/s10347-011-0289-6 ---  Abstract The Lower Eifelian Meinerzhagener Korallenkalk  (= upper Cultrijugatus Beds) at Kierspe, Sauerland,  contains a rich reefal fauna. Eight bryozoan species are  described, two of them are new: the cystoporate Fistuliporella  kierspensis n. sp. and the trepostome Leptotrypella sophiae n.  sp. The bryozoans from the Meinerzhagener Korallenkalk shows distinct similarities to the Lower–Middle Devonian of  Spain (Santa Lucía Formation, Emsian–Eifelian), and to the  Middle Devonian (Eifelian) of Transcaucasia. The coral fauna comprises five tabulate corals and one rugose coral that document a paleobiogeographic relationship between Central  and Eastern Europe and Central Asia. The associated fauna is  represented by brachiopods, ostracods, and echinoderms. The  studied limestones also commonly contain calcimicrobes  represented by three species. The faunal and microfacial  characteristics indicate a shallow marine depositional environment  just above the storm wave base, with a supposed  depth of 20 m, within the photic zone. The nutrient regimewas  at least a mesotrophic. The upper boundary of the Cultrijugatus  Beds coincides with the Chotecˇ-Event that strongly  affected brachiopods, whereas corals and bryozoans were  insensitive to this event. 

Keywords:  Middle Devonian  Germany  Microfacies   Bryozoa  Corals  Brachiopods  Calcimicrobes   Taxonomy  Paleoecology  Paleobiogeography
May, A. (2002b): Development and Death of Devonian Coral Reefs. - La Voz del Valle, 10 (3): 1, 3; Madrid (Saint Louis University Madrid Campus). Imagine we had a time machine on our Madrid campus, and we decided to go back 380 million... more
May, A. (2002b): Development and Death of Devonian Coral Reefs. - La Voz del Valle, 10 (3): 1, 3; Madrid (Saint Louis University Madrid Campus).

Imagine we had a time machine on our Madrid campus, and we decided to go back 380 million years into the Devonian period. What would we see? A tropical sea with islands. On land, there would only be some shrubs, herbs, and insects - no mammals or birds. The first amphibians would be beginning to creep onto the land. However, the shallow tropical water at this time was full oflife. We would see plenty of coral reefs, with an overflowing abundance of corals, fish, and many other kinds of animals. And if we were able to go to other continents, we would see that these reefs were not restricted to Spain or Europe, but that they were spread over most parts of the Devonian world.
May, A. (2005a): Die Stromatoporen des Devons und Silurs von Zentral-Böhmen (Tschechische Republik) und ihre Kommensalen. - Zitteliana, B25: 117-250, 6 figs., 33 tabs., pl. 1-43; München. Abstract: All stromatoporoid species described by... more
May, A. (2005a): Die Stromatoporen des Devons und Silurs von Zentral-Böhmen (Tschechische Republik) und ihre Kommensalen. - Zitteliana, B25: 117-250, 6 figs., 33 tabs., pl. 1-43; München.

Abstract: All stromatoporoid species described by POČTA (1894) from the Silurian and Devonian of Bohemia have been revised. Very extensive new collections of stromatoporoids are coming from quarries near the Bohemian village Koněprusy (ca. 30 km southwesterly of Prague). These stromatoporoids have been collected in the Koněprusy Limestone of Pragian age and the Acanthopyge Limestone of Eifelian to Lower Givetian age.  The Koněprusy Limestone contains a large reef complex. Most of the Koněprusy Limestone succession including all stromatoporoids and the reef complex belong to the kindlei conodont zone (middle Pragian). The stromatoporoids and the other reef-building organisms show a clear dependence on the facies (resp. position within the reef complex). The stromatoporoid fauna of the Koněprusy Limestone contains 15 species, but only 7 of them have been described by POČTA (1894). The new species Stromatoporella anamariae n.sp. is described. The Pragian of the Barrandian was no refuge for the stromatoporoids of the Eastern Americas Realm.  Biogeographically, all stromatoporoid faunas of Bohemia belong to the Old World Realm. Nevertheless, the stromatoporoid fauna of the Acanthopyge Limestone is much more cosmopolitic than the fauna of the Koněprusy Limestone. The stromatoporoid fauna of the Acanthopyge Limestone is composed of 19 species, all of which are known from other occurrences in Europe, Asia, or Australia – except of Actinostroma vastum POČTA, 1894 and Stromatoporella pertabulata preisleriensis n.ssp.  The stromatoporoids of the Koněprusy Limestone frequently contain commensalic ""worm""-like organisms and only rarely the new auloporoid tabulate coral Syringopora praehanshanensis n.sp. In the Acanthopyge Limestone the new species Syringopora hladili n.sp. and three other Syringopora species occur.  Possible reasons for the scarcity of stromatoporoids and reefs in the Lower Devonian may be the water temperature, the lack of branching and encrusting stromatoporoids, and the scarcity of commensalic Syringopora corals.     

Kurzfassung: Sämtliche von POČTA (1894) aus dem Silur und Devon Böhmens beschriebenen Stromatoporen wurden revidiert. Es wurden sehr umfangreiche Neuaufsammlungen von Stromatoporen im Koněprusy-Kalkstein des Pragiums und im Acanthopyge-Kalkstein des Eifeliums und Unter-Givetiums bei Koněprusy (ca. 30 km südwestlich von Prag) durchgeführt.  Der Koněprusy-Kalksteins enthält einen großen Riffkomplex aus der kindlei-Conodontenzone des mittleren Pragiums. Die Stromatoporen und die anderen Riffbildner-Gruppen im Koněprusy-Kalkstein zeigen ausgeprägte Faziesabhängigkeiten. Die Stromatoporen-Fauna des Koněprusy-Kalksteins umfasst 15 Arten, von denen nur 7 Arten von POČTA (1894) beschrieben worden waren. Als neues Taxon wird Stromatoporella anamariae n. sp. aufgestellt. Das Pragium des Barrandiums war kein Refugium für die Stromatoporen des Ostamerikanischen („EAR“-) Faunenreichs.  Alle Stromatoporen-Faunen Böhmens gehören dem Altweltlichen Faunenreich an, aber die Stromatoporen-Fauna des Acanthopyge-Kalksteins ist erheblich kosmopolitischer als die des Koněprusy-Kalksteins. Im Acanthopyge-Kalksteins treten 19 Arten, die – bis auf Actinostroma vastum POČTA, 1894 und die neu beschriebene Stromatoporella pertabulata preisleriensis n. ssp.– allesamt schon von anderen Vorkommen in Europa, Asien oder Australien bekannt waren.  Die Stromatoporen des Koněprusy-Kalksteins enthalten häufig „wurm“-artige kommensalischen Organismen und nur selten die neue auloporide tabulate Koralle Syringopora praehanshanensis n. sp. Demgegenüber treten im Acanthopyge-Kalkstein die neue Art Syringopora hladili n. sp. und drei andere Syringopora-Arten auf.  Mögliche Gründe für die Seltenheit von Stromatoporen und Riffen im Unterdevon liegen in der Wassertemperatur, dem Fehlen ästiger und inkrustierender Stromatoporen und der Seltenheit von Syringopora-Kommensalen.
May, A. (1997c): Statistics on Thamnopora (Tabulata, Devonian). - In: Perejón, A., & Comas-Rengifo, M. J. [Eds.]: Proceedings of the VII International Symposium on Fossil Cnidaria and Porifera held in Madrid, Spain, 1995, Volume I,Boletín... more
May, A. (1997c): Statistics on Thamnopora (Tabulata, Devonian). - In: Perejón, A., & Comas-Rengifo, M. J. [Eds.]: Proceedings of the VII International Symposium on Fossil Cnidaria and Porifera held in Madrid, Spain, 1995, Volume I,Boletín de la Real Sociedad Española de Historia Natural (Sección Geológica), 91 (1-4): 217-230, 6 figs., 1 tabs.; Madrid.

ABSTRACT Thamnopora is a ramose tabulate coral that was abundant world-wide in the Devonian (Lochkovian to Frasnian). Its simple morphology allows the testing of statistical methods. 312 descriptions of 148 species and subspecies of Thamnopora and Gracilopora were assembled from 73 publications. Every description has been entered into a data bank with the following morphological data: growth of the corallites in the branches, septal elements, diameter of branches, diameter of corallites in the central (resp. peripheral) part of the branch, thickness of the walls in the central (resp. peripheral) part of the branch, diameter and spacing of mural pores, and distance between tabulae. Some morphological characters show interdependent positive correlations, and peripheral corallite diameter is a good indicator for the size of the polyp, which is at least partly genetically controlled. It is not possible to discriminate between Gracilopora and Thamnopora: therefore Gracilopora TCHUDINOVA,1964 is a junior synonym of Thamnopora STEININGER,1831. Thamnopora shows a phylogenetic increase in size. A cluster analysis performed with the aim discriminating true species from synonyms failed.
KEY WORDS: Anthozoa, Tabulata, Devonian, Statistics, Systematics.

PALABRAS CLAVE: Antozoos, Tabulata, Devónico, Estadistica, Sistemática. 
RESUMEN: Thamnopora es un coral tabulado ramoso que fue abundante en todo el munda durante el Devónico (Lochkoviense a Frasniense). Su morfologia simple permite comprobar rnetodos estadisticos. Se han compilado 312 descripciones de 148 especies y subespecies de Thamnopora y Gracilopora, de 73 publicaciones. Cada descripción ha sido incluida en un banco de datos con los siguientes datos morfológicos: crecimiento de los poliperitos en las ramas, elementos septales, diámetro de las ramas, diámetro de los poliperitos en la parte central de la rama (respecto a la parte periferica), grosor de las muralIas en la parte central de la rama (respecto a la parte periferica), diámetro y separación de los poros murales y distancia entre tábulas, Algunos caracteres morfológicos muestran correlaciones positivas interdependientes y el diámetro de los poliperitos perifericos es un buen indicador deI tamanio deI pólipo que está, al menos parcialmente, geneticamente controlado. No es posible discriminar Gracilopora de Thamnopora, por que Gracilopora TCHUDINOVA1964 es un sin6nimo de Thamnopora STEINlNGER 1831. Thamnopora muestra un aumento filogenetico de tamanio. Un intento de discriminar especies verdaderas mediante análisis de grupos ha resultado fallido.
May, A. (1997f): Sind die devonischen Riffe des Sauerlandes heutigen Korallenriffen vergleichbar?. - Dortmunder Beiträge zur Landeskunde, Naturwissenschaftliche Mitteilungen, 31: 127-135, 2 figs.; Dortmund. Abstract: In this paper... more
May, A. (1997f): Sind die devonischen Riffe des Sauerlandes heutigen Korallenriffen vergleichbar?. - Dortmunder Beiträge zur Landeskunde, Naturwissenschaftliche Mitteilungen, 31: 127-135, 2 figs.; Dortmund.

Abstract: In this paper reasons are given, why the Massenkalk reefs (Middle to Upper Devonian) of the Sauerland are not comparable to recent coral reefs. A new model is developed, explaining the observed carbonate facies without contradiction. This model assumes, that the "reef cores" of the Massenkalk reefs were no barrier, but the uppermost part of the basinward directed slope of the carbonate platform.

Kurzfassung: In diesem Artikel wird begründet, warum die Massenkalk-Riffe (Mittel- bis Oberdevon) des Sauerlandes nicht vergleichbar mit rezenten Korallenriffen sind. Daraus wird ein neues Modell entwickelt, das die beobachteten Karbonatfazies widerspruchsfrei erklären kann. Dieses Modell geht davon aus, daß der "Riffkern" des Massenkalk-Riffs keine Barriere darstellte, sondern den obersten Teil des beckenwärts gerichteten Abhanges der Karbonatplattform.
May, A. (1997b): Mikrofazies und Zyklizität der Wellenkalk-Formation (Unterer Muschelkalk) von Osnabrück (Norddeutschland). - Zentralblatt für Geologie und Paläontologie Teil I, 1996 (5/6): 521-532, 1 figs., pl. 1; Stuttgart. Abstract:... more
May, A. (1997b): Mikrofazies und Zyklizität der Wellenkalk-Formation (Unterer Muschelkalk) von Osnabrück (Norddeutschland). - Zentralblatt für Geologie und Paläontologie Teil I, 1996 (5/6): 521-532, 1 figs., pl. 1; Stuttgart.

Abstract: The Wellenkalk Formation (Lower Muschelkalk) has been investigated at the Westerberg within Osnabrück (Northern Germany). The microfacies types A and B build thin tempestite layers. Within the "Wellenkalke" the microfacies types C to E can be distinguished by decreasing intensity of bioturbation. The microfacies type F represents the "Gelbkalke". In an ideal cycle the sequence of microfacies types is: A or B - C - D to E - F. The microfacies types A and B were sedimented between the storm wave base and the normal wave base. The microfacies type F originated in the high intertidal and supratidal zones. The microfacies types of the "Wellenkalke " are built within following zones: C = subtidal, D and E = shallow subtidal and intertidal.

Zusammenfassung: Die Wellenkalk-Formation (Unterer Muschelkalk) wurde am Westerberg in Osnabrück (Norddeutschland) untersucht. Die Mikrofaziestypen A und B bilden dünne Tempestit-Lagen. Innerhalb der Wellenkalke lassen sich mit abnehmender Bioturbation die Mikrofaziestypen C bis E unterscheiden. Mikrofaziestyp F repräsentiert die Gelbkalke. In einem Idealzyklus ist die Folge der Mikrofaziestypen: A oder B - C - D bis E - F. Die Mikrofaziestypen A und B wurden zwischen Sturm- und Schönwetter-Wellenbasis abgelagert, und der Mikrofaziestyp F entstand im hohen Intertidal und Supratidal. Die Wellenkalk-Mikrofaziestypen sind: C = Subtidal, D und E = flaches Subtidal und Intertidal.
May, A. (1992b): Die Kalkalgen-Flora des Ober-Eifeliums und Unter-Givetiums (Devon) des nordwestlichen Sauerlandes (Rheinisches Schiefergebirge). - Palaeontographica, Abt. B, 228: 1-28, 2 figs., 1 tabs., pl. 1-5; Stuttgart. Summary: The... more
May, A. (1992b): Die Kalkalgen-Flora des Ober-Eifeliums und Unter-Givetiums (Devon) des nordwestlichen Sauerlandes (Rheinisches Schiefergebirge). - Palaeontographica, Abt. B, 228: 1-28, 2 figs., 1 tabs., pl. 1-5; Stuttgart.

Summary: The prevailing sandy-silty lower part of the Middle Devonian in the northwestern Sauerland includes the two very fossiliferous coral limestone horizons of the Grünewiese-Member (uppermost Eifelian) and the Bredenbruch-Member (lower Lower Givetian) of the Unterhonsel-Formation. 16 calcareous alga species are described from these coral limestones. The questionable Codiaceae Flabellia SHUYSKY1973 has been found in Europe and in Middle Devonian strata for the first time. 9 other calcareous algae are described from the Rhenish Massif for the first time as well. The Udoteaceae Paralitanaia, stated by MAMET& PREAT(1985) as an independent genus, is considered as Litanaia subg. Paralitanaia (MAMET& PREAT1985) comb. nov. Tegumentupecten gen. nov. (type species Tegumentupecten incrustans gen. nov., spec. nov.) is stated for a problematical red alga with a thin laminar, encrusting thallus which looks comb-like in vertical section. Wetheredella silurica WOOD 1948 is reinterpretated as an encrusting foraminiferid and described from the Rhenish Massif for the first time.
Key words: calcareous algae, foraminiferids, Devonian, Rhenish Massif, new taxa.

Zusammenfassung: Das überwiegend sandig-siltige tiefere Mitteldevon des nordwestlichen Sauerlandes enthält die beiden fossilreichen Korallenkalk- Horizonte des Grünewiese-Members (höchstes Ober-Eifelium) der Ihmert-Formation und des Bredenbruch-Members (tiefes Unter-Givetium) der Unterhonsel-Formation. Aus ihnen werden 16 Kalkalgen-Arten beschrieben. Die fragliche Codiaceae Flabellia SHUYSKY1973 wird erstmalig aus dem Mitteldevon und aus Europa nachgewiesen, während 9 andere Kalkalgen-Arten erstmalig aus dem Rheinischen Schiefergebirge beschrieben werden. Die von MAMET& PREAT(1985) als selbständige Gattung aufgestellte Udoteaceae Paralitanaia wird als Litanaia subg. Paralitanaia (MAMET& PREAT1-985) comb. nov. gewertet. Für problematische Rotalgen mit dünnlagig inkrustierenden, im Vertikalschnitt kammähnlich aussehenden Thalli wird Tegumentupecten gen. nov. mit der Typus-Art Tegumentupecten incrustans gen. nov., spec. nov. aufgestellt. Die erstmalig aus dem Rheinischen Schiefergebirge beschriebene Wetheredella silurica WOOD 1948 wird als inkrustierende Foraminifere gedeutet.
Schlüsselwörter: Kalkalgen, Foraminiferen, Devon, Rheinisches Schiefergebirge, neue Taxa.
May, A. (1989a): Über Vandercammenina (Brachiopoda: Spiriferacea) aus dem Mittel-Devon des Sauerlandes (Rheinisches Schiefergebirge). - Hercynica, 4 [1988]: 15-23, 1 tabs., pl. 1; Rennes. About Vandercammenina (Brachiopoda: Spiriferacea)... more
May, A. (1989a): Über Vandercammenina (Brachiopoda: Spiriferacea) aus dem Mittel-Devon des Sauerlandes (Rheinisches Schiefergebirge). - Hercynica, 4 [1988]: 15-23, 1 tabs., pl. 1; Rennes.

About Vandercammenina (Brachiopoda: Spiriferacea) from the Middle Devonian of the Sauerland (Rhenish Schiefergebirge). Key words: Brachiopoda, Spiriferida, Devonian, Emsian, Eifelian, Couvinian, faunal list, biostratigraphy, Rheinish Schiefergebirge, Sauerland. Abstract: Spiriferids with costae covering the fold and sulcus are rather rare in the Middle Devonian of the Eastern Rhenish Schiefergebirge. Two species of the genus Vandercammenina BOUCOT 1975 (mostly Lower Devonian) are described: Vandercammenina aff. bischofi (F.A. ROEMER in GIEBEL 1858) from the lowermost Eifelian of Breddershaus near Meinerzhagen and Vandercammenina neptunica (QUIRING 1915) from the upper Middle Eifelian of the Haunert near Werdohl. Remarks concerning Struveina parcefurcata (SPRIESTERSBACH1915) are following. Particulars about the stratigraphie range of these species are given (Tab. 1). Lectotypes are designated for Vandercammenina neptunica and Struveine parcefurcata.

Le genre Vandercammenina (Brachiopoda: Spiriferacea) dans le Devonien moyen du Massif Schisteux Rhenan (Sauerland) . Mots-cles : Brachiopoda, Spiriferida, Devonien, Emsien, Eifelien, Couvinien, faune, biostratigraphie, Massif Schisteux Rhenan, Sauerland. Resume: Dans le Devonien moyen du Massif Schisteux Rhenan oriental, les spiriferes avec des cötes radiaires dans le sinus et sur le bourrelet sont assez rares. Deux especes du genre Vandercammenina BOUCOT 1975 (generalement dans le Devonien inferieur] sont decrites par I'auteur. 11 s'agit de Vandercammenina aff. bischofi (F.A. ROEMERin GIEBEL 1858) de I'Eitelien basal a Breddershaus pres de Meinerzhagen et Vandercammenina neptunica (QUIRING 1915) de I'Eifelien moyen (partie superieure) a Haunert dans les environs de Werdohl. Viennent ensuite des remarques sur Struveine'perceturcste (SPIESTERSBACH 1915) et des informations concernant la distribution des especes (Tab. 1). Pour Vandercammenina neptunica et Struveina parcefurcata des lectotypes sont fixes par I'auteur.

Schlüsselwörter: Brachiopoda, Spiriferida, Devon, Emsium, Eifelium, Couvinium, Fauna, Biostratigraphie, Rheinisches Schiefergebirge, Sauerland. Kurzfassung : Spiriferen mit Rippen auf dem Sattel und dem Sinus sind im Mittel-Devon des Rechtsrheinischen Schiefergebirges ziemlich selten. Es werden zwei Arten der (meist unterdevonischen) Gattung Vandercammenina BOUCOT 1975 beschrieben: Vandercammenina aff. bischofi (F.A. ROEMER in GIEBEL 1858) aus dem tiefsten Eifelium von Breddershaus bei Meinerzhagen und Vandercammenina neptunica (QUIRING 1915) aus dem hohen Mittel-Eifelium der Haunert bei Werdohl. Es folgen Anmerkungen zu Struveina parcefurcata (SPRIESTERSBACH1915) und Angaben zur Biostratigraphie der Arten. Für V. neptunica und S. parcefurcata werden Lectotypen bestimmt.
May, A. (2005d): My daughter will have a brother in Heaven. - La Voz del Valle, 14 (2): 5; Madrid (Saint Louis University Madrid Campus). Dear Elisabet, Several years will have passed before you will be able to read and understand this... more
May, A. (2005d): My daughter will have a brother in Heaven. - La Voz del Valle, 14 (2): 5; Madrid (Saint Louis University Madrid Campus).

Dear Elisabet, Several years will have passed before you will be able to read and understand this letter. Sy then you will have a little brother in heaven. Will you allow me to tell the story from the very beginning? In March 2005 your mother became pregnant. We - your mother and I, your father, wanted to have another child so that you could have a sister or brother to grow up with. Sut, to be honest, we both would have preferred to wait some months more. Nevertheless, very soon even before we both knew the truth it was clear for us both that it had been the will of God that your mother become pregnant at this very moment. And we both were very happy and full of dreams for your brother or sister. On June 22, the gynecologist phoned us asking us to come as soon as possible to his office. There he explained that the embryo probably had anencephaly. Anencephaly is a fatal congenital maIformation characterized by the absence of the cranial vault, with cerebral hemispheres completely missing or reduced to small masses attached to the base of the skulI. The incidence of anencephaly in infants born alive in the United States is about 0.3 per 1,000 births. In most cases, the infant dies a few minutes or a few hours after birth. In a few cases the infant may live up to several days outside of the protecting womb of the mother. After giving the preliminary diagnosis, the gynecologist told us that anencephaly is the only case in wh ich he would ac ce pt abortion, nevertheless, if we would like to go on with the pregnancy, he would support us until the end. Further, he explained to us other important aspects of this pregnancy, for example, the birth probably would be through Caesarean section.
All literature references of MayLib presented as a TXT file. For more details see following publication, which can be read and downloaded below: MAY A. (2015).- MayLib - a textfile-based bibliographic database for geosciences and a... more
All literature references of MayLib presented as a TXT file.

For more details see following publication, which can be read and downloaded below:

MAY A. (2015).- MayLib - a textfile-based bibliographic database for geosciences and a list of references on Devonian matters.- Carnets Géol., Madrid, vol. 15, nº 6, p. 59-62. Abstract: Scientists need to manage their own collections of bibliographic data as well as exchange these data easily with colleagues. One solution for this need is MayLib, a bibliographic database that runs on many different operating systems and does not require pre-installation of any software. MayLib is a very small, efficient and comprehensive JAVA program that handles references to publications in any Unicode-compatible language. It is user-friendly and not only contains the basic functions of a bibliographic database, but also has some advanced features. Using MayLib the author has been able to create a list of references, which contains 500 periodicals and 4206 literature references. Of these 4206 references 3191 deal with Devonian matters and 1594 references deal with corals. Key Words: Java, bibliographic database, Devonian, corals, fossils.
The literature references of MayLib from the year 2000 to the year 2015 presented as a CSV file. This CSV file can be read by EXCEL, for example. For more details see following publication, which can be read and downloaded below: MAY A.... more
The literature references of MayLib from the year 2000 to the year 2015 presented as a CSV file. This CSV file can be read by EXCEL, for example.

For more details see following publication, which can be read and downloaded below:

MAY A. (2015).- MayLib - a textfile-based bibliographic database for geosciences and a list of references on Devonian matters.- Carnets Géol., Madrid, vol. 15, nº 6, p. 59-62. Abstract: Scientists need to manage their own collections of bibliographic data as well as exchange these data easily with colleagues. One solution for this need is MayLib, a bibliographic database that runs on many different operating systems and does not require pre-installation of any software. MayLib is a very small, efficient and comprehensive JAVA program that handles references to publications in any Unicode-compatible language. It is user-friendly and not only contains the basic functions of a bibliographic database, but also has some advanced features. Using MayLib the author has been able to create a list of references, which contains 500 periodicals and 4206 literature references. Of these 4206 references 3191 deal with Devonian matters and 1594 references deal with corals. Key Words: Java, bibliographic database, Devonian, corals, fossils.
Research Interests:
The literature references of MayLib from the year 1816 to the year 2000 presented as a CSV file. This CSV file can be read by EXCEL, for example. For more details see following publication, which can be read and downloaded below: MAY A.... more
The literature references of MayLib from the year 1816 to the year 2000 presented as a CSV file. This CSV file can be read by EXCEL, for example.

For more details see following publication, which can be read and downloaded below:

MAY A. (2015).- MayLib - a textfile-based bibliographic database for geosciences and a list of references on Devonian matters.- Carnets Géol., Madrid, vol. 15, nº 6, p. 59-62. Abstract: Scientists need to manage their own collections of bibliographic data as well as exchange these data easily with colleagues. One solution for this need is MayLib, a bibliographic database that runs on many different operating systems and does not require pre-installation of any software. MayLib is a very small, efficient and comprehensive JAVA program that handles references to publications in any Unicode-compatible language. It is user-friendly and not only contains the basic functions of a bibliographic database, but also has some advanced features. Using MayLib the author has been able to create a list of references, which contains 500 periodicals and 4206 literature references. Of these 4206 references 3191 deal with Devonian matters and 1594 references deal with corals.

Key Words: Java, bibliographic database, Devonian, corals, fossils.
Research Interests:
May, A. (2015): MayLib - a textfile-based bibliographic database for geosciences and a list of references on Devonian matters. - Carnets de Géologie [Notebooks on Geology], 15 (6): 59-62; Madrid. Abstract: Scientists need to manage their... more
May, A. (2015): MayLib - a textfile-based bibliographic database for geosciences and a list of references on Devonian matters. - Carnets de Géologie [Notebooks on Geology], 15 (6): 59-62; Madrid.

Abstract: Scientists need to manage their own collections of bibliographic data as well as exchange these data easily with colleagues. One solution for this need is MayLib, a bibliographic database that runs on many different operating systems and does not require pre-installation of any software. MayLib is a very small, efficient and comprehensive JAVA program that handles references to publications in any Unicode-compatible language. It is user-friendly and not only contains the basic functions of a bibliographic database, but also has some advanced features. Using MayLib the author has been able to create a list of references, which contains 500 periodicals and 4206 literature references. Of these 4206 references 3191 deal with Devonian matters and 1594 references deal with corals.

Key Words: Java, bibliographic database, Devonian, corals, fossils.

Résumé : MayLib - une base "texte" de données bibliographiques pour les géosciences et une liste de références sur des thématiques dévoniennes.- Tout chercheur a besoin de gérer sa propre collection de données bibliographiques mais aussi d'échanger facilement ces données avec des collègues. MayLib offre une réponse à cette demande : il s'agit d'une base de données biblio-graphiques, fonctionnant sur plusieurs systèmes d'exploitation et ne nécessitant pas l'installation préa-lable d'autres logiciels. MayLib est un programme JAVA, léger, complet et efficace, pratique pour mani-puler des références à des publications dans toute langue compatible avec le standard Unicode. C'est un outil simple d'utilisation et qui est non seulement doté de toutes les fonctions essentielles d'une base de données bibliographiques mais également de quelques fonctionnalités avancées. Grâce à May-Lib, l'auteur a pu constituer une liste de références comportant 500 revues et 4206 entrées. De ces 4206 références, 3191 traitent de thématiques dévoniennes et 1594 ont pour objet des coraux.

Mots-clefs : Java , base de données bibliographiques , Dévonien , coraux , fossiles.

And 70 more

En esta presentación trato brevemente el tema "Libertad, creación y el plan de Dios". A través de una síntesis de la fe cristiana, la teología y las ciencias naturales, se considera el significado de la libertad en el plan de Dios de... more
En esta presentación trato brevemente el tema "Libertad, creación y el plan de Dios". A través de una síntesis de la fe cristiana, la teología y las ciencias naturales, se considera el significado de la libertad en el plan de Dios de creación y redención. Esta presentación presenta importantes conclusiones de mi artículo teológico "The significance of freedom in God’s plan", publicado en Sudáfrica hace unas semanas.

La publicación en inglés puede descargarse en
https://www.academia.edu/95556482/The_significance_of_freedom_in_God_s_plan
o alternativamente en
https://hts.org.za/index.php/hts/article/view/8090/24190
Hello, In this presentation I address the topic "Freedom, Creation and the Plan of God". By means of a synthesis of Christian faith, theology and natural sciences, the significance of freedom in God’s plan of creation and redemption is... more
Hello,
In this presentation I address the topic "Freedom, Creation and the Plan of God". By means of a synthesis of Christian faith, theology and natural sciences, the significance of freedom in God’s plan of creation and redemption is considered. This presentation presents important findings of my theological article "The significance of freedom in God's plan", which was published in South Africa a few weeks ago.

The theological article can be downloaded at:
https://www.academia.edu/95556482/The_significance_of_freedom_in_God_s_plan
or alternatively at
https://hts.org.za/index.php/hts/article/view/8090/24190
In dieser Powerpoint-Präsentation behandle ich das Thema "Freiheit, Schöpfung und der Plan Gottes". Mittels einer Synthese aus christlichem Glauben, Theologie und Naturwissenschaften wird die Bedeutung der Freiheit in Gottes Schöpfungs-... more
In dieser Powerpoint-Präsentation behandle ich das Thema "Freiheit, Schöpfung und der Plan Gottes". Mittels einer Synthese aus christlichem Glauben, Theologie und Naturwissenschaften wird die Bedeutung der Freiheit in Gottes Schöpfungs- und Erlösungsplan betrachtet. Ich präsentiere wichtige Ergebnisse meines theologischen Fachartikels "The significance of freedom in God’s plan", der vor wenigen Wochen in Südafrika erschienen ist.

Der deutsche Entwurf meines theologischen Fachartikels kann heruntergeladen werden unter:
https://www.academia.edu/95555958/Die_Bedeutung_der_Freiheit_im_Plan_Gottes
oder alternativ unter
https://doi.org/10.13140/RG.2.2.10033.45929
In diesem Video behandle ich das Thema "Freiheit, Schöpfung und der Plan Gottes". Mittels einer Synthese aus christlichem Glauben, Theologie und Naturwissenschaften wird die Bedeutung der Freiheit in Gottes Schöpfungs- und Erlösungsplan... more
In diesem Video behandle ich das Thema "Freiheit, Schöpfung und der Plan Gottes". Mittels einer Synthese aus christlichem Glauben, Theologie und Naturwissenschaften wird die Bedeutung der Freiheit in Gottes Schöpfungs- und Erlösungsplan betrachtet. Dieses Video präsentiert wichtige Ergebnisse meines theologischen Fachartikels "The significance of freedom in God’s plan", der vor wenigen Wochen in Südafrika erschienen ist.

Das Video kann man auf meiner Facebook-Seite zum Thema "Glaube und Wissenschaft" anschauen:
https://www.facebook.com/DAM-Wissenschaft-und-Glaube-106731404884228
Being a paleontologist and a convinced Christian, I have often been asked, "How did we humans and the other living beings come into being? By creation or by evolution?"
In this short presentation I give my answer and give reasons for it.
Siendo paleontólogo y cristiano comprometido, me han preguntado a menudo: "¿Cómo surgimos los seres humanos y los demás seres vivos? ¿Por la creación o por la evolución?" En esta breve presentación doy mi respuesta y expongo las razones... more
Siendo paleontólogo y cristiano comprometido, me han preguntado a menudo: "¿Cómo surgimos los seres humanos y los demás seres vivos? ¿Por la creación o por la evolución?"
En esta breve presentación doy mi respuesta y expongo las razones para ello.
Da ich Paläontologe und überzeugter Christ bin, bin ich oft gefragt worden: "Wie sind wir Menschen und die anderen Lebewesen entstanden? Durch Schöpfung oder durch Evolution?" In dieser kurzen Powerpoit_Präsentation gebe ich meine Antwort... more
Da ich Paläontologe und überzeugter Christ bin, bin ich oft gefragt worden: "Wie sind wir Menschen und die anderen Lebewesen entstanden? Durch Schöpfung oder durch Evolution?"
In dieser kurzen Powerpoit_Präsentation gebe ich meine Antwort und begründe sie.
Powerpoint presented on the "The Annual International Virtual Conference on the Dialogue between Science and Theology: 'DIVERSITY & DIFFERENTNESS' (DIALOGO-CONF 2021 IVCD)" on November 11th, 2021 about "History and future of life on Earth... more
Powerpoint presented on the "The Annual International Virtual Conference on the Dialogue between Science and Theology: 'DIVERSITY & DIFFERENTNESS' (DIALOGO-CONF 2021 IVCD)" on November 11th, 2021 about "History and future of life on Earth - a synthesis of natural sciences and theology".

This Powerpoint presents some important results of my research project "Christianity and Evolution".
The goal of this research project is to write a book on Christianity, evolution and related topics in German language as well as in Spanish language.
Information in English language is posted in my Researchgate project: https://www.researchgate.net/project/Christianity-and-Evolution
Information in Spanish language is posted in https://www.facebook.com/may.devonian
Information in German language is posted in https://www.facebook.com/DAM-Wissenschaft-und-Glaube-106731404884228
1. Teil (von 3) eines Projektes zur Vorbereitung auf die Firmung. Ziel diese Projektes ist es, sich von naturwissenschaftlicher Seite an den christlichen Glauben anzunähern. Es soll gezeigt werden, dass sich Naturwissenschaften und... more
1. Teil (von 3) eines Projektes zur Vorbereitung auf die Firmung. Ziel diese Projektes ist es, sich von naturwissenschaftlicher Seite an den christlichen Glauben anzunähern. Es soll gezeigt werden, dass sich Naturwissenschaften und christlicher Glaube nicht widersprechen, sondern einander ergänzen. Die drei Schwerpunktthemen sind Beginn des Universums, Evolution und Erdgeschichte.
2. Teil (von 3) eines Projektes zur Vorbereitung auf die Firmung. Ziel diese Projektes ist es, sich von naturwissenschaftlicher Seite an den christlichen Glauben anzunähern. Es soll gezeigt werden, dass sich Naturwissenschaften und... more
2. Teil (von 3) eines Projektes zur Vorbereitung auf die Firmung. Ziel diese Projektes ist es, sich von naturwissenschaftlicher Seite an den christlichen Glauben anzunähern. Es soll gezeigt werden, dass sich Naturwissenschaften und christlicher Glaube nicht widersprechen, sondern einander ergänzen. Die drei Schwerpunktthemen sind Beginn des Universums, Evolution und Erdgeschichte.
3. Teil (von 3) eines Projektes zur Vorbereitung auf die Firmung. Ziel diese Projektes ist es, sich von naturwissenschaftlicher Seite an den christlichen Glauben anzunähern. Es soll gezeigt werden, dass sich Naturwissenschaften und... more
3. Teil (von 3) eines Projektes zur Vorbereitung auf die Firmung. Ziel diese Projektes ist es, sich von naturwissenschaftlicher Seite an den christlichen Glauben anzunähern. Es soll gezeigt werden, dass sich Naturwissenschaften und christlicher Glaube nicht widersprechen, sondern einander ergänzen. Die drei Schwerpunktthemen sind Beginn des Universums, Evolution und Erdgeschichte.
Powerpoint presented on the "International Multidisciplinary Scientific Conference on the Dialogue between Sciences & Arts, Religion & Education 2021, 18th June 2021" ******* This presentation is based on: May, A. (2021): What can... more
Powerpoint presented on the "International Multidisciplinary Scientific Conference on the Dialogue between Sciences & Arts, Religion & Education 2021, 18th June 2021"

*******

This presentation is based on:

May, A. (2021): What can Earth history and Evolution tell about the Creator of the Universe? - International Journal of Theology, Philosophy and Science, vol. 8: p. 19-41; Târgoviste, Romania.

You can download this paper from
https://doi.org/10.26520/ijtps.201.5.8.19-41
as well as
https://www.academia.edu/49061963/What_can_Earth_history_and_Evolution_tell_about_the_Creator_of_the_Universe

ABSTRACT Conclusions about the Creator of the universe are drawn from the evolution and diversity of living beings. Furthermore, four events of the Earth's history are addressed. From them, it can be concluded that the Creator actively intervened in the history of the Earth to promote the development of intelligent life. Following characteristics of the Creator are observed: He is patient, creates an exuberant fullness, and gives freedom to his creation. He uses causal links and seemingly random events to steer the course of his creation. The Creator is in constant dialogue with his creation to lead it into ever greater abundance and freedom. He uses evolutionary processes, which are not goal-oriented, to achieve his goals. The observed characteristics of the Creator fit very well with the Judeo-Christian God. The question is raised whether the Creator is timeless or not. 
Keywords: Earth history, intelligent life, palaeontology, Christianity, freedom, dialogue, natural theology, theistic evolution.

*****************

RESEARCH PROJECT "CHRISTIANITY AND EVOLUTION"

The paper mentioned above presents some important results of my research project "Christianity and Evolution".
The goal of this research project is to write a book on Christianity, evolution and related topics in German language as well as in Spanish language.
Information in English language is posted in my Researchgate project: https://www.researchgate.net/project/Christianity-and-Evolution
Information in Spanish language is posted in https://www.facebook.com/may.devonian
Information in German language is posted in https://www.facebook.com/DAM-Wissenschaft-und-Glaube-106731404884228

Other first results of this project are following short papers:

a) A paper in German language on "Billions of years of_evolution - gift and mission"
https://www.academia.edu/42123885/Milliarden_Jahre_Evolution_Geschenk_und_Auftrag._Billions_of_years_of_evolution_-_gift_and_mission_

b) A document in English language. It deals with religion, evolution and the purpose of human evolution. It is seen from the point of view of a palaeontologist, computer scientist and Christian.
You can download the document from https://www.academia.edu/32064139/Comment_concerning_religion_on_the_Researchgate_project_Has_human_evolution_a_purpose_of_Bogdan_G%C3%B3ralski
or alternatively from
https://www.researchgate.net/publication/315654521
Course name: Introduction to the Paleontology and Paleoanthropology of Spain Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Spring 2005. Course description: This course gives an introduction into the... more
Course name: Introduction to the Paleontology and Paleoanthropology of Spain

Saint Louis University, Madrid Campus, Faculty: Science and Engineering
Semester:  Spring 2005.

Course description: This course gives an introduction into the Paleontology and Paleoanthropology of Spain. Basic principles and methods of Paleontology and Paleoanthropology will be outlined. Especially presented will be the origins of life and human beings, evolution, and extinctions. The paleontological part will concentrate on some interesting Spanish case studies (reefs of the Devonian period, swamp forests of the Carboniferous period, shallow sea of the Jurassic period, dinosaurs from the Upper Jurassic and Lower Cretaceous, and mammals and insects of the Tertiary period). In the center of the paleoanthropological part will be the famous findings of Homo antecessor and Homo heidelbergensis in the caves of Atapuerca and their importance for our knowledge about Human evolution.

Course Calendar:
Monday, Jan. 17: 1. Introduction – What are Fossils?
Wednesday, Jan. 19: 2. The Geologic Time Scale
Monday, Jan. 24, & Wednesday, Jan. 26: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (I)
Thursday, Jan. 27: End of DROP/ADD period
Monday, Jan. 31, & Wednesday, Feb. 2: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (II) & 4. Biogeography and Mass Extinctions (I)
Monday, Feb. 7: 4. Biogeography and Mass Extinctions (II)
Wednesday, Feb. 9: 5. From the Origins of Life to the Silurian
Monday, Feb. 14: Review & Preparation of first mid-term exam
Monday, Feb. 14: Deadline for the submission of the title of the paper
Wednesday, Feb. 16: First mid-term exam.
Monday, Feb. 21: 6. Reefs of the Devonian Period
Wednesday, Feb. 23: 7. Swamp Forests of the Carboniferous Period (I)
Monday, Feb. 28: 7. Swamp Forests of the Carboniferous Period (II) & 8. Reptiles of the Triassic Period
Wednesday, Mar. 2: 9. Life of the Shallow Sea of the Jurassic Period (I)
Saturday, Mar. 5, to Sunday, Mar. 13: SPRING BREAK
Monday, Mar. 14: 9. Life of the Shallow Sea of the Jurassic Period (II)
Wednesday, Mar. 16: 10. Dinosaurs from the Upper Jurassic and Cretaceous (I)
Monday, Mar. 21: 10. Dinosaurs from the Upper Jurassic and Cretaceous (II)
Wednesday, Mar. 23: 11. Fossils of the Tertiary Period
Thursday, Mar. 24, to Sunday, Mar. 27: Easter
Monday, Mar. 28: Review & Preparation of second mid-term exam
Wednesday, Mar. 30: Second mid-term exam
Monday, Apr. 4: Deadline for the submission of papers and PowerPoint presentations
Monday, Apr. 4, & Wednesday, Apr. 6: 12. Outline of Human evolution.
Friday, Apr. 8: Last day to drop a class and receive a grade of "W"
Monday, Apr. 11, & Wednesday, Apr. 13: 13. The Earliest Man in Spain – the Homo from Orce. & 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (I)
Saturday, Apr. 16: Field trip to Guadalajara
Monday, Apr. 18: 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (II)
Wednesday, Apr. 20: 15. The Humans after Homo heidelbergensis in Spain.
Monday, Apr. 25, & Wednesday, Apr. 27: Presentation of papers
Research Interests:
Course name: Introduction to the Paleontology and Paleoanthropology of Spain Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Spring 2005. Course description: This course gives an introduction into the... more
Course name: Introduction to the Paleontology and Paleoanthropology of Spain

Saint Louis University, Madrid Campus, Faculty: Science and Engineering
Semester:  Spring 2005.

Course description: This course gives an introduction into the Paleontology and Paleoanthropology of Spain. Basic principles and methods of Paleontology and Paleoanthropology will be outlined. Especially presented will be the origins of life and human beings, evolution, and extinctions. The paleontological part will concentrate on some interesting Spanish case studies (reefs of the Devonian period, swamp forests of the Carboniferous period, shallow sea of the Jurassic period, dinosaurs from the Upper Jurassic and Lower Cretaceous, and mammals and insects of the Tertiary period). In the center of the paleoanthropological part will be the famous findings of Homo antecessor and Homo heidelbergensis in the caves of Atapuerca and their importance for our knowledge about Human evolution.

Course Calendar:
Monday, Jan. 17: 1. Introduction – What are Fossils?
Wednesday, Jan. 19: 2. The Geologic Time Scale
Monday, Jan. 24, & Wednesday, Jan. 26: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (I)
Thursday, Jan. 27: End of DROP/ADD period
Monday, Jan. 31, & Wednesday, Feb. 2: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (II) & 4. Biogeography and Mass Extinctions (I)
Monday, Feb. 7: 4. Biogeography and Mass Extinctions (II)
Wednesday, Feb. 9: 5. From the Origins of Life to the Silurian
Monday, Feb. 14: Review & Preparation of first mid-term exam
Monday, Feb. 14: Deadline for the submission of the title of the paper
Wednesday, Feb. 16: First mid-term exam.
Monday, Feb. 21: 6. Reefs of the Devonian Period
Wednesday, Feb. 23: 7. Swamp Forests of the Carboniferous Period (I)
Monday, Feb. 28: 7. Swamp Forests of the Carboniferous Period (II) & 8. Reptiles of the Triassic Period
Wednesday, Mar. 2: 9. Life of the Shallow Sea of the Jurassic Period (I)
Saturday, Mar. 5, to Sunday, Mar. 13: SPRING BREAK
Monday, Mar. 14: 9. Life of the Shallow Sea of the Jurassic Period (II)
Wednesday, Mar. 16: 10. Dinosaurs from the Upper Jurassic and Cretaceous (I)
Monday, Mar. 21: 10. Dinosaurs from the Upper Jurassic and Cretaceous (II)
Wednesday, Mar. 23: 11. Fossils of the Tertiary Period
Thursday, Mar. 24, to Sunday, Mar. 27: Easter
Monday, Mar. 28: Review & Preparation of second mid-term exam
Wednesday, Mar. 30: Second mid-term exam
Monday, Apr. 4: Deadline for the submission of papers and PowerPoint presentations
Monday, Apr. 4, & Wednesday, Apr. 6: 12. Outline of Human evolution.
Friday, Apr. 8: Last day to drop a class and receive a grade of "W"
Monday, Apr. 11, & Wednesday, Apr. 13: 13. The Earliest Man in Spain – the Homo from Orce. & 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (I)
Saturday, Apr. 16: Field trip to Guadalajara
Monday, Apr. 18: 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (II)
Wednesday, Apr. 20: 15. The Humans after Homo heidelbergensis in Spain.
Monday, Apr. 25, & Wednesday, Apr. 27: Presentation of papers
Research Interests:
Course name: Introduction to the Paleontology and Paleoanthropology of Spain Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Spring 2005. Course description: This course gives an introduction into the... more
Course name: Introduction to the Paleontology and Paleoanthropology of Spain

Saint Louis University, Madrid Campus, Faculty: Science and Engineering
Semester:  Spring 2005.

Course description: This course gives an introduction into the Paleontology and Paleoanthropology of Spain. Basic principles and methods of Paleontology and Paleoanthropology will be outlined. Especially presented will be the origins of life and human beings, evolution, and extinctions. The paleontological part will concentrate on some interesting Spanish case studies (reefs of the Devonian period, swamp forests of the Carboniferous period, shallow sea of the Jurassic period, dinosaurs from the Upper Jurassic and Lower Cretaceous, and mammals and insects of the Tertiary period). In the center of the paleoanthropological part will be the famous findings of Homo antecessor and Homo heidelbergensis in the caves of Atapuerca and their importance for our knowledge about Human evolution.

Course Calendar:
Monday, Jan. 17: 1. Introduction – What are Fossils?
Wednesday, Jan. 19: 2. The Geologic Time Scale
Monday, Jan. 24, & Wednesday, Jan. 26: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (I)
Thursday, Jan. 27: End of DROP/ADD period
Monday, Jan. 31, & Wednesday, Feb. 2: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (II) & 4. Biogeography and Mass Extinctions (I)
Monday, Feb. 7: 4. Biogeography and Mass Extinctions (II)
Wednesday, Feb. 9: 5. From the Origins of Life to the Silurian
Monday, Feb. 14: Review & Preparation of first mid-term exam
Monday, Feb. 14: Deadline for the submission of the title of the paper
Wednesday, Feb. 16: First mid-term exam.
Monday, Feb. 21: 6. Reefs of the Devonian Period
Wednesday, Feb. 23: 7. Swamp Forests of the Carboniferous Period (I)
Monday, Feb. 28: 7. Swamp Forests of the Carboniferous Period (II) & 8. Reptiles of the Triassic Period
Wednesday, Mar. 2: 9. Life of the Shallow Sea of the Jurassic Period (I)
Saturday, Mar. 5, to Sunday, Mar. 13: SPRING BREAK
Monday, Mar. 14: 9. Life of the Shallow Sea of the Jurassic Period (II)
Wednesday, Mar. 16: 10. Dinosaurs from the Upper Jurassic and Cretaceous (I)
Monday, Mar. 21: 10. Dinosaurs from the Upper Jurassic and Cretaceous (II)
Wednesday, Mar. 23: 11. Fossils of the Tertiary Period
Thursday, Mar. 24, to Sunday, Mar. 27: Easter
Monday, Mar. 28: Review & Preparation of second mid-term exam
Wednesday, Mar. 30: Second mid-term exam
Monday, Apr. 4: Deadline for the submission of papers and PowerPoint presentations
Monday, Apr. 4, & Wednesday, Apr. 6: 12. Outline of Human evolution.
Friday, Apr. 8: Last day to drop a class and receive a grade of "W"
Monday, Apr. 11, & Wednesday, Apr. 13: 13. The Earliest Man in Spain – the Homo from Orce. & 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (I)
Saturday, Apr. 16: Field trip to Guadalajara
Monday, Apr. 18: 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (II)
Wednesday, Apr. 20: 15. The Humans after Homo heidelbergensis in Spain.
Monday, Apr. 25, & Wednesday, Apr. 27: Presentation of papers
Research Interests:
Course name: Introduction to the Paleontology and Paleoanthropology of Spain Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Spring 2005. Course description: This course gives an introduction into the... more
Course name: Introduction to the Paleontology and Paleoanthropology of Spain

Saint Louis University, Madrid Campus, Faculty: Science and Engineering
Semester:  Spring 2005.

Course description: This course gives an introduction into the Paleontology and Paleoanthropology of Spain. Basic principles and methods of Paleontology and Paleoanthropology will be outlined. Especially presented will be the origins of life and human beings, evolution, and extinctions. The paleontological part will concentrate on some interesting Spanish case studies (reefs of the Devonian period, swamp forests of the Carboniferous period, shallow sea of the Jurassic period, dinosaurs from the Upper Jurassic and Lower Cretaceous, and mammals and insects of the Tertiary period). In the center of the paleoanthropological part will be the famous findings of Homo antecessor and Homo heidelbergensis in the caves of Atapuerca and their importance for our knowledge about Human evolution.

Course Calendar:
Monday, Jan. 17: 1. Introduction – What are Fossils?
Wednesday, Jan. 19: 2. The Geologic Time Scale
Monday, Jan. 24, & Wednesday, Jan. 26: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (I)
Thursday, Jan. 27: End of DROP/ADD period
Monday, Jan. 31, & Wednesday, Feb. 2: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (II) & 4. Biogeography and Mass Extinctions (I)
Monday, Feb. 7: 4. Biogeography and Mass Extinctions (II)
Wednesday, Feb. 9: 5. From the Origins of Life to the Silurian
Monday, Feb. 14: Review & Preparation of first mid-term exam
Monday, Feb. 14: Deadline for the submission of the title of the paper
Wednesday, Feb. 16: First mid-term exam.
Monday, Feb. 21: 6. Reefs of the Devonian Period
Wednesday, Feb. 23: 7. Swamp Forests of the Carboniferous Period (I)
Monday, Feb. 28: 7. Swamp Forests of the Carboniferous Period (II) & 8. Reptiles of the Triassic Period
Wednesday, Mar. 2: 9. Life of the Shallow Sea of the Jurassic Period (I)
Saturday, Mar. 5, to Sunday, Mar. 13: SPRING BREAK
Monday, Mar. 14: 9. Life of the Shallow Sea of the Jurassic Period (II)
Wednesday, Mar. 16: 10. Dinosaurs from the Upper Jurassic and Cretaceous (I)
Monday, Mar. 21: 10. Dinosaurs from the Upper Jurassic and Cretaceous (II)
Wednesday, Mar. 23: 11. Fossils of the Tertiary Period
Thursday, Mar. 24, to Sunday, Mar. 27: Easter
Monday, Mar. 28: Review & Preparation of second mid-term exam
Wednesday, Mar. 30: Second mid-term exam
Monday, Apr. 4: Deadline for the submission of papers and PowerPoint presentations
Monday, Apr. 4, & Wednesday, Apr. 6: 12. Outline of Human evolution.
Friday, Apr. 8: Last day to drop a class and receive a grade of "W"
Monday, Apr. 11, & Wednesday, Apr. 13: 13. The Earliest Man in Spain – the Homo from Orce. & 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (I)
Saturday, Apr. 16: Field trip to Guadalajara
Monday, Apr. 18: 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (II)
Wednesday, Apr. 20: 15. The Humans after Homo heidelbergensis in Spain.
Monday, Apr. 25, & Wednesday, Apr. 27: Presentation of papers
Research Interests:
Course name: Introduction to the Paleontology and Paleoanthropology of Spain Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Spring 2005. Course description: This course gives an introduction into the... more
Course name: Introduction to the Paleontology and Paleoanthropology of Spain

Saint Louis University, Madrid Campus, Faculty: Science and Engineering
Semester:  Spring 2005.

Course description: This course gives an introduction into the Paleontology and Paleoanthropology of Spain. Basic principles and methods of Paleontology and Paleoanthropology will be outlined. Especially presented will be the origins of life and human beings, evolution, and extinctions. The paleontological part will concentrate on some interesting Spanish case studies (reefs of the Devonian period, swamp forests of the Carboniferous period, shallow sea of the Jurassic period, dinosaurs from the Upper Jurassic and Lower Cretaceous, and mammals and insects of the Tertiary period). In the center of the paleoanthropological part will be the famous findings of Homo antecessor and Homo heidelbergensis in the caves of Atapuerca and their importance for our knowledge about Human evolution.

Course Calendar:
Monday, Jan. 17: 1. Introduction – What are Fossils?
Wednesday, Jan. 19: 2. The Geologic Time Scale
Monday, Jan. 24, & Wednesday, Jan. 26: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (I)
Thursday, Jan. 27: End of DROP/ADD period
Monday, Jan. 31, & Wednesday, Feb. 2: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (II) & 4. Biogeography and Mass Extinctions (I)
Monday, Feb. 7: 4. Biogeography and Mass Extinctions (II)
Wednesday, Feb. 9: 5. From the Origins of Life to the Silurian
Monday, Feb. 14: Review & Preparation of first mid-term exam
Monday, Feb. 14: Deadline for the submission of the title of the paper
Wednesday, Feb. 16: First mid-term exam.
Monday, Feb. 21: 6. Reefs of the Devonian Period
Wednesday, Feb. 23: 7. Swamp Forests of the Carboniferous Period (I)
Monday, Feb. 28: 7. Swamp Forests of the Carboniferous Period (II) & 8. Reptiles of the Triassic Period
Wednesday, Mar. 2: 9. Life of the Shallow Sea of the Jurassic Period (I)
Saturday, Mar. 5, to Sunday, Mar. 13: SPRING BREAK
Monday, Mar. 14: 9. Life of the Shallow Sea of the Jurassic Period (II)
Wednesday, Mar. 16: 10. Dinosaurs from the Upper Jurassic and Cretaceous (I)
Monday, Mar. 21: 10. Dinosaurs from the Upper Jurassic and Cretaceous (II)
Wednesday, Mar. 23: 11. Fossils of the Tertiary Period
Thursday, Mar. 24, to Sunday, Mar. 27: Easter
Monday, Mar. 28: Review & Preparation of second mid-term exam
Wednesday, Mar. 30: Second mid-term exam
Monday, Apr. 4: Deadline for the submission of papers and PowerPoint presentations
Monday, Apr. 4, & Wednesday, Apr. 6: 12. Outline of Human evolution.
Friday, Apr. 8: Last day to drop a class and receive a grade of "W"
Monday, Apr. 11, & Wednesday, Apr. 13: 13. The Earliest Man in Spain – the Homo from Orce. & 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (I)
Saturday, Apr. 16: Field trip to Guadalajara
Monday, Apr. 18: 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (II)
Wednesday, Apr. 20: 15. The Humans after Homo heidelbergensis in Spain.
Monday, Apr. 25, & Wednesday, Apr. 27: Presentation of papers
Research Interests:
Course name: Introduction to the Paleontology and Paleoanthropology of Spain Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Spring 2005. Course description: This course gives an introduction into the... more
Course name: Introduction to the Paleontology and Paleoanthropology of Spain

Saint Louis University, Madrid Campus, Faculty: Science and Engineering
Semester:  Spring 2005.

Course description: This course gives an introduction into the Paleontology and Paleoanthropology of Spain. Basic principles and methods of Paleontology and Paleoanthropology will be outlined. Especially presented will be the origins of life and human beings, evolution, and extinctions. The paleontological part will concentrate on some interesting Spanish case studies (reefs of the Devonian period, swamp forests of the Carboniferous period, shallow sea of the Jurassic period, dinosaurs from the Upper Jurassic and Lower Cretaceous, and mammals and insects of the Tertiary period). In the center of the paleoanthropological part will be the famous findings of Homo antecessor and Homo heidelbergensis in the caves of Atapuerca and their importance for our knowledge about Human evolution.

Course Calendar:
Monday, Jan. 17: 1. Introduction – What are Fossils?
Wednesday, Jan. 19: 2. The Geologic Time Scale
Monday, Jan. 24, & Wednesday, Jan. 26: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (I)
Thursday, Jan. 27: End of DROP/ADD period
Monday, Jan. 31, & Wednesday, Feb. 2: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (II) & 4. Biogeography and Mass Extinctions (I)
Monday, Feb. 7: 4. Biogeography and Mass Extinctions (II)
Wednesday, Feb. 9: 5. From the Origins of Life to the Silurian
Monday, Feb. 14: Review & Preparation of first mid-term exam
Monday, Feb. 14: Deadline for the submission of the title of the paper
Wednesday, Feb. 16: First mid-term exam.
Monday, Feb. 21: 6. Reefs of the Devonian Period
Wednesday, Feb. 23: 7. Swamp Forests of the Carboniferous Period (I)
Monday, Feb. 28: 7. Swamp Forests of the Carboniferous Period (II) & 8. Reptiles of the Triassic Period
Wednesday, Mar. 2: 9. Life of the Shallow Sea of the Jurassic Period (I)
Saturday, Mar. 5, to Sunday, Mar. 13: SPRING BREAK
Monday, Mar. 14: 9. Life of the Shallow Sea of the Jurassic Period (II)
Wednesday, Mar. 16: 10. Dinosaurs from the Upper Jurassic and Cretaceous (I)
Monday, Mar. 21: 10. Dinosaurs from the Upper Jurassic and Cretaceous (II)
Wednesday, Mar. 23: 11. Fossils of the Tertiary Period
Thursday, Mar. 24, to Sunday, Mar. 27: Easter
Monday, Mar. 28: Review & Preparation of second mid-term exam
Wednesday, Mar. 30: Second mid-term exam
Monday, Apr. 4: Deadline for the submission of papers and PowerPoint presentations
Monday, Apr. 4, & Wednesday, Apr. 6: 12. Outline of Human evolution.
Friday, Apr. 8: Last day to drop a class and receive a grade of "W"
Monday, Apr. 11, & Wednesday, Apr. 13: 13. The Earliest Man in Spain – the Homo from Orce. & 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (I)
Saturday, Apr. 16: Field trip to Guadalajara
Monday, Apr. 18: 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (II)
Wednesday, Apr. 20: 15. The Humans after Homo heidelbergensis in Spain.
Monday, Apr. 25, & Wednesday, Apr. 27: Presentation of papers
Research Interests:
Course name: Introduction to the Paleontology and Paleoanthropology of Spain Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Spring 2005. Course description: This course gives an introduction into the... more
Course name: Introduction to the Paleontology and Paleoanthropology of Spain

Saint Louis University, Madrid Campus, Faculty: Science and Engineering
Semester:  Spring 2005.

Course description: This course gives an introduction into the Paleontology and Paleoanthropology of Spain. Basic principles and methods of Paleontology and Paleoanthropology will be outlined. Especially presented will be the origins of life and human beings, evolution, and extinctions. The paleontological part will concentrate on some interesting Spanish case studies (reefs of the Devonian period, swamp forests of the Carboniferous period, shallow sea of the Jurassic period, dinosaurs from the Upper Jurassic and Lower Cretaceous, and mammals and insects of the Tertiary period). In the center of the paleoanthropological part will be the famous findings of Homo antecessor and Homo heidelbergensis in the caves of Atapuerca and their importance for our knowledge about Human evolution.

Course Calendar:
Monday, Jan. 17: 1. Introduction – What are Fossils?
Wednesday, Jan. 19: 2. The Geologic Time Scale
Monday, Jan. 24, & Wednesday, Jan. 26: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (I)
Thursday, Jan. 27: End of DROP/ADD period
Monday, Jan. 31, & Wednesday, Feb. 2: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (II) & 4. Biogeography and Mass Extinctions (I)
Monday, Feb. 7: 4. Biogeography and Mass Extinctions (II)
Wednesday, Feb. 9: 5. From the Origins of Life to the Silurian
Monday, Feb. 14: Review & Preparation of first mid-term exam
Monday, Feb. 14: Deadline for the submission of the title of the paper
Wednesday, Feb. 16: First mid-term exam.
Monday, Feb. 21: 6. Reefs of the Devonian Period
Wednesday, Feb. 23: 7. Swamp Forests of the Carboniferous Period (I)
Monday, Feb. 28: 7. Swamp Forests of the Carboniferous Period (II) & 8. Reptiles of the Triassic Period
Wednesday, Mar. 2: 9. Life of the Shallow Sea of the Jurassic Period (I)
Saturday, Mar. 5, to Sunday, Mar. 13: SPRING BREAK
Monday, Mar. 14: 9. Life of the Shallow Sea of the Jurassic Period (II)
Wednesday, Mar. 16: 10. Dinosaurs from the Upper Jurassic and Cretaceous (I)
Monday, Mar. 21: 10. Dinosaurs from the Upper Jurassic and Cretaceous (II)
Wednesday, Mar. 23: 11. Fossils of the Tertiary Period
Thursday, Mar. 24, to Sunday, Mar. 27: Easter
Monday, Mar. 28: Review & Preparation of second mid-term exam
Wednesday, Mar. 30: Second mid-term exam
Monday, Apr. 4: Deadline for the submission of papers and PowerPoint presentations
Monday, Apr. 4, & Wednesday, Apr. 6: 12. Outline of Human evolution.
Friday, Apr. 8: Last day to drop a class and receive a grade of "W"
Monday, Apr. 11, & Wednesday, Apr. 13: 13. The Earliest Man in Spain – the Homo from Orce. & 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (I)
Saturday, Apr. 16: Field trip to Guadalajara
Monday, Apr. 18: 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (II)
Wednesday, Apr. 20: 15. The Humans after Homo heidelbergensis in Spain.
Monday, Apr. 25, & Wednesday, Apr. 27: Presentation of papers
Research Interests:
Course name: Paleontology and Paleoanthropology of Spain - an Introduction Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Spring 2005. Course description: This course gives an introduction into the... more
Course name: Paleontology and Paleoanthropology of Spain - an Introduction

Saint Louis University, Madrid Campus, Faculty: Science and Engineering
Semester:  Spring 2005.

Course description: This course gives an introduction into the Paleontology and Paleoanthropology of Spain. Basic principles and methods of Paleontology and Paleoanthropology will be outlined. Especially presented will be the origins of life and human beings, evolution, and extinctions. The paleontological part will concentrate on some interesting Spanish case studies (reefs of the Devonian period, swamp forests of the Carboniferous period, shallow sea of the Jurassic period, dinosaurs from the Upper Jurassic and Lower Cretaceous, and mammals and insects of the Tertiary period). In the center of the paleoanthropological part will be the famous findings of Homo antecessor and Homo heidelbergensis in the caves of Atapuerca and their importance for our knowledge about Human evolution.

Course Calendar:
Monday, Jan. 17: 1. Introduction – What are Fossils?
Wednesday, Jan. 19: 2. The Geologic Time Scale
Monday, Jan. 24, & Wednesday, Jan. 26: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (I)
Thursday, Jan. 27: End of DROP/ADD period
Monday, Jan. 31, & Wednesday, Feb. 2: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (II) & 4. Biogeography and Mass Extinctions (I)
Monday, Feb. 7: 4. Biogeography and Mass Extinctions (II)
Wednesday, Feb. 9: 5. From the Origins of Life to the Silurian
Monday, Feb. 14: Review & Preparation of first mid-term exam
Monday, Feb. 14: Deadline for the submission of the title of the paper
Wednesday, Feb. 16: First mid-term exam.
Monday, Feb. 21: 6. Reefs of the Devonian Period
Wednesday, Feb. 23: 7. Swamp Forests of the Carboniferous Period (I)
Monday, Feb. 28: 7. Swamp Forests of the Carboniferous Period (II) & 8. Reptiles of the Triassic Period
Wednesday, Mar. 2: 9. Life of the Shallow Sea of the Jurassic Period (I)
Saturday, Mar. 5, to Sunday, Mar. 13: SPRING BREAK
Monday, Mar. 14: 9. Life of the Shallow Sea of the Jurassic Period (II)
Wednesday, Mar. 16: 10. Dinosaurs and Other Reptiles of the Cretaceous Period (I)
Monday, Mar. 21: 10. Dinosaurs and Other Reptiles of the Cretaceous Period (II)
Wednesday, Mar. 23: 11. Fossils of the Tertiary Period
Thursday, Mar. 24, to Sunday, Mar. 27: Easter
Monday, Mar. 28: Review & Preparation of second mid-term exam
Wednesday, Mar. 30: Second mid-term exam
Monday, Apr. 4: Deadline for the submission of papers and PowerPoint presentations
Monday, Apr. 4, & Wednesday, Apr. 6: 12. Outline of Human evolution.
Friday, Apr. 8: Last day to drop a class and receive a grade of "W"
Monday, Apr. 11, & Wednesday, Apr. 13: 13. The Earliest Man in Spain – the Homo from Orce. & 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (I)
Saturday, Apr. 16: Field trip to Guadalajara
Monday, Apr. 18: 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (II)
Wednesday, Apr. 20: 15. The Humans after Homo heidelbergensis in Spain.
Monday, Apr. 25, & Wednesday, Apr. 27: Presentation of papers
Research Interests:
Course name: Paleontology and Paleoanthropology of Spain - an Introduction Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Spring 2005. Course description: This course gives an introduction into the... more
Course name: Paleontology and Paleoanthropology of Spain - an Introduction

Saint Louis University, Madrid Campus, Faculty: Science and Engineering
Semester:  Spring 2005.

Course description: This course gives an introduction into the Paleontology and Paleoanthropology of Spain. Basic principles and methods of Paleontology and Paleoanthropology will be outlined. Especially presented will be the origins of life and human beings, evolution, and extinctions. The paleontological part will concentrate on some interesting Spanish case studies (reefs of the Devonian period, swamp forests of the Carboniferous period, shallow sea of the Jurassic period, dinosaurs from the Upper Jurassic and Lower Cretaceous, and mammals and insects of the Tertiary period). In the center of the paleoanthropological part will be the famous findings of Homo antecessor and Homo heidelbergensis in the caves of Atapuerca and their importance for our knowledge about Human evolution.

Course Calendar:
Monday, Jan. 17: 1. Introduction – What are Fossils?
Wednesday, Jan. 19: 2. The Geologic Time Scale
Monday, Jan. 24, & Wednesday, Jan. 26: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (I)
Thursday, Jan. 27: End of DROP/ADD period
Monday, Jan. 31, & Wednesday, Feb. 2: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (II) & 4. Biogeography and Mass Extinctions (I)
Monday, Feb. 7: 4. Biogeography and Mass Extinctions (II)
Wednesday, Feb. 9: 5. From the Origins of Life to the Silurian
Monday, Feb. 14: Review & Preparation of first mid-term exam
Monday, Feb. 14: Deadline for the submission of the title of the paper
Wednesday, Feb. 16: First mid-term exam.
Monday, Feb. 21: 6. Reefs of the Devonian Period
Wednesday, Feb. 23: 7. Swamp Forests of the Carboniferous Period (I)
Monday, Feb. 28: 7. Swamp Forests of the Carboniferous Period (II) & 8. Reptiles of the Triassic Period
Wednesday, Mar. 2: 9. Life of the Shallow Sea of the Jurassic Period (I)
Saturday, Mar. 5, to Sunday, Mar. 13: SPRING BREAK
Monday, Mar. 14: 9. Life of the Shallow Sea of the Jurassic Period (II)
Wednesday, Mar. 16: 10. Dinosaurs and Other Reptiles of the Cretaceous Period (I)
Monday, Mar. 21: 10. Dinosaurs and Other Reptiles of the Cretaceous Period (II)
Wednesday, Mar. 23: 11. Fossils of the Tertiary Period
Thursday, Mar. 24, to Sunday, Mar. 27: Easter
Monday, Mar. 28: Review & Preparation of second mid-term exam
Wednesday, Mar. 30: Second mid-term exam
Monday, Apr. 4: Deadline for the submission of papers and PowerPoint presentations
Monday, Apr. 4, & Wednesday, Apr. 6: 12. Outline of Human evolution.
Friday, Apr. 8: Last day to drop a class and receive a grade of "W"
Monday, Apr. 11, & Wednesday, Apr. 13: 13. The Earliest Man in Spain – the Homo from Orce. & 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (I)
Saturday, Apr. 16: Field trip to Guadalajara
Monday, Apr. 18: 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (II)
Wednesday, Apr. 20: 15. The Humans after Homo heidelbergensis in Spain.
Monday, Apr. 25, & Wednesday, Apr. 27: Presentation of papers
Research Interests:
Course name: Paleontology and Paleoanthropology of Spain - an Introduction Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Spring 2005. Course description: This course gives an introduction into the... more
Course name: Paleontology and Paleoanthropology of Spain - an Introduction

Saint Louis University, Madrid Campus, Faculty: Science and Engineering
Semester:  Spring 2005.

Course description: This course gives an introduction into the Paleontology and Paleoanthropology of Spain. Basic principles and methods of Paleontology and Paleoanthropology will be outlined. Especially presented will be the origins of life and human beings, evolution, and extinctions. The paleontological part will concentrate on some interesting Spanish case studies (reefs of the Devonian period, swamp forests of the Carboniferous period, shallow sea of the Jurassic period, dinosaurs from the Upper Jurassic and Lower Cretaceous, and mammals and insects of the Tertiary period). In the center of the paleoanthropological part will be the famous findings of Homo antecessor and Homo heidelbergensis in the caves of Atapuerca and their importance for our knowledge about Human evolution.

Course Calendar:
Monday, Jan. 17: 1. Introduction – What are Fossils?
Wednesday, Jan. 19: 2. The Geologic Time Scale
Monday, Jan. 24, & Wednesday, Jan. 26: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (I)
Thursday, Jan. 27: End of DROP/ADD period
Monday, Jan. 31, & Wednesday, Feb. 2: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (II) & 4. Biogeography and Mass Extinctions (I)
Monday, Feb. 7: 4. Biogeography and Mass Extinctions (II)
Wednesday, Feb. 9: 5. From the Origins of Life to the Silurian
Monday, Feb. 14: Review & Preparation of first mid-term exam
Monday, Feb. 14: Deadline for the submission of the title of the paper
Wednesday, Feb. 16: First mid-term exam.
Monday, Feb. 21: 6. Reefs of the Devonian Period
Wednesday, Feb. 23: 7. Swamp Forests of the Carboniferous Period (I)
Monday, Feb. 28: 7. Swamp Forests of the Carboniferous Period (II) & 8. Reptiles of the Triassic Period
Wednesday, Mar. 2: 9. Life of the Shallow Sea of the Jurassic Period (I)
Saturday, Mar. 5, to Sunday, Mar. 13: SPRING BREAK
Monday, Mar. 14: 9. Life of the Shallow Sea of the Jurassic Period (II)
Wednesday, Mar. 16: 10. Dinosaurs and Other Reptiles of the Cretaceous Period (I)
Monday, Mar. 21: 10. Dinosaurs and Other Reptiles of the Cretaceous Period (II)
Wednesday, Mar. 23: 11. Fossils of the Tertiary Period
Thursday, Mar. 24, to Sunday, Mar. 27: Easter
Monday, Mar. 28: Review & Preparation of second mid-term exam
Wednesday, Mar. 30: Second mid-term exam
Monday, Apr. 4: Deadline for the submission of papers and PowerPoint presentations
Monday, Apr. 4, & Wednesday, Apr. 6: 12. Outline of Human evolution.
Friday, Apr. 8: Last day to drop a class and receive a grade of "W"
Monday, Apr. 11, & Wednesday, Apr. 13: 13. The Earliest Man in Spain – the Homo from Orce. & 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (I)
Saturday, Apr. 16: Field trip to Guadalajara
Monday, Apr. 18: 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (II)
Wednesday, Apr. 20: 15. The Humans after Homo heidelbergensis in Spain.
Monday, Apr. 25, & Wednesday, Apr. 27: Presentation of papers
Research Interests:
Course name: Paleontology and Paleoanthropology of Spain - an Introduction Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Spring 2005. Course description: This course gives an introduction into the... more
Course name: Paleontology and Paleoanthropology of Spain - an Introduction

Saint Louis University, Madrid Campus, Faculty: Science and Engineering
Semester:  Spring 2005.

Course description: This course gives an introduction into the Paleontology and Paleoanthropology of Spain. Basic principles and methods of Paleontology and Paleoanthropology will be outlined. Especially presented will be the origins of life and human beings, evolution, and extinctions. The paleontological part will concentrate on some interesting Spanish case studies (reefs of the Devonian period, swamp forests of the Carboniferous period, shallow sea of the Jurassic period, dinosaurs from the Upper Jurassic and Lower Cretaceous, and mammals and insects of the Tertiary period). In the center of the paleoanthropological part will be the famous findings of Homo antecessor and Homo heidelbergensis in the caves of Atapuerca and their importance for our knowledge about Human evolution.

Course Calendar:
Monday, Jan. 17: 1. Introduction – What are Fossils?
Wednesday, Jan. 19: 2. The Geologic Time Scale
Monday, Jan. 24, & Wednesday, Jan. 26: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (I)
Thursday, Jan. 27: End of DROP/ADD period
Monday, Jan. 31, & Wednesday, Feb. 2: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (II) & 4. Biogeography and Mass Extinctions (I)
Monday, Feb. 7: 4. Biogeography and Mass Extinctions (II)
Wednesday, Feb. 9: 5. From the Origins of Life to the Silurian
Monday, Feb. 14: Review & Preparation of first mid-term exam
Monday, Feb. 14: Deadline for the submission of the title of the paper
Wednesday, Feb. 16: First mid-term exam.
Monday, Feb. 21: 6. Reefs of the Devonian Period
Wednesday, Feb. 23: 7. Swamp Forests of the Carboniferous Period (I)
Monday, Feb. 28: 7. Swamp Forests of the Carboniferous Period (II) & 8. Reptiles of the Triassic Period
Wednesday, Mar. 2: 9. Life of the Shallow Sea of the Jurassic Period (I)
Saturday, Mar. 5, to Sunday, Mar. 13: SPRING BREAK
Monday, Mar. 14: 9. Life of the Shallow Sea of the Jurassic Period (II)
Wednesday, Mar. 16: 10. Dinosaurs and Other Reptiles of the Cretaceous Period (I)
Monday, Mar. 21: 10. Dinosaurs and Other Reptiles of the Cretaceous Period (II)
Wednesday, Mar. 23: 11. Fossils of the Tertiary Period
Thursday, Mar. 24, to Sunday, Mar. 27: Easter
Monday, Mar. 28: Review & Preparation of second mid-term exam
Wednesday, Mar. 30: Second mid-term exam
Monday, Apr. 4: Deadline for the submission of papers and PowerPoint presentations
Monday, Apr. 4, & Wednesday, Apr. 6: 12. Outline of Human evolution.
Friday, Apr. 8: Last day to drop a class and receive a grade of "W"
Monday, Apr. 11, & Wednesday, Apr. 13: 13. The Earliest Man in Spain – the Homo from Orce. & 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (I)
Saturday, Apr. 16: Field trip to Guadalajara
Monday, Apr. 18: 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (II)
Wednesday, Apr. 20: 15. The Humans after Homo heidelbergensis in Spain.
Monday, Apr. 25, & Wednesday, Apr. 27: Presentation of papers
Research Interests:
Course name: Paleontology and Paleoanthropology of Spain - an Introduction Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Spring 2005. Course description: This course gives an introduction into the... more
Course name: Paleontology and Paleoanthropology of Spain - an Introduction

Saint Louis University, Madrid Campus, Faculty: Science and Engineering
Semester:  Spring 2005.

Course description: This course gives an introduction into the Paleontology and Paleoanthropology of Spain. Basic principles and methods of Paleontology and Paleoanthropology will be outlined. Especially presented will be the origins of life and human beings, evolution, and extinctions. The paleontological part will concentrate on some interesting Spanish case studies (reefs of the Devonian period, swamp forests of the Carboniferous period, shallow sea of the Jurassic period, dinosaurs from the Upper Jurassic and Lower Cretaceous, and mammals and insects of the Tertiary period). In the center of the paleoanthropological part will be the famous findings of Homo antecessor and Homo heidelbergensis in the caves of Atapuerca and their importance for our knowledge about Human evolution.

Course Calendar:
Monday, Jan. 17: 1. Introduction – What are Fossils?
Wednesday, Jan. 19: 2. The Geologic Time Scale
Monday, Jan. 24, & Wednesday, Jan. 26: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (I)
Thursday, Jan. 27: End of DROP/ADD period
Monday, Jan. 31, & Wednesday, Feb. 2: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (II) & 4. Biogeography and Mass Extinctions (I)
Monday, Feb. 7: 4. Biogeography and Mass Extinctions (II)
Wednesday, Feb. 9: 5. From the Origins of Life to the Silurian
Monday, Feb. 14: Review & Preparation of first mid-term exam
Monday, Feb. 14: Deadline for the submission of the title of the paper
Wednesday, Feb. 16: First mid-term exam.
Monday, Feb. 21: 6. Reefs of the Devonian Period
Wednesday, Feb. 23: 7. Swamp Forests of the Carboniferous Period (I)
Monday, Feb. 28: 7. Swamp Forests of the Carboniferous Period (II) & 8. Reptiles of the Triassic Period
Wednesday, Mar. 2: 9. Life of the Shallow Sea of the Jurassic Period (I)
Saturday, Mar. 5, to Sunday, Mar. 13: SPRING BREAK
Monday, Mar. 14: 9. Life of the Shallow Sea of the Jurassic Period (II)
Wednesday, Mar. 16: 10. Dinosaurs and Other Reptiles of the Cretaceous Period (I)
Monday, Mar. 21: 10. Dinosaurs and Other Reptiles of the Cretaceous Period (II)
Wednesday, Mar. 23: 11. Fossils of the Tertiary Period
Thursday, Mar. 24, to Sunday, Mar. 27: Easter
Monday, Mar. 28: Review & Preparation of second mid-term exam
Wednesday, Mar. 30: Second mid-term exam
Monday, Apr. 4: Deadline for the submission of papers and PowerPoint presentations
Monday, Apr. 4, & Wednesday, Apr. 6: 12. Outline of Human evolution.
Friday, Apr. 8: Last day to drop a class and receive a grade of "W"
Monday, Apr. 11, & Wednesday, Apr. 13: 13. The Earliest Man in Spain – the Homo from Orce. & 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (I)
Saturday, Apr. 16: Field trip to Guadalajara
Monday, Apr. 18: 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (II)
Wednesday, Apr. 20: 15. The Humans after Homo heidelbergensis in Spain.
Monday, Apr. 25, & Wednesday, Apr. 27: Presentation of papers
Research Interests:
Course name: Paleontology and Paleoanthropology of Spain - an Introduction Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Spring 2005. Course description: This course gives an introduction into the... more
Course name: Paleontology and Paleoanthropology of Spain - an Introduction

Saint Louis University, Madrid Campus, Faculty: Science and Engineering
Semester:  Spring 2005.

Course description: This course gives an introduction into the Paleontology and Paleoanthropology of Spain. Basic principles and methods of Paleontology and Paleoanthropology will be outlined. Especially presented will be the origins of life and human beings, evolution, and extinctions. The paleontological part will concentrate on some interesting Spanish case studies (reefs of the Devonian period, swamp forests of the Carboniferous period, shallow sea of the Jurassic period, dinosaurs from the Upper Jurassic and Lower Cretaceous, and mammals and insects of the Tertiary period). In the center of the paleoanthropological part will be the famous findings of Homo antecessor and Homo heidelbergensis in the caves of Atapuerca and their importance for our knowledge about Human evolution.

Course Calendar:
Monday, Jan. 17: 1. Introduction – What are Fossils?
Wednesday, Jan. 19: 2. The Geologic Time Scale
Monday, Jan. 24, & Wednesday, Jan. 26: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (I)
Thursday, Jan. 27: End of DROP/ADD period
Monday, Jan. 31, & Wednesday, Feb. 2: 3. Evolution and Taxonomy – Biology and Paleontology in Dialogue (II) & 4. Biogeography and Mass Extinctions (I)
Monday, Feb. 7: 4. Biogeography and Mass Extinctions (II)
Wednesday, Feb. 9: 5. From the Origins of Life to the Silurian
Monday, Feb. 14: Review & Preparation of first mid-term exam
Monday, Feb. 14: Deadline for the submission of the title of the paper
Wednesday, Feb. 16: First mid-term exam.
Monday, Feb. 21: 6. Reefs of the Devonian Period
Wednesday, Feb. 23: 7. Swamp Forests of the Carboniferous Period (I)
Monday, Feb. 28: 7. Swamp Forests of the Carboniferous Period (II) & 8. Reptiles of the Triassic Period
Wednesday, Mar. 2: 9. Life of the Shallow Sea of the Jurassic Period (I)
Saturday, Mar. 5, to Sunday, Mar. 13: SPRING BREAK
Monday, Mar. 14: 9. Life of the Shallow Sea of the Jurassic Period (II)
Wednesday, Mar. 16: 10. Dinosaurs and Other Reptiles of the Cretaceous Period (I)
Monday, Mar. 21: 10. Dinosaurs and Other Reptiles of the Cretaceous Period (II)
Wednesday, Mar. 23: 11. Fossils of the Tertiary Period
Thursday, Mar. 24, to Sunday, Mar. 27: Easter
Monday, Mar. 28: Review & Preparation of second mid-term exam
Wednesday, Mar. 30: Second mid-term exam
Monday, Apr. 4: Deadline for the submission of papers and PowerPoint presentations
Monday, Apr. 4, & Wednesday, Apr. 6: 12. Outline of Human evolution.
Friday, Apr. 8: Last day to drop a class and receive a grade of "W"
Monday, Apr. 11, & Wednesday, Apr. 13: 13. The Earliest Man in Spain – the Homo from Orce. & 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (I)
Saturday, Apr. 16: Field trip to Guadalajara
Monday, Apr. 18: 14. Homo antecessor and Homo heidelbergensis from the Caves of Atapuerca (Prov. Burgos) (II)
Wednesday, Apr. 20: 15. The Humans after Homo heidelbergensis in Spain.
Monday, Apr. 25, & Wednesday, Apr. 27: Presentation of papers
Research Interests:
CLASE-CONFERENCIA SOBRE LA EVOLUCIÓN Materia: Filosofía de la Naturaleza Ponente: Dr. Andreas May Lugar: Instituto Teológico Verbum Dei San Pablo Apóstol Fecha, 26 de abril de 2008, 16h-19:30h Os invitamos a tres Conferencias que nos... more
CLASE-CONFERENCIA SOBRE LA EVOLUCIÓN

Materia: Filosofía de la Naturaleza
Ponente: Dr. Andreas May
Lugar: Instituto Teológico Verbum Dei San Pablo Apóstol
Fecha, 26 de abril de 2008, 16h-19:30h


Os invitamos a tres Conferencias que nos ofrecerá, dentro de la asignatura de Filosofía de la Naturaleza, el Dr. Andreas May, el próximo 26 de abril, sábado, a partir de las 4:00 p.m, en las instalaciones del ITVD.

La temática es muy interesante, como podéis ver y será desarrollada por medio de Powers Points, exposición y diálogo. Se puede asistir a todos o a algunos de los temas, y para ello os enviamos la planificación de las sesiones con su horario.

4:00 - 5:05  Tema I: “La teoría de la evolución y sus fundamentos”
                        5:05 - 5:20    Diálogo
                        5:20 - 5:30    Descanso
5:30 - 6:05  Tema II: “La historia de la vida desde el origen de la sistema solar hasta la colonización de la tierra firme”.
                        6:05 - 6:20    Diálogo
                        6:20 - 6:30  Descanso
6:30 - 7:05  Tema III: “La evolución de los seres humanos”
                        7:05 - 7:30  Diálogo
                        8:00: Eucaristía
NB: La dirección es: Centro Misionero Verbum Dei
Research Interests:
CLASE-CONFERENCIA SOBRE LA EVOLUCIÓN Materia: Filosofía de la Naturaleza Ponente: Dr. Andreas May Lugar: Instituto Teológico Verbum Dei San Pablo Apóstol Fecha, 26 de abril de 2008, 16h-19:30h Os invitamos a tres Conferencias que nos... more
CLASE-CONFERENCIA SOBRE LA EVOLUCIÓN

Materia: Filosofía de la Naturaleza
Ponente: Dr. Andreas May
Lugar: Instituto Teológico Verbum Dei San Pablo Apóstol
Fecha, 26 de abril de 2008, 16h-19:30h


Os invitamos a tres Conferencias que nos ofrecerá, dentro de la asignatura de Filosofía de la Naturaleza, el Dr. Andreas May, el próximo 26 de abril, sábado, a partir de las 4:00 p.m, en las instalaciones del ITVD.

La temática es muy interesante, como podéis ver y será desarrollada por medio de Powers Points, exposición y diálogo. Se puede asistir a todos o a algunos de los temas, y para ello os enviamos la planificación de las sesiones con su horario.

4:00 - 5:05  Tema I: “La teoría de la evolución y sus fundamentos”
                        5:05 - 5:20    Diálogo
                        5:20 - 5:30    Descanso
5:30 - 6:05  Tema II: “La historia de la vida desde el origen de la sistema solar hasta la colonización de la tierra firme”.
                        6:05 - 6:20    Diálogo
                        6:20 - 6:30  Descanso
6:30 - 7:05  Tema III: “La evolución de los seres humanos”
                        7:05 - 7:30  Diálogo
                        8:00: Eucaristía
NB: La dirección es: Centro Misionero Verbum Dei
Research Interests:
CLASE-CONFERENCIA SOBRE LA EVOLUCIÓN Materia: Filosofía de la Naturaleza Ponente: Dr. Andreas May Lugar: Instituto Teológico Verbum Dei San Pablo Apóstol Fecha, 26 de abril de 2008, 16h-19:30h Os invitamos a tres Conferencias que nos... more
CLASE-CONFERENCIA SOBRE LA EVOLUCIÓN

Materia: Filosofía de la Naturaleza
Ponente: Dr. Andreas May
Lugar: Instituto Teológico Verbum Dei San Pablo Apóstol
Fecha, 26 de abril de 2008, 16h-19:30h


Os invitamos a tres Conferencias que nos ofrecerá, dentro de la asignatura de Filosofía de la Naturaleza, el Dr. Andreas May, el próximo 26 de abril, sábado, a partir de las 4:00 p.m, en las instalaciones del ITVD.

La temática es muy interesante, como podéis ver y será desarrollada por medio de Powers Points, exposición y diálogo. Se puede asistir a todos o a algunos de los temas, y para ello os enviamos la planificación de las sesiones con su horario.

4:00 - 5:05  Tema I: “La teoría de la evolución y sus fundamentos”
                        5:05 - 5:20    Diálogo
                        5:20 - 5:30    Descanso
5:30 - 6:05  Tema II: “La historia de la vida desde el origen de la sistema solar hasta la colonización de la tierra firme”.
                        6:05 - 6:20    Diálogo
                        6:20 - 6:30  Descanso
6:30 - 7:05  Tema III: “La evolución de los seres humanos”
                        7:05 - 7:30  Diálogo
                        8:00: Eucaristía
NB: La dirección es: Centro Misionero Verbum Dei
Research Interests:
XXV Jornadas de la Sociedad Española de Paleontología, Ronda 2009

Corales y estromatopóridos de Devónico Inferior de los Alpes Cárnicos

Índice
Introducción
Corales tabulados
Corales rugosos
Estromatopóridos
Hidrozoos
Conclusiones
Research Interests:
XX Jornadas de la Sociedad Española de Paleontología, Alcalá de Henares, 2004 Estromatoporoideos del Devónico Inferior de la cuenca de Quintana de la Serena (prov. Badajoz) y Peñarroya-Pueblonuevo (prov. Córdoba) (Sur de España) Índice... more
XX Jornadas de la Sociedad Española de Paleontología, Alcalá de Henares, 2004

Estromatoporoideos del Devónico Inferior de la cuenca de Quintana de la Serena (prov. Badajoz) y Peñarroya-Pueblonuevo (prov. Córdoba) (Sur de España)

Índice
Introducción
Localidades investigadas en Sierra Morena
Correlación estratigráfica con las especies de estromatoporoideos
Otros resultados de las investigaciones
Research Interests:
TITLE: Devonian reefs in Spain - New results on 400 million years old rocks CONTENTS: Devonian Reefs General Characteristics of the Devonian Devonian Reefs of Spain Lower Devonian Stromatoporoids of the Sierra Morena (Southern Spain)... more
TITLE: Devonian reefs in Spain - New results on 400 million years old rocks

CONTENTS:
Devonian Reefs
General Characteristics of the Devonian
Devonian Reefs of Spain
Lower Devonian Stromatoporoids of the Sierra Morena (Southern Spain)

NOTE: Presented in October 2006 at Saint Louis Unversity - Madrid Campus, Madrid (Spain)
Research Interests:
TITLE: Corals under the Sun - Biogeography of Devonian Reefs in Spain and Africa CONTENTS: Introduction to the Devonian General Characteristics of the Devonian Devonian Reefs Analyzing Biogeography – Examples from Spain and Western... more
TITLE: Corals under the Sun - Biogeography of Devonian Reefs in Spain and Africa

CONTENTS:
Introduction to the Devonian
General Characteristics of the Devonian
Devonian Reefs
Analyzing Biogeography – Examples from Spain and Western Sahara

NOTE: Presented in April 2007 at Saint Louis Unversity - Madrid Campus, Madrid (Spain)
Research Interests:
TITLE: Bohemian tales - a 400 million years old reef in the heart of Europe

CONTENTS:
Devonian Reefs
The Lower Devonian reef of Koneprusy (Bohemia) and its stromatoporoids

NOTE: Prepared and presented in October 2007
Research Interests:
11th International Symposium on Fossil Cnidaria and Porifera, 22-26 August 2011, Liège, Belgium Pragian (Lower Devonian) stromatoporoids and rugose corals from Zújar (Sierra Morena, Southern Spain) and their palaeogeographic affinities... more
11th International Symposium on Fossil Cnidaria and Porifera, 22-26 August 2011, Liège, Belgium

Pragian (Lower Devonian) stromatoporoids and rugose corals from Zújar (Sierra Morena, Southern Spain) and their palaeogeographic affinities

Contents
Introduction
Location Zújar in the Sierra Morena
Stromatoporoids and Corals Found
Results - Palaeogeographic Affinities
Research Interests:
Course name: Introduction to Environmental Science Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Fall-2004. Course description: A review of the elementary biology, chemistry, geology, and meteorology... more
Course name: Introduction to Environmental Science

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: Fall-2004.
Course description: A review of the elementary biology, chemistry, geology, and meteorology behind natural and man-made phenomena that change (or destroy) ecosystems. And what, if anything, can be done to stop it. The crude costs and benefits to society of using or protecting natural resources. 

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Achieve a foundation on the basic principles underlying the patterns and dynamics of the earth’s environmental system.
• Be acquainted with main current environmental  problems and some of its solutions.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Recommended textbook:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CUNNINGHAM, W.P., & SAIGO, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New  York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
PRESS, Frank, & SIEVER, Raymond (2001): Understanding Earth. 3rd edition. – New York (W. H. Freeman and Company).
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.

Course Calendar:
Thursday, Sept., 2nd: 1. Introduction (I) (suggested reading: Cunningham & Saigo (1992), Chapter 1-2; or: Cunningham & Cunningham & Saigo (2002), Chapter 1-2)
Tuesday, Sept., 7th: 1. Introduction (II); 2. Matter and energy in ecosystems (I) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Thursday, Sept., 9th: End of DROP/ADD period
Thursday, Sept., 9th: 2. Matter and energy in ecosystems (II) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Tuesday, Sept., 14th: 3. Biological communities (suggested reading: Cunningham & Saigo (1992), Chapter 4; or: Cunningham & Cunningham & Saigo (2002), Chapter 4)
Thursday, Sept., 16th: 4. Biomes - Kinds of ecosystems (suggested reading: Cunningham & Saigo (1992), Chapter 5; or: Cunningham & Cunningham & Saigo (2002), Chapter 5)
Tuesday, Sept., 21st: 5. Populations (suggested reading: Cunningham & Saigo (1992), Chapter 6-7; or: Cunningham & Cunningham & Saigo (2002), Chapter 6-7)
Thursday, Sept., 23rd: 6. Environmental and resource economics (suggested reading: Cunningham & Saigo (1992), Chapter 8; or: Cunningham & Cunningham & Saigo (2002), Chapter 8)
Tuesday, Sept., 28th: 7. Earth and its crustal resources (suggested reading: Cunningham & Saigo (1992), Chapter 9; or: Cunningham & Cunningham & Saigo (2002), Chapter 16)
Thursday, Sept., 30th: 8. Human nutrition, hunger, crops, and pest control (suggested reading: Cunningham & Saigo (1992), Chapter 10-11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 5th: Deadline for the submission of the exercise.
Tuesday, Oct., 5th: Review & Preparation of first mid-term exam
Thursday, Oct., 7th: First mid-term exam
Tuesday, Oct., 12th: Holiday
Thursday, Oct., 14th: Deadline for the submission of the title of the paper
Thursday, Oct., 14th: 9. Soil, soil erosion and desertification (suggested reading: Cunningham & Saigo (1992), Chapter 11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 19th: 10. Biological resources (suggested reading: Cunningham & Saigo (1992), Chapter 12-15; or: Cunningham & Cunningham & Saigo (2002), Chapter 13-15)
Thursday, Oct., 21st: 11. Energy resources and use (suggested reading: Cunningham & Saigo (1992), Chapter 18-20; or: Cunningham & Cunningham & Saigo (2002), Chapter 21)
Tuesday, Oct., 26th: 12. Environmental health and toxicology (suggested reading: Cunningham & Saigo (1992), Chapter 21; or: Cunningham & Cunningham & Saigo (2002), Chapter 9)
Thursday, Oct., 28th: 13. Solid, toxic, and hazardous waste (suggested reading: Cunningham & Saigo (1992), Chapter 24; or: Cunningham & Cunningham & Saigo (2002), Chapter 23)
Tuesday, Nov., 2nd: 14. Water resources, use, and management (suggested reading: Cunningham & Saigo (1992), Chapter 16; or: Cunningham & Cunningham & Saigo (2002), Chapter 19)
Thursday, Nov., 4th: 15. Water pollution (suggested reading: Cunningham & Saigo (1992), Chapter 22; or: Cunningham & Cunningham & Saigo (2002), Chapter 20)
Tuesday, Nov., 9th: Holiday
Thursday, Nov., 11th: Last day to drop a class and receive a grade of "W".
Thursday, Nov., 11th: Deadline for the submission of papers and PowerPoint-Presentations
Thursday, Nov., 11th: Review & Preparation of second mid-term exam
Tuesday, Nov., 16th: Second mid-term exam
Thursday, Nov., 18th: 16. Air resources & Global climatic change (I) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Tuesday, Nov., 23rd: 16. Global climatic change (II) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Thursday, Nov., 25th: 17. Air pollution (suggested reading: Cunningham & Saigo (1992), Chapter 23; or: Cunningham & Cunningham & Saigo (2002), Chapter 18)
Tuesday, Nov., 30th: Presentation of papers
Thursday, Dec., 2nd: Presentation of papers
Tuesday, Dec., 7th: Synoptical view and discussion (suggested reading: Cunningham & Saigo (1992), Chapter 27; or: Cunningham & Cunningham & Saigo (2002), Chapter 25)
Research Interests:
Course name: Introduction to Environmental Science Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Fall-2004. Course description: A review of the elementary biology, chemistry, geology, and... more
Course name: Introduction to Environmental Science

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: Fall-2004.
Course description: A review of the elementary biology, chemistry, geology, and meteorology behind natural and man-made phenomena that change (or destroy) ecosystems. And what, if anything, can be done to stop it. The crude costs and benefits to society of using or protecting natural resources. 

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Achieve a foundation on the basic principles underlying the patterns and dynamics of the earth’s environmental system.
• Be acquainted with main current environmental  problems and some of its solutions.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Recommended textbook:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CUNNINGHAM, W.P., & SAIGO, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New  York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
PRESS, Frank, & SIEVER, Raymond (2001): Understanding Earth. 3rd edition. – New York (W. H. Freeman and Company).
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.

Course Calendar:
Thursday, Sept., 2nd: 1. Introduction (I) (suggested reading: Cunningham & Saigo (1992), Chapter 1-2; or: Cunningham & Cunningham & Saigo (2002), Chapter 1-2)
Tuesday, Sept., 7th: 1. Introduction (II); 2. Matter and energy in ecosystems (I) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Thursday, Sept., 9th: End of DROP/ADD period
Thursday, Sept., 9th: 2. Matter and energy in ecosystems (II) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Tuesday, Sept., 14th: 3. Biological communities (suggested reading: Cunningham & Saigo (1992), Chapter 4; or: Cunningham & Cunningham & Saigo (2002), Chapter 4)
Thursday, Sept., 16th: 4. Biomes - Kinds of ecosystems (suggested reading: Cunningham & Saigo (1992), Chapter 5; or: Cunningham & Cunningham & Saigo (2002), Chapter 5)
Tuesday, Sept., 21st: 5. Populations (suggested reading: Cunningham & Saigo (1992), Chapter 6-7; or: Cunningham & Cunningham & Saigo (2002), Chapter 6-7)
Thursday, Sept., 23rd: 6. Environmental and resource economics (suggested reading: Cunningham & Saigo (1992), Chapter 8; or: Cunningham & Cunningham & Saigo (2002), Chapter 8)
Tuesday, Sept., 28th: 7. Earth and its crustal resources (suggested reading: Cunningham & Saigo (1992), Chapter 9; or: Cunningham & Cunningham & Saigo (2002), Chapter 16)
Thursday, Sept., 30th: 8. Human nutrition, hunger, crops, and pest control (suggested reading: Cunningham & Saigo (1992), Chapter 10-11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 5th: Deadline for the submission of the exercise.
Tuesday, Oct., 5th: Review & Preparation of first mid-term exam
Thursday, Oct., 7th: First mid-term exam
Tuesday, Oct., 12th: Holiday
Thursday, Oct., 14th: Deadline for the submission of the title of the paper
Thursday, Oct., 14th: 9. Soil, soil erosion and desertification (suggested reading: Cunningham & Saigo (1992), Chapter 11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 19th: 10. Biological resources (suggested reading: Cunningham & Saigo (1992), Chapter 12-15; or: Cunningham & Cunningham & Saigo (2002), Chapter 13-15)
Thursday, Oct., 21st: 11. Energy resources and use (suggested reading: Cunningham & Saigo (1992), Chapter 18-20; or: Cunningham & Cunningham & Saigo (2002), Chapter 21)
Tuesday, Oct., 26th: 12. Environmental health and toxicology (suggested reading: Cunningham & Saigo (1992), Chapter 21; or: Cunningham & Cunningham & Saigo (2002), Chapter 9)
Thursday, Oct., 28th: 13. Solid, toxic, and hazardous waste (suggested reading: Cunningham & Saigo (1992), Chapter 24; or: Cunningham & Cunningham & Saigo (2002), Chapter 23)
Tuesday, Nov., 2nd: 14. Water resources, use, and management (suggested reading: Cunningham & Saigo (1992), Chapter 16; or: Cunningham & Cunningham & Saigo (2002), Chapter 19)
Thursday, Nov., 4th: 15. Water pollution (suggested reading: Cunningham & Saigo (1992), Chapter 22; or: Cunningham & Cunningham & Saigo (2002), Chapter 20)
Tuesday, Nov., 9th: Holiday
Thursday, Nov., 11th: Last day to drop a class and receive a grade of "W".
Thursday, Nov., 11th: Deadline for the submission of papers and PowerPoint-Presentations
Thursday, Nov., 11th: Review & Preparation of second mid-term exam
Tuesday, Nov., 16th: Second mid-term exam
Thursday, Nov., 18th: 16. Air resources & Global climatic change (I) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Tuesday, Nov., 23rd: 16. Global climatic change (II) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Thursday, Nov., 25th: 17. Air pollution (suggested reading: Cunningham & Saigo (1992), Chapter 23; or: Cunningham & Cunningham & Saigo (2002), Chapter 18)
Tuesday, Nov., 30th: Presentation of papers
Research Interests:
Course name: Introduction to Environmental Science Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Fall-2004. Course description: A review of the elementary biology, chemistry, geology, and... more
Course name: Introduction to Environmental Science

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: Fall-2004.
Course description: A review of the elementary biology, chemistry, geology, and meteorology behind natural and man-made phenomena that change (or destroy) ecosystems. And what, if anything, can be done to stop it. The crude costs and benefits to society of using or protecting natural resources. 

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Achieve a foundation on the basic principles underlying the patterns and dynamics of the earth’s environmental system.
• Be acquainted with main current environmental  problems and some of its solutions.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Recommended textbook:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CUNNINGHAM, W.P., & SAIGO, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New  York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
PRESS, Frank, & SIEVER, Raymond (2001): Understanding Earth. 3rd edition. – New York (W. H. Freeman and Company).
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.

Course Calendar:
Thursday, Sept., 2nd: 1. Introduction (I) (suggested reading: Cunningham & Saigo (1992), Chapter 1-2; or: Cunningham & Cunningham & Saigo (2002), Chapter 1-2)
Tuesday, Sept., 7th: 1. Introduction (II); 2. Matter and energy in ecosystems (I) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Thursday, Sept., 9th: End of DROP/ADD period
Thursday, Sept., 9th: 2. Matter and energy in ecosystems (II) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Tuesday, Sept., 14th: 3. Biological communities (suggested reading: Cunningham & Saigo (1992), Chapter 4; or: Cunningham & Cunningham & Saigo (2002), Chapter 4)
Thursday, Sept., 16th: 4. Biomes - Kinds of ecosystems (suggested reading: Cunningham & Saigo (1992), Chapter 5; or: Cunningham & Cunningham & Saigo (2002), Chapter 5)
Tuesday, Sept., 21st: 5. Populations (suggested reading: Cunningham & Saigo (1992), Chapter 6-7; or: Cunningham & Cunningham & Saigo (2002), Chapter 6-7)
Thursday, Sept., 23rd: 6. Environmental and resource economics (suggested reading: Cunningham & Saigo (1992), Chapter 8; or: Cunningham & Cunningham & Saigo (2002), Chapter 8)
Tuesday, Sept., 28th: 7. Earth and its crustal resources (suggested reading: Cunningham & Saigo (1992), Chapter 9; or: Cunningham & Cunningham & Saigo (2002), Chapter 16)
Thursday, Sept., 30th: 8. Human nutrition, hunger, crops, and pest control (suggested reading: Cunningham & Saigo (1992), Chapter 10-11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 5th: Deadline for the submission of the exercise.
Tuesday, Oct., 5th: Review & Preparation of first mid-term exam
Thursday, Oct., 7th: First mid-term exam
Tuesday, Oct., 12th: Holiday
Thursday, Oct., 14th: Deadline for the submission of the title of the paper
Thursday, Oct., 14th: 9. Soil, soil erosion and desertification (suggested reading: Cunningham & Saigo (1992), Chapter 11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 19th: 10. Biological resources (suggested reading: Cunningham & Saigo (1992), Chapter 12-15; or: Cunningham & Cunningham & Saigo (2002), Chapter 13-15)
Thursday, Oct., 21st: 11. Energy resources and use (suggested reading: Cunningham & Saigo (1992), Chapter 18-20; or: Cunningham & Cunningham & Saigo (2002), Chapter 21)
Tuesday, Oct., 26th: 12. Environmental health and toxicology (suggested reading: Cunningham & Saigo (1992), Chapter 21; or: Cunningham & Cunningham & Saigo (2002), Chapter 9)
Thursday, Oct., 28th: 13. Solid, toxic, and hazardous waste (suggested reading: Cunningham & Saigo (1992), Chapter 24; or: Cunningham & Cunningham & Saigo (2002), Chapter 23)
Tuesday, Nov., 2nd: 14. Water resources, use, and management (suggested reading: Cunningham & Saigo (1992), Chapter 16; or: Cunningham & Cunningham & Saigo (2002), Chapter 19)
Thursday, Nov., 4th: 15. Water pollution (suggested reading: Cunningham & Saigo (1992), Chapter 22; or: Cunningham & Cunningham & Saigo (2002), Chapter 20)
Tuesday, Nov., 9th: Holiday
Thursday, Nov., 11th: Last day to drop a class and receive a grade of "W".
Thursday, Nov., 11th: Deadline for the submission of papers and PowerPoint-Presentations
Thursday, Nov., 11th: Review & Preparation of second mid-term exam
Tuesday, Nov., 16th: Second mid-term exam
Thursday, Nov., 18th: 16. Air resources & Global climatic change (I) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Tuesday, Nov., 23rd: 16. Global climatic change (II) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Thursday, Nov., 25th: 17. Air pollution (suggested reading: Cunningham & Saigo (1992), Chapter 23; or: Cunningham & Cunningham & Saigo (2002), Chapter 18)
Tuesday, Nov., 30th: Presentation of papers
Research Interests:
Course name: Introduction to Environmental Science Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Fall-2004. Course description: A review of the elementary biology, chemistry, geology, and meteorology... more
Course name: Introduction to Environmental Science

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: Fall-2004.
Course description: A review of the elementary biology, chemistry, geology, and meteorology behind natural and man-made phenomena that change (or destroy) ecosystems. And what, if anything, can be done to stop it. The crude costs and benefits to society of using or protecting natural resources. 

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Achieve a foundation on the basic principles underlying the patterns and dynamics of the earth’s environmental system.
• Be acquainted with main current environmental  problems and some of its solutions.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Recommended textbook:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CUNNINGHAM, W.P., & SAIGO, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New  York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
PRESS, Frank, & SIEVER, Raymond (2001): Understanding Earth. 3rd edition. – New York (W. H. Freeman and Company).
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.

Course Calendar:
Thursday, Sept., 2nd: 1. Introduction (I) (suggested reading: Cunningham & Saigo (1992), Chapter 1-2; or: Cunningham & Cunningham & Saigo (2002), Chapter 1-2)
Tuesday, Sept., 7th: 1. Introduction (II); 2. Matter and energy in ecosystems (I) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Thursday, Sept., 9th: End of DROP/ADD period
Thursday, Sept., 9th: 2. Matter and energy in ecosystems (II) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Tuesday, Sept., 14th: 3. Biological communities (suggested reading: Cunningham & Saigo (1992), Chapter 4; or: Cunningham & Cunningham & Saigo (2002), Chapter 4)
Thursday, Sept., 16th: 4. Biomes - Kinds of ecosystems (suggested reading: Cunningham & Saigo (1992), Chapter 5; or: Cunningham & Cunningham & Saigo (2002), Chapter 5)
Tuesday, Sept., 21st: 5. Populations (suggested reading: Cunningham & Saigo (1992), Chapter 6-7; or: Cunningham & Cunningham & Saigo (2002), Chapter 6-7)
Thursday, Sept., 23rd: 6. Environmental and resource economics (suggested reading: Cunningham & Saigo (1992), Chapter 8; or: Cunningham & Cunningham & Saigo (2002), Chapter 8)
Tuesday, Sept., 28th: 7. Earth and its crustal resources (suggested reading: Cunningham & Saigo (1992), Chapter 9; or: Cunningham & Cunningham & Saigo (2002), Chapter 16)
Thursday, Sept., 30th: 8. Human nutrition, hunger, crops, and pest control (suggested reading: Cunningham & Saigo (1992), Chapter 10-11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 5th: Deadline for the submission of the exercise.
Tuesday, Oct., 5th: Review & Preparation of first mid-term exam
Thursday, Oct., 7th: First mid-term exam
Tuesday, Oct., 12th: Holiday
Thursday, Oct., 14th: Deadline for the submission of the title of the paper
Thursday, Oct., 14th: 9. Soil, soil erosion and desertification (suggested reading: Cunningham & Saigo (1992), Chapter 11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 19th: 10. Biological resources (suggested reading: Cunningham & Saigo (1992), Chapter 12-15; or: Cunningham & Cunningham & Saigo (2002), Chapter 13-15)
Thursday, Oct., 21st: 11. Energy resources and use (suggested reading: Cunningham & Saigo (1992), Chapter 18-20; or: Cunningham & Cunningham & Saigo (2002), Chapter 21)
Tuesday, Oct., 26th: 12. Environmental health and toxicology (suggested reading: Cunningham & Saigo (1992), Chapter 21; or: Cunningham & Cunningham & Saigo (2002), Chapter 9)
Thursday, Oct., 28th: 13. Solid, toxic, and hazardous waste (suggested reading: Cunningham & Saigo (1992), Chapter 24; or: Cunningham & Cunningham & Saigo (2002), Chapter 23)
Tuesday, Nov., 2nd: 14. Water resources, use, and management (suggested reading: Cunningham & Saigo (1992), Chapter 16; or: Cunningham & Cunningham & Saigo (2002), Chapter 19)
Thursday, Nov., 4th: 15. Water pollution (suggested reading: Cunningham & Saigo (1992), Chapter 22; or: Cunningham & Cunningham & Saigo (2002), Chapter 20)
Tuesday, Nov., 9th: Holiday
Thursday, Nov., 11th: Last day to drop a class and receive a grade of "W".
Thursday, Nov., 11th: Deadline for the submission of papers and PowerPoint-Presentations
Thursday, Nov., 11th: Review & Preparation of second mid-term exam
Tuesday, Nov., 16th: Second mid-term exam
Thursday, Nov., 18th: 16. Air resources & Global climatic change (I) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Tuesday, Nov., 23rd: 16. Global climatic change (II) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Thursday, Nov., 25th: 17. Air pollution (suggested reading: Cunningham & Saigo (1992), Chapter 23; or: Cunningham & Cunningham & Saigo (2002), Chapter 18)
Tuesday, Nov., 30th: Presentation of papers
Research Interests:
Course name: Introduction to Environmental Science Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Fall-2004. Course description: A review of the elementary biology, chemistry, geology, and meteorology... more
Course name: Introduction to Environmental Science

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: Fall-2004.
Course description: A review of the elementary biology, chemistry, geology, and meteorology behind natural and man-made phenomena that change (or destroy) ecosystems. And what, if anything, can be done to stop it. The crude costs and benefits to society of using or protecting natural resources. 

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Achieve a foundation on the basic principles underlying the patterns and dynamics of the earth’s environmental system.
• Be acquainted with main current environmental  problems and some of its solutions.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Recommended textbook:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CUNNINGHAM, W.P., & SAIGO, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New  York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
PRESS, Frank, & SIEVER, Raymond (2001): Understanding Earth. 3rd edition. – New York (W. H. Freeman and Company).
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.

Course Calendar:
Thursday, Sept., 2nd: 1. Introduction (I) (suggested reading: Cunningham & Saigo (1992), Chapter 1-2; or: Cunningham & Cunningham & Saigo (2002), Chapter 1-2)
Tuesday, Sept., 7th: 1. Introduction (II); 2. Matter and energy in ecosystems (I) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Thursday, Sept., 9th: End of DROP/ADD period
Thursday, Sept., 9th: 2. Matter and energy in ecosystems (II) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Tuesday, Sept., 14th: 3. Biological communities (suggested reading: Cunningham & Saigo (1992), Chapter 4; or: Cunningham & Cunningham & Saigo (2002), Chapter 4)
Thursday, Sept., 16th: 4. Biomes - Kinds of ecosystems (suggested reading: Cunningham & Saigo (1992), Chapter 5; or: Cunningham & Cunningham & Saigo (2002), Chapter 5)
Tuesday, Sept., 21st: 5. Populations (suggested reading: Cunningham & Saigo (1992), Chapter 6-7; or: Cunningham & Cunningham & Saigo (2002), Chapter 6-7)
Thursday, Sept., 23rd: 6. Environmental and resource economics (suggested reading: Cunningham & Saigo (1992), Chapter 8; or: Cunningham & Cunningham & Saigo (2002), Chapter 8)
Tuesday, Sept., 28th: 7. Earth and its crustal resources (suggested reading: Cunningham & Saigo (1992), Chapter 9; or: Cunningham & Cunningham & Saigo (2002), Chapter 16)
Thursday, Sept., 30th: 8. Human nutrition, hunger, crops, and pest control (suggested reading: Cunningham & Saigo (1992), Chapter 10-11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 5th: Deadline for the submission of the exercise.
Tuesday, Oct., 5th: Review & Preparation of first mid-term exam
Thursday, Oct., 7th: First mid-term exam
Tuesday, Oct., 12th: Holiday
Thursday, Oct., 14th: Deadline for the submission of the title of the paper
Thursday, Oct., 14th: 9. Soil, soil erosion and desertification (suggested reading: Cunningham & Saigo (1992), Chapter 11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 19th: 10. Biological resources (suggested reading: Cunningham & Saigo (1992), Chapter 12-15; or: Cunningham & Cunningham & Saigo (2002), Chapter 13-15)
Thursday, Oct., 21st: 11. Energy resources and use (suggested reading: Cunningham & Saigo (1992), Chapter 18-20; or: Cunningham & Cunningham & Saigo (2002), Chapter 21)
Tuesday, Oct., 26th: 12. Environmental health and toxicology (suggested reading: Cunningham & Saigo (1992), Chapter 21; or: Cunningham & Cunningham & Saigo (2002), Chapter 9)
Thursday, Oct., 28th: 13. Solid, toxic, and hazardous waste (suggested reading: Cunningham & Saigo (1992), Chapter 24; or: Cunningham & Cunningham & Saigo (2002), Chapter 23)
Tuesday, Nov., 2nd: 14. Water resources, use, and management (suggested reading: Cunningham & Saigo (1992), Chapter 16; or: Cunningham & Cunningham & Saigo (2002), Chapter 19)
Thursday, Nov., 4th: 15. Water pollution (suggested reading: Cunningham & Saigo (1992), Chapter 22; or: Cunningham & Cunningham & Saigo (2002), Chapter 20)
Tuesday, Nov., 9th: Holiday
Thursday, Nov., 11th: Last day to drop a class and receive a grade of "W".
Thursday, Nov., 11th: Deadline for the submission of papers and PowerPoint-Presentations
Thursday, Nov., 11th: Review & Preparation of second mid-term exam
Tuesday, Nov., 16th: Second mid-term exam
Thursday, Nov., 18th: 16. Air resources & Global climatic change (I) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Tuesday, Nov., 23rd: 16. Global climatic change (II) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Thursday, Nov., 25th: 17. Air pollution (suggested reading: Cunningham & Saigo (1992), Chapter 23; or: Cunningham & Cunningham & Saigo (2002), Chapter 18)
Tuesday, Nov., 30th: Presentation of papers
Research Interests:
Course name: Introduction to Environmental Science Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Fall-2004. Course description: A review of the elementary biology, chemistry, geology, and meteorology... more
Course name: Introduction to Environmental Science

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: Fall-2004.
Course description: A review of the elementary biology, chemistry, geology, and meteorology behind natural and man-made phenomena that change (or destroy) ecosystems. And what, if anything, can be done to stop it. The crude costs and benefits to society of using or protecting natural resources. 

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Achieve a foundation on the basic principles underlying the patterns and dynamics of the earth’s environmental system.
• Be acquainted with main current environmental  problems and some of its solutions.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Recommended textbook:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CUNNINGHAM, W.P., & SAIGO, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New  York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
PRESS, Frank, & SIEVER, Raymond (2001): Understanding Earth. 3rd edition. – New York (W. H. Freeman and Company).
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.

Course Calendar:
Thursday, Sept., 2nd: 1. Introduction (I) (suggested reading: Cunningham & Saigo (1992), Chapter 1-2; or: Cunningham & Cunningham & Saigo (2002), Chapter 1-2)
Tuesday, Sept., 7th: 1. Introduction (II); 2. Matter and energy in ecosystems (I) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Thursday, Sept., 9th: End of DROP/ADD period
Thursday, Sept., 9th: 2. Matter and energy in ecosystems (II) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Tuesday, Sept., 14th: 3. Biological communities (suggested reading: Cunningham & Saigo (1992), Chapter 4; or: Cunningham & Cunningham & Saigo (2002), Chapter 4)
Thursday, Sept., 16th: 4. Biomes - Kinds of ecosystems (suggested reading: Cunningham & Saigo (1992), Chapter 5; or: Cunningham & Cunningham & Saigo (2002), Chapter 5)
Tuesday, Sept., 21st: 5. Populations (suggested reading: Cunningham & Saigo (1992), Chapter 6-7; or: Cunningham & Cunningham & Saigo (2002), Chapter 6-7)
Thursday, Sept., 23rd: 6. Environmental and resource economics (suggested reading: Cunningham & Saigo (1992), Chapter 8; or: Cunningham & Cunningham & Saigo (2002), Chapter 8)
Tuesday, Sept., 28th: 7. Earth and its crustal resources (suggested reading: Cunningham & Saigo (1992), Chapter 9; or: Cunningham & Cunningham & Saigo (2002), Chapter 16)
Thursday, Sept., 30th: 8. Human nutrition, hunger, crops, and pest control (suggested reading: Cunningham & Saigo (1992), Chapter 10-11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 5th: Deadline for the submission of the exercise.
Tuesday, Oct., 5th: Review & Preparation of first mid-term exam
Thursday, Oct., 7th: First mid-term exam
Tuesday, Oct., 12th: Holiday
Thursday, Oct., 14th: Deadline for the submission of the title of the paper
Thursday, Oct., 14th: 9. Soil, soil erosion and desertification (suggested reading: Cunningham & Saigo (1992), Chapter 11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 19th: 10. Biological resources (suggested reading: Cunningham & Saigo (1992), Chapter 12-15; or: Cunningham & Cunningham & Saigo (2002), Chapter 13-15)
Thursday, Oct., 21st: 11. Energy resources and use (suggested reading: Cunningham & Saigo (1992), Chapter 18-20; or: Cunningham & Cunningham & Saigo (2002), Chapter 21)
Tuesday, Oct., 26th: 12. Environmental health and toxicology (suggested reading: Cunningham & Saigo (1992), Chapter 21; or: Cunningham & Cunningham & Saigo (2002), Chapter 9)
Thursday, Oct., 28th: 13. Solid, toxic, and hazardous waste (suggested reading: Cunningham & Saigo (1992), Chapter 24; or: Cunningham & Cunningham & Saigo (2002), Chapter 23)
Tuesday, Nov., 2nd: 14. Water resources, use, and management (suggested reading: Cunningham & Saigo (1992), Chapter 16; or: Cunningham & Cunningham & Saigo (2002), Chapter 19)
Thursday, Nov., 4th: 15. Water pollution (suggested reading: Cunningham & Saigo (1992), Chapter 22; or: Cunningham & Cunningham & Saigo (2002), Chapter 20)
Tuesday, Nov., 9th: Holiday
Thursday, Nov., 11th: Last day to drop a class and receive a grade of "W".
Thursday, Nov., 11th: Deadline for the submission of papers and PowerPoint-Presentations
Thursday, Nov., 11th: Review & Preparation of second mid-term exam
Tuesday, Nov., 16th: Second mid-term exam
Thursday, Nov., 18th: 16. Air resources & Global climatic change (I) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Tuesday, Nov., 23rd: 16. Global climatic change (II) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Thursday, Nov., 25th: 17. Air pollution (suggested reading: Cunningham & Saigo (1992), Chapter 23; or: Cunningham & Cunningham & Saigo (2002), Chapter 18)
Tuesday, Nov., 30th: Presentation of papers
Research Interests:
Course name: Introduction to Environmental Science Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Fall-2004. Course description: A review of the elementary biology, chemistry, geology, and meteorology... more
Course name: Introduction to Environmental Science

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: Fall-2004.
Course description: A review of the elementary biology, chemistry, geology, and meteorology behind natural and man-made phenomena that change (or destroy) ecosystems. And what, if anything, can be done to stop it. The crude costs and benefits to society of using or protecting natural resources. 

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Achieve a foundation on the basic principles underlying the patterns and dynamics of the earth’s environmental system.
• Be acquainted with main current environmental  problems and some of its solutions.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Recommended textbook:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CUNNINGHAM, W.P., & SAIGO, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New  York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
PRESS, Frank, & SIEVER, Raymond (2001): Understanding Earth. 3rd edition. – New York (W. H. Freeman and Company).
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.

Course Calendar:
Thursday, Sept., 2nd: 1. Introduction (I) (suggested reading: Cunningham & Saigo (1992), Chapter 1-2; or: Cunningham & Cunningham & Saigo (2002), Chapter 1-2)
Tuesday, Sept., 7th: 1. Introduction (II); 2. Matter and energy in ecosystems (I) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Thursday, Sept., 9th: End of DROP/ADD period
Thursday, Sept., 9th: 2. Matter and energy in ecosystems (II) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Tuesday, Sept., 14th: 3. Biological communities (suggested reading: Cunningham & Saigo (1992), Chapter 4; or: Cunningham & Cunningham & Saigo (2002), Chapter 4)
Thursday, Sept., 16th: 4. Biomes - Kinds of ecosystems (suggested reading: Cunningham & Saigo (1992), Chapter 5; or: Cunningham & Cunningham & Saigo (2002), Chapter 5)
Tuesday, Sept., 21st: 5. Populations (suggested reading: Cunningham & Saigo (1992), Chapter 6-7; or: Cunningham & Cunningham & Saigo (2002), Chapter 6-7)
Thursday, Sept., 23rd: 6. Environmental and resource economics (suggested reading: Cunningham & Saigo (1992), Chapter 8; or: Cunningham & Cunningham & Saigo (2002), Chapter 8)
Tuesday, Sept., 28th: 7. Earth and its crustal resources (suggested reading: Cunningham & Saigo (1992), Chapter 9; or: Cunningham & Cunningham & Saigo (2002), Chapter 16)
Thursday, Sept., 30th: 8. Human nutrition, hunger, crops, and pest control (suggested reading: Cunningham & Saigo (1992), Chapter 10-11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 5th: Deadline for the submission of the exercise.
Tuesday, Oct., 5th: Review & Preparation of first mid-term exam
Thursday, Oct., 7th: First mid-term exam
Tuesday, Oct., 12th: Holiday
Thursday, Oct., 14th: Deadline for the submission of the title of the paper
Thursday, Oct., 14th: 9. Soil, soil erosion and desertification (suggested reading: Cunningham & Saigo (1992), Chapter 11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 19th: 10. Biological resources (suggested reading: Cunningham & Saigo (1992), Chapter 12-15; or: Cunningham & Cunningham & Saigo (2002), Chapter 13-15)
Thursday, Oct., 21st: 11. Energy resources and use (suggested reading: Cunningham & Saigo (1992), Chapter 18-20; or: Cunningham & Cunningham & Saigo (2002), Chapter 21)
Tuesday, Oct., 26th: 12. Environmental health and toxicology (suggested reading: Cunningham & Saigo (1992), Chapter 21; or: Cunningham & Cunningham & Saigo (2002), Chapter 9)
Thursday, Oct., 28th: 13. Solid, toxic, and hazardous waste (suggested reading: Cunningham & Saigo (1992), Chapter 24; or: Cunningham & Cunningham & Saigo (2002), Chapter 23)
Tuesday, Nov., 2nd: 14. Water resources, use, and management (suggested reading: Cunningham & Saigo (1992), Chapter 16; or: Cunningham & Cunningham & Saigo (2002), Chapter 19)
Thursday, Nov., 4th: 15. Water pollution (suggested reading: Cunningham & Saigo (1992), Chapter 22; or: Cunningham & Cunningham & Saigo (2002), Chapter 20)
Tuesday, Nov., 9th: Holiday
Thursday, Nov., 11th: Last day to drop a class and receive a grade of "W".
Thursday, Nov., 11th: Deadline for the submission of papers and PowerPoint-Presentations
Thursday, Nov., 11th: Review & Preparation of second mid-term exam
Tuesday, Nov., 16th: Second mid-term exam
Thursday, Nov., 18th: 16. Air resources & Global climatic change (I) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Tuesday, Nov., 23rd: 16. Global climatic change (II) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Thursday, Nov., 25th: 17. Air pollution (suggested reading: Cunningham & Saigo (1992), Chapter 23; or: Cunningham & Cunningham & Saigo (2002), Chapter 18)
Tuesday, Nov., 30th: Presentation of papers
Research Interests:
Course name: Introduction to Environmental Science Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Fall-2004. Course description: A review of the elementary biology, chemistry, geology, and... more
Course name: Introduction to Environmental Science

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: Fall-2004.
Course description: A review of the elementary biology, chemistry, geology, and meteorology behind natural and man-made phenomena that change (or destroy) ecosystems. And what, if anything, can be done to stop it. The crude costs and benefits to society of using or protecting natural resources. 

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Achieve a foundation on the basic principles underlying the patterns and dynamics of the earth’s environmental system.
• Be acquainted with main current environmental  problems and some of its solutions.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Recommended textbook:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CUNNINGHAM, W.P., & SAIGO, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New  York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
PRESS, Frank, & SIEVER, Raymond (2001): Understanding Earth. 3rd edition. – New York (W. H. Freeman and Company).
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.

Course Calendar:
Thursday, Sept., 2nd: 1. Introduction (I) (suggested reading: Cunningham & Saigo (1992), Chapter 1-2; or: Cunningham & Cunningham & Saigo (2002), Chapter 1-2)
Tuesday, Sept., 7th: 1. Introduction (II); 2. Matter and energy in ecosystems (I) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Thursday, Sept., 9th: End of DROP/ADD period
Thursday, Sept., 9th: 2. Matter and energy in ecosystems (II) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Tuesday, Sept., 14th: 3. Biological communities (suggested reading: Cunningham & Saigo (1992), Chapter 4; or: Cunningham & Cunningham & Saigo (2002), Chapter 4)
Thursday, Sept., 16th: 4. Biomes - Kinds of ecosystems (suggested reading: Cunningham & Saigo (1992), Chapter 5; or: Cunningham & Cunningham & Saigo (2002), Chapter 5)
Tuesday, Sept., 21st: 5. Populations (suggested reading: Cunningham & Saigo (1992), Chapter 6-7; or: Cunningham & Cunningham & Saigo (2002), Chapter 6-7)
Thursday, Sept., 23rd: 6. Environmental and resource economics (suggested reading: Cunningham & Saigo (1992), Chapter 8; or: Cunningham & Cunningham & Saigo (2002), Chapter 8)
Tuesday, Sept., 28th: 7. Earth and its crustal resources (suggested reading: Cunningham & Saigo (1992), Chapter 9; or: Cunningham & Cunningham & Saigo (2002), Chapter 16)
Thursday, Sept., 30th: 8. Human nutrition, hunger, crops, and pest control (suggested reading: Cunningham & Saigo (1992), Chapter 10-11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 5th: Deadline for the submission of the exercise.
Tuesday, Oct., 5th: Review & Preparation of first mid-term exam
Thursday, Oct., 7th: First mid-term exam
Tuesday, Oct., 12th: Holiday
Thursday, Oct., 14th: Deadline for the submission of the title of the paper
Thursday, Oct., 14th: 9. Soil, soil erosion and desertification (suggested reading: Cunningham & Saigo (1992), Chapter 11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 19th: 10. Biological resources (suggested reading: Cunningham & Saigo (1992), Chapter 12-15; or: Cunningham & Cunningham & Saigo (2002), Chapter 13-15)
Thursday, Oct., 21st: 11. Energy resources and use (suggested reading: Cunningham & Saigo (1992), Chapter 18-20; or: Cunningham & Cunningham & Saigo (2002), Chapter 21)
Tuesday, Oct., 26th: 12. Environmental health and toxicology (suggested reading: Cunningham & Saigo (1992), Chapter 21; or: Cunningham & Cunningham & Saigo (2002), Chapter 9)
Thursday, Oct., 28th: 13. Solid, toxic, and hazardous waste (suggested reading: Cunningham & Saigo (1992), Chapter 24; or: Cunningham & Cunningham & Saigo (2002), Chapter 23)
Tuesday, Nov., 2nd: 14. Water resources, use, and management (suggested reading: Cunningham & Saigo (1992), Chapter 16; or: Cunningham & Cunningham & Saigo (2002), Chapter 19)
Thursday, Nov., 4th: 15. Water pollution (suggested reading: Cunningham & Saigo (1992), Chapter 22; or: Cunningham & Cunningham & Saigo (2002), Chapter 20)
Tuesday, Nov., 9th: Holiday
Thursday, Nov., 11th: Last day to drop a class and receive a grade of "W".
Thursday, Nov., 11th: Deadline for the submission of papers and PowerPoint-Presentations
Thursday, Nov., 11th: Review & Preparation of second mid-term exam
Tuesday, Nov., 16th: Second mid-term exam
Thursday, Nov., 18th: 16. Air resources & Global climatic change (I) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Tuesday, Nov., 23rd: 16. Global climatic change (II) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Thursday, Nov., 25th: 17. Air pollution (suggested reading: Cunningham & Saigo (1992), Chapter 23; or: Cunningham & Cunningham & Saigo (2002), Chapter 18)
Tuesday, Nov., 30th: Presentation of papers
Research Interests:
Course name: Introduction to Environmental Science Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: Fall-2004. Course description: A review of the elementary biology, chemistry, geology, and... more
Course name: Introduction to Environmental Science

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: Fall-2004.
Course description: A review of the elementary biology, chemistry, geology, and meteorology behind natural and man-made phenomena that change (or destroy) ecosystems. And what, if anything, can be done to stop it. The crude costs and benefits to society of using or protecting natural resources. 

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Achieve a foundation on the basic principles underlying the patterns and dynamics of the earth’s environmental system.
• Be acquainted with main current environmental  problems and some of its solutions.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Recommended textbook:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CUNNINGHAM, W.P., & SAIGO, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New  York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
PRESS, Frank, & SIEVER, Raymond (2001): Understanding Earth. 3rd edition. – New York (W. H. Freeman and Company).
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.

Course Calendar:
Thursday, Sept., 2nd: 1. Introduction (I) (suggested reading: Cunningham & Saigo (1992), Chapter 1-2; or: Cunningham & Cunningham & Saigo (2002), Chapter 1-2)
Tuesday, Sept., 7th: 1. Introduction (II); 2. Matter and energy in ecosystems (I) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Thursday, Sept., 9th: End of DROP/ADD period
Thursday, Sept., 9th: 2. Matter and energy in ecosystems (II) (suggested reading: Cunningham & Saigo (1992), Chapter 2 + 3; or: Cunningham & Cunningham & Saigo (2002), Chapter 2 + 3)
Tuesday, Sept., 14th: 3. Biological communities (suggested reading: Cunningham & Saigo (1992), Chapter 4; or: Cunningham & Cunningham & Saigo (2002), Chapter 4)
Thursday, Sept., 16th: 4. Biomes - Kinds of ecosystems (suggested reading: Cunningham & Saigo (1992), Chapter 5; or: Cunningham & Cunningham & Saigo (2002), Chapter 5)
Tuesday, Sept., 21st: 5. Populations (suggested reading: Cunningham & Saigo (1992), Chapter 6-7; or: Cunningham & Cunningham & Saigo (2002), Chapter 6-7)
Thursday, Sept., 23rd: 6. Environmental and resource economics (suggested reading: Cunningham & Saigo (1992), Chapter 8; or: Cunningham & Cunningham & Saigo (2002), Chapter 8)
Tuesday, Sept., 28th: 7. Earth and its crustal resources (suggested reading: Cunningham & Saigo (1992), Chapter 9; or: Cunningham & Cunningham & Saigo (2002), Chapter 16)
Thursday, Sept., 30th: 8. Human nutrition, hunger, crops, and pest control (suggested reading: Cunningham & Saigo (1992), Chapter 10-11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 5th: Deadline for the submission of the exercise.
Tuesday, Oct., 5th: Review & Preparation of first mid-term exam
Thursday, Oct., 7th: First mid-term exam
Tuesday, Oct., 12th: Holiday
Thursday, Oct., 14th: Deadline for the submission of the title of the paper
Thursday, Oct., 14th: 9. Soil, soil erosion and desertification (suggested reading: Cunningham & Saigo (1992), Chapter 11; or: Cunningham & Cunningham & Saigo (2002), Chapter 11)
Tuesday, Oct., 19th: 10. Biological resources (suggested reading: Cunningham & Saigo (1992), Chapter 12-15; or: Cunningham & Cunningham & Saigo (2002), Chapter 13-15)
Thursday, Oct., 21st: 11. Energy resources and use (suggested reading: Cunningham & Saigo (1992), Chapter 18-20; or: Cunningham & Cunningham & Saigo (2002), Chapter 21)
Tuesday, Oct., 26th: 12. Environmental health and toxicology (suggested reading: Cunningham & Saigo (1992), Chapter 21; or: Cunningham & Cunningham & Saigo (2002), Chapter 9)
Thursday, Oct., 28th: 13. Solid, toxic, and hazardous waste (suggested reading: Cunningham & Saigo (1992), Chapter 24; or: Cunningham & Cunningham & Saigo (2002), Chapter 23)
Tuesday, Nov., 2nd: 14. Water resources, use, and management (suggested reading: Cunningham & Saigo (1992), Chapter 16; or: Cunningham & Cunningham & Saigo (2002), Chapter 19)
Thursday, Nov., 4th: 15. Water pollution (suggested reading: Cunningham & Saigo (1992), Chapter 22; or: Cunningham & Cunningham & Saigo (2002), Chapter 20)
Tuesday, Nov., 9th: Holiday
Thursday, Nov., 11th: Last day to drop a class and receive a grade of "W".
Thursday, Nov., 11th: Deadline for the submission of papers and PowerPoint-Presentations
Thursday, Nov., 11th: Review & Preparation of second mid-term exam
Tuesday, Nov., 16th: Second mid-term exam
Thursday, Nov., 18th: 16. Air resources & Global climatic change (I) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Tuesday, Nov., 23rd: 16. Global climatic change (II) (suggested reading: Cunningham & Saigo (1992), Chapter 17; or: Cunningham & Cunningham & Saigo (2002), Chapter 17)
Thursday, Nov., 25th: 17. Air pollution (suggested reading: Cunningham & Saigo (1992), Chapter 23; or: Cunningham & Cunningham & Saigo (2002), Chapter 18)
Tuesday, Nov., 30th: Presentation of papers
Research Interests:
Course name: The Environmental Challenge in Spain Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: First summer session 2003 Credit Hours: 3 Prerequisites: none Course description: Basic concepts in... more
Course name: The Environmental Challenge in Spain

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: First summer session 2003
Credit Hours: 3 Prerequisites: none

Course description: Basic concepts in air, water and soil resources, their pollution and their protection; biodiversity and its protection; waste. A comparative analysis of the Spanish experience with others throughout Europe and the U.S.A.
Mandatory Excursion: There will be a one-day field trip to interesting sites in the neighborhood of Madrid. More information will be given during class.

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Be acquainted with main current environmental problems of Spain and some of its solutions.
• Understand better the similarities and differences between Spain, other countries in Europe and the U.S.A.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Course Calendar:
May 19th & 20th: Chapter 1: Introduction
May 21st: Chapter 2: Soil, soil erosion and desertification – general principles
May 22nd: Last day to drop a class without a grade of "W"
May 22nd: Chapter 3: Soil degradation in Spain and Europe
May 26th: Chapter 4: Biological resources – general principles
May 27th: Chapter 5: Biodiversity and its protection in Spain and Europe
May 28th: Chapter 6: The accident in the national park of Doñana
May 29th: Review & Preparation of mid-term exam
Monday, June 2nd: Mid-term exam
June 3rd: Chapter 7: Solid waste – in general and in Spain
June 4th: Chapter 8: Water resources, use, and management – general principles
June 5th: Chapter 9: Water Pollution – General Principles
June 9th: Last day to drop a class and receive a grade of "W"
June 9th & 10th: Chapter 10: Aspects of Water Resources and Water Pollution in Spain
June 11th: Deadline for the submission of papers
June 11th to June 16th: Chapter 11: Air Pollution and Global Climatic Change

Recommended book:
This course doesn’t have a special textbook, but two books are highly recommended:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
European Environment Agency  (1999): Environment in the European Union at the turn of the century - Environmental assessment report No 2. – [ ISBN: 92-9157-202-0; Catalogue No: GH-18-98-784-EN-C;  Price: EUR 21]

Many environmental information about Europe and Spain in English language can be found at the European Environment Agency ( http://org.eea.eu.int/ and  http://www.eea.eu.int/ ). A big amount of the information presented in this class is taken from this source. Further hints on interesting web-pages and data are given in WEBCT.

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CONNELL, Desley W. (1997): Basic concepts of environmental chemistry. – 506 p., Boca Raton, Florida (CRC Press LLC).
Cunningham, W.P., & Saigo, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
SPIRO, T.G., & STIGLIANI, W.M. (1996): Chemistry of the Environment. – 356 p., Upper Saddle River (Prentice Hall).
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.
Research Interests:
Course name: The Environmental Challenge in Spain Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: First summer session 2003 Credit Hours: 3 Prerequisites: none Course description: Basic concepts in... more
Course name: The Environmental Challenge in Spain

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: First summer session 2003
Credit Hours: 3 Prerequisites: none

Course description: Basic concepts in air, water and soil resources, their pollution and their protection; biodiversity and its protection; waste. A comparative analysis of the Spanish experience with others throughout Europe and the U.S.A.
Mandatory Excursion: There will be a one-day field trip to interesting sites in the neighborhood of Madrid. More information will be given during class.

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Be acquainted with main current environmental problems of Spain and some of its solutions.
• Understand better the similarities and differences between Spain, other countries in Europe and the U.S.A.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Course Calendar:
May 19th & 20th: Chapter 1: Introduction
May 21st: Chapter 2: Soil, soil erosion and desertification – general principles
May 22nd: Last day to drop a class without a grade of "W"
May 22nd: Chapter 3: Soil degradation in Spain and Europe
May 26th: Chapter 4: Biological resources – general principles
May 27th: Chapter 5: Biodiversity and its protection in Spain and Europe
May 28th: Chapter 6: The accident in the national park of Doñana
May 29th: Review & Preparation of mid-term exam
Monday, June 2nd: Mid-term exam
June 3rd: Chapter 7: Solid waste – in general and in Spain
June 4th: Chapter 8: Water resources, use, and management – general principles
June 5th: Chapter 9: Water Pollution – General Principles
June 9th: Last day to drop a class and receive a grade of "W"
June 9th & 10th: Chapter 10: Aspects of Water Resources and Water Pollution in Spain
June 11th: Deadline for the submission of papers
June 11th to June 16th: Chapter 11: Air Pollution and Global Climatic Change

Recommended book:
This course doesn’t have a special textbook, but two books are highly recommended:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
European Environment Agency  (1999): Environment in the European Union at the turn of the century - Environmental assessment report No 2. – [ ISBN: 92-9157-202-0; Catalogue No: GH-18-98-784-EN-C;  Price: EUR 21]

Many environmental information about Europe and Spain in English language can be found at the European Environment Agency ( http://org.eea.eu.int/ and  http://www.eea.eu.int/ ). A big amount of the information presented in this class is taken from this source. Further hints on interesting web-pages and data are given in WEBCT.

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CONNELL, Desley W. (1997): Basic concepts of environmental chemistry. – 506 p., Boca Raton, Florida (CRC Press LLC).
Cunningham, W.P., & Saigo, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
SPIRO, T.G., & STIGLIANI, W.M. (1996): Chemistry of the Environment. – 356 p., Upper Saddle River (Prentice Hall).
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.
Research Interests:
Course name: The Environmental Challenge in Spain Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: First summer session 2003 Credit Hours: 3 Prerequisites: none Course description: Basic concepts in... more
Course name: The Environmental Challenge in Spain

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: First summer session 2003
Credit Hours: 3 Prerequisites: none

Course description: Basic concepts in air, water and soil resources, their pollution and their protection; biodiversity and its protection; waste. A comparative analysis of the Spanish experience with others throughout Europe and the U.S.A.
Mandatory Excursion: There will be a one-day field trip to interesting sites in the neighborhood of Madrid. More information will be given during class.

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Be acquainted with main current environmental problems of Spain and some of its solutions.
• Understand better the similarities and differences between Spain, other countries in Europe and the U.S.A.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Course Calendar:
May 19th & 20th: Chapter 1: Introduction
May 21st: Chapter 2: Soil, soil erosion and desertification – general principles
May 22nd: Last day to drop a class without a grade of "W"
May 22nd: Chapter 3: Soil degradation in Spain and Europe
May 26th: Chapter 4: Biological resources – general principles
May 27th: Chapter 5: Biodiversity and its protection in Spain and Europe
May 28th: Chapter 6: The accident in the national park of Doñana
May 29th: Review & Preparation of mid-term exam
Monday, June 2nd: Mid-term exam
June 3rd: Chapter 7: Solid waste – in general and in Spain
June 4th: Chapter 8: Water resources, use, and management – general principles
June 5th: Chapter 9: Water Pollution – General Principles
June 9th: Last day to drop a class and receive a grade of "W"
June 9th & 10th: Chapter 10: Aspects of Water Resources and Water Pollution in Spain
June 11th: Deadline for the submission of papers
June 11th to June 16th: Chapter 11: Air Pollution and Global Climatic Change

Recommended book:
This course doesn’t have a special textbook, but two books are highly recommended:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
European Environment Agency  (1999): Environment in the European Union at the turn of the century - Environmental assessment report No 2. – [ ISBN: 92-9157-202-0; Catalogue No: GH-18-98-784-EN-C;  Price: EUR 21]

Many environmental information about Europe and Spain in English language can be found at the European Environment Agency ( http://org.eea.eu.int/ and  http://www.eea.eu.int/ ). A big amount of the information presented in this class is taken from this source. Further hints on interesting web-pages and data are given in WEBCT.

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CONNELL, Desley W. (1997): Basic concepts of environmental chemistry. – 506 p., Boca Raton, Florida (CRC Press LLC).
Cunningham, W.P., & Saigo, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
SPIRO, T.G., & STIGLIANI, W.M. (1996): Chemistry of the Environment. – 356 p., Upper Saddle River (Prentice Hall).
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.
Research Interests:
Course name: The Environmental Challenge in Spain Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: First summer session 2003 Credit Hours: 3 Prerequisites: none Course description: Basic concepts in... more
Course name: The Environmental Challenge in Spain

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: First summer session 2003
Credit Hours: 3 Prerequisites: none

Course description: Basic concepts in air, water and soil resources, their pollution and their protection; biodiversity and its protection; waste. A comparative analysis of the Spanish experience with others throughout Europe and the U.S.A.
Mandatory Excursion: There will be a one-day field trip to interesting sites in the neighborhood of Madrid. More information will be given during class.

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Be acquainted with main current environmental problems of Spain and some of its solutions.
• Understand better the similarities and differences between Spain, other countries in Europe and the U.S.A.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Course Calendar:
May 19th & 20th: Chapter 1: Introduction
May 21st: Chapter 2: Soil, soil erosion and desertification – general principles
May 22nd: Last day to drop a class without a grade of "W"
May 22nd: Chapter 3: Soil degradation in Spain and Europe
May 26th: Chapter 4: Biological resources – general principles
May 27th: Chapter 5: Biodiversity and its protection in Spain and Europe
May 28th: Chapter 6: The accident in the national park of Doñana
May 29th: Review & Preparation of mid-term exam
Monday, June 2nd: Mid-term exam
June 3rd: Chapter 7: Solid waste – in general and in Spain
June 4th: Chapter 8: Water resources, use, and management – general principles
June 5th: Chapter 9: Water Pollution – General Principles
June 9th: Last day to drop a class and receive a grade of "W"
June 9th & 10th: Chapter 10: Aspects of Water Resources and Water Pollution in Spain
June 11th: Deadline for the submission of papers
June 11th to June 16th: Chapter 11: Air Pollution and Global Climatic Change

Recommended book:
This course doesn’t have a special textbook, but two books are highly recommended:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
European Environment Agency  (1999): Environment in the European Union at the turn of the century - Environmental assessment report No 2. – [ ISBN: 92-9157-202-0; Catalogue No: GH-18-98-784-EN-C;  Price: EUR 21]

Many environmental information about Europe and Spain in English language can be found at the European Environment Agency ( http://org.eea.eu.int/ and  http://www.eea.eu.int/ ). A big amount of the information presented in this class is taken from this source. Further hints on interesting web-pages and data are given in WEBCT.

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CONNELL, Desley W. (1997): Basic concepts of environmental chemistry. – 506 p., Boca Raton, Florida (CRC Press LLC).
Cunningham, W.P., & Saigo, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
SPIRO, T.G., & STIGLIANI, W.M. (1996): Chemistry of the Environment. – 356 p., Upper Saddle River (Prentice Hall).
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.
Research Interests:
Course name: The Environmental Challenge in Spain Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: First summer session 2003 Credit Hours: 3 Prerequisites: none Course description: Basic concepts in... more
Course name: The Environmental Challenge in Spain

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: First summer session 2003
Credit Hours: 3 Prerequisites: none

Course description: Basic concepts in air, water and soil resources, their pollution and their protection; biodiversity and its protection; waste. A comparative analysis of the Spanish experience with others throughout Europe and the U.S.A.
Mandatory Excursion: There will be a one-day field trip to interesting sites in the neighborhood of Madrid. More information will be given during class.

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Be acquainted with main current environmental problems of Spain and some of its solutions.
• Understand better the similarities and differences between Spain, other countries in Europe and the U.S.A.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Course Calendar:
May 19th & 20th: Chapter 1: Introduction
May 21st: Chapter 2: Soil, soil erosion and desertification – general principles
May 22nd: Last day to drop a class without a grade of "W"
May 22nd: Chapter 3: Soil degradation in Spain and Europe
May 26th: Chapter 4: Biological resources – general principles
May 27th: Chapter 5: Biodiversity and its protection in Spain and Europe
May 28th: Chapter 6: The accident in the national park of Doñana
May 29th: Review & Preparation of mid-term exam
Monday, June 2nd: Mid-term exam
June 3rd: Chapter 7: Solid waste – in general and in Spain
June 4th: Chapter 8: Water resources, use, and management – general principles
June 5th: Chapter 9: Water Pollution – General Principles
June 9th: Last day to drop a class and receive a grade of "W"
June 9th & 10th: Chapter 10: Aspects of Water Resources and Water Pollution in Spain
June 11th: Deadline for the submission of papers
June 11th to June 16th: Chapter 11: Air Pollution and Global Climatic Change

Recommended book:
This course doesn’t have a special textbook, but two books are highly recommended:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
European Environment Agency  (1999): Environment in the European Union at the turn of the century - Environmental assessment report No 2. – [ ISBN: 92-9157-202-0; Catalogue No: GH-18-98-784-EN-C;  Price: EUR 21]

Many environmental information about Europe and Spain in English language can be found at the European Environment Agency ( http://org.eea.eu.int/ and  http://www.eea.eu.int/ ). A big amount of the information presented in this class is taken from this source. Further hints on interesting web-pages and data are given in WEBCT.

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CONNELL, Desley W. (1997): Basic concepts of environmental chemistry. – 506 p., Boca Raton, Florida (CRC Press LLC).
Cunningham, W.P., & Saigo, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
SPIRO, T.G., & STIGLIANI, W.M. (1996): Chemistry of the Environment. – 356 p., Upper Saddle River (Prentice Hall).
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.
Research Interests:
Course name: The Environmental Challenge in Spain Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: First summer session 2003 Credit Hours: 3 Prerequisites: none Course description: Basic concepts in... more
Course name: The Environmental Challenge in Spain

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: First summer session 2003
Credit Hours: 3 Prerequisites: none

Course description: Basic concepts in air, water and soil resources, their pollution and their protection; biodiversity and its protection; waste. A comparative analysis of the Spanish experience with others throughout Europe and the U.S.A.
Mandatory Excursion: There will be a one-day field trip to interesting sites in the neighborhood of Madrid. More information will be given during class.

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Be acquainted with main current environmental problems of Spain and some of its solutions.
• Understand better the similarities and differences between Spain, other countries in Europe and the U.S.A.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Course Calendar:
May 19th & 20th: Chapter 1: Introduction
May 21st: Chapter 2: Soil, soil erosion and desertification – general principles
May 22nd: Last day to drop a class without a grade of "W"
May 22nd: Chapter 3: Soil degradation in Spain and Europe
May 26th: Chapter 4: Biological resources – general principles
May 27th: Chapter 5: Biodiversity and its protection in Spain and Europe
May 28th: Chapter 6: The accident in the national park of Doñana
May 29th: Review & Preparation of mid-term exam
Monday, June 2nd: Mid-term exam
June 3rd: Chapter 7: Solid waste – in general and in Spain
June 4th: Chapter 8: Water resources, use, and management – general principles
June 5th: Chapter 9: Water Pollution – General Principles
June 9th: Last day to drop a class and receive a grade of "W"
June 9th & 10th: Chapter 10: Aspects of Water Resources and Water Pollution in Spain
June 11th: Deadline for the submission of papers
June 11th to June 16th: Chapter 11: Air Pollution and Global Climatic Change

Recommended book:
This course doesn’t have a special textbook, but two books are highly recommended:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
European Environment Agency  (1999): Environment in the European Union at the turn of the century - Environmental assessment report No 2. – [ ISBN: 92-9157-202-0; Catalogue No: GH-18-98-784-EN-C;  Price: EUR 21]

Many environmental information about Europe and Spain in English language can be found at the European Environment Agency ( http://org.eea.eu.int/ and  http://www.eea.eu.int/ ). A big amount of the information presented in this class is taken from this source. Further hints on interesting web-pages and data are given in WEBCT.

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CONNELL, Desley W. (1997): Basic concepts of environmental chemistry. – 506 p., Boca Raton, Florida (CRC Press LLC).
Cunningham, W.P., & Saigo, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
SPIRO, T.G., & STIGLIANI, W.M. (1996): Chemistry of the Environment. – 356 p., Upper Saddle River (Prentice Hall).
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.
Research Interests:
Course name: The Environmental Challenge in Spain Saint Louis University, Madrid Campus, Faculty: Science and Engineering Semester: First summer session 2003 Credit Hours: 3 Prerequisites: none Course description: Basic concepts in... more
Course name: The Environmental Challenge in Spain

Saint Louis University, Madrid Campus, Faculty: Science and Engineering

Semester: First summer session 2003
Credit Hours: 3 Prerequisites: none

Course description: Basic concepts in air, water and soil resources, their pollution and their protection; biodiversity and its protection; waste. A comparative analysis of the Spanish experience with others throughout Europe and the U.S.A.
Mandatory Excursion: There will be a one-day field trip to interesting sites in the neighborhood of Madrid. More information will be given during class.

Course Objectives: 
By end of the course the student should:
• Understand better the complexity of the relationships between the environment and mankind.
• Be acquainted with main current environmental problems of Spain and some of its solutions.
• Understand better the similarities and differences between Spain, other countries in Europe and the U.S.A.
• Be able to think critically and with a broad interdisciplinary perspective on the environmental problems and solutions. 

Course Calendar:
May 19th & 20th: Chapter 1: Introduction
May 21st: Chapter 2: Soil, soil erosion and desertification – general principles
May 22nd: Last day to drop a class without a grade of "W"
May 22nd: Chapter 3: Soil degradation in Spain and Europe
May 26th: Chapter 4: Biological resources – general principles
May 27th: Chapter 5: Biodiversity and its protection in Spain and Europe
May 28th: Chapter 6: The accident in the national park of Doñana
May 29th: Review & Preparation of mid-term exam
Monday, June 2nd: Mid-term exam
June 3rd: Chapter 7: Solid waste – in general and in Spain
June 4th: Chapter 8: Water resources, use, and management – general principles
June 5th: Chapter 9: Water Pollution – General Principles
June 9th: Last day to drop a class and receive a grade of "W"
June 9th & 10th: Chapter 10: Aspects of Water Resources and Water Pollution in Spain
June 11th: Deadline for the submission of papers
June 11th to June 16th: Chapter 11: Air Pollution and Global Climatic Change

Recommended book:
This course doesn’t have a special textbook, but two books are highly recommended:
CUNNINGHAM, W.P., & CUNNINGHAM, M.A., & SAIGO, B. Woodworth (2002): Environmental Science – A Global Concern. 7th edition. – 646 p., Boston (McGraw-Hill Higher Education).
European Environment Agency  (1999): Environment in the European Union at the turn of the century - Environmental assessment report No 2. – [ ISBN: 92-9157-202-0; Catalogue No: GH-18-98-784-EN-C;  Price: EUR 21]

Many environmental information about Europe and Spain in English language can be found at the European Environment Agency ( http://org.eea.eu.int/ and  http://www.eea.eu.int/ ). A big amount of the information presented in this class is taken from this source. Further hints on interesting web-pages and data are given in WEBCT.

Supplementary reading: Following books may be interesting or helpful for some aspects of the course, but they are not necessary:
ANDEL, T. H. van, (1994): New views on an old planet. A history of global change. 439 pp.; Cambridge (Cambridge University Press).
CONNELL, Desley W. (1997): Basic concepts of environmental chemistry. – 506 p., Boca Raton, Florida (CRC Press LLC).
Cunningham, W.P., & Saigo, B. Woodworth (1992): Environmental Science – A Global Concern. 2nd edition. – 622 p., Dubuque (Wm. C. Brown Publishers).
MERRITTS, D., & WET, A. DE, & MENKING, K. (1998): Environmental geology. 452 pp.; New York (Freeman a. Co.).
MILLER, G. T. (1990): Living in the environment. 620 pp., Belmont/California (Wadsworth Publishing Company).
MILLER, G. Tyler (2001): Living in the Environment: Principles, Connections, and Solutions. – 757 pages; 12th edition (Brooks/Cole Publishing Company)
TIME (2002): Special report: How to save the earth. – Time, vol. 160, no. 10, Sept. 2, 2002;  60 pp; Amsterdam (Time Warner Publishing B.V.)
SPIRO, T.G., & STIGLIANI, W.M. (1996): Chemistry of the Environment. – 356 p., Upper Saddle River (Prentice Hall).
VANLOON, G.W., & DUFFY, S.J. (2000): Environmental chemistry – A global perspective. – 492 p., Oxford (Oxford University Press).
WHYTE, I. D. (1995): Climatic change and human society. 217 pp., London (Arnold Publishing Company).
WWW.JOHANNESBURGSUMMIT.ORG (2002): Global Challenge – Global Opportunity. Trends in sustainable development. 21 pp.
Research Interests:

And 17 more