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This paper proposes tools for robust inference in difference-in-differences and event-study designs
where the parallel trends assumption may be violated. Instead of requiring that parallel trends holds
exactly, we impose restrictions on how different the post-treatment violations of parallel trends can be
from the pre-treatment differences in trends (“pre-trends”). The causal parameter of interest is partially
identified under these restrictions. We introduce two approaches that guarantee uniformly valid infer-
ence under the imposed restrictions, and we derive novel results showing that they have desirable power
properties in our context. We illustrate how economic knowledge can inform the restrictions on the pos-
sible violations of parallel trends in two economic applications. We also highlight how our approach can
be used to conduct sensitivity analyses showing what causal conclusions can be drawn under various
restrictions on the possible violations of the parallel trends assumption.
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1. INTRODUCTION

Researchers using difference-in-differences (DiD) and related methods are often unsure about
the validity of the parallel trends assumption needed for point identification of the causal param-
eter of interest. It has therefore become common practice to assess the plausibility of the parallel
trends assumption by testing for pre-treatment differences in trends (“pre-trends”). Although
pre-trends tests are intuitive, recent research has shown that they may suffer from low power
(Freyaldenhoven et al., 2019; Bilinski and Hatfield, 2020; Kahn-Lang and Lang, 2020; Roth,
2022), and that conditioning the analysis on passing pre-trends tests introduces statistical issues
related to pre-testing (Roth, 2022). How then should researchers proceed when they are unsure
about the validity of the parallel trends assumption?

This paper proposes methods for robust inference and sensitivity analysis in empirical set-
tings where the parallel trends assumption may not hold. Building on work by Manski and
Pepper (2018), we show that the causal parameter of interest can be (partially) identified under
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2556 REVIEW OF ECONOMIC STUDIES

a large class of restrictions that impose that the post-treatment violations of parallel trends can-
not be “too different” from the pre-trends. We then introduce methods that yield uniformly valid
inference for the treatment effect under the imposed restrictions. Intuitively, our inference meth-
ods account for both statistical uncertainty (we can only noisily estimate the true pre-trend) as
well as “identification uncertainty” (even if the true pre-trend were known, we may not know
exactly how to extrapolate it). Our approach thus formalizes the intuition motivating pre-trends
testing while avoiding the statistical issues described above.

More concretely, we consider a setting in which the researcher estimates a vector of “event-
study” coefficients β̂ = (β̂

′
pre, β̂

′
post )

′ ∈ R¯T +T̄ , where β̂ pre and β̂ post respectively correspond

with estimates for ¯T pre-treatment periods and T̄ post-treatment periods. We assume that β̂ is
consistent for the reduced-form parameter β, which can be decomposed as

β =
(

0
τpost

)
︸ ︷︷ ︸

=:τ

+
(
δpre

δpost

)
︸ ︷︷ ︸

=:δ

, (1)

where τ is a causal parameter of interest that is assumed to be 0 in the pre-treatment period and
δ is a bias from a difference in trends. For instance, in the canonical (non-staggered) DiD frame-
work, β̂ may be the coefficients from an “event-study regression” specification, τ the vector of
period-specific average treatment effects on the treated (ATT) for some policy of interest, and
δ the difference in trends of untreated potential outcomes between the treated and comparison
groups. As we discuss in Section 2, this framework also applies to more complicated empiri-
cal settings, such as those with staggered treatment timing (e.g. Callaway and Sant’Anna, 2020;
Sun and Abraham, 2020). The usual parallel trends assumption used to point identify τpost is
that δpost = 0, and researchers frequently assess the plausibility of this assumption by testing
the null hypothesis δpre = 0 (a “pre-trends” test).

Instead of imposing that the parallel trends assumption holds exactly, we place restrictions on
the possible post-treatment differences in trends δpost given the point identified pre-trends δpre.
Such restrictions formalize the intuition motivating pre-trends tests, namely that pre-trends are
informative about counterfactual post-treatment differences in trends. Formally, we assume that
δ ∈ � for some researcher-specified set �, and show that the causal parameter τpost is partially
identified under such restrictions.

Restrictions of this form can be used to formalize a wide variety of intuitions about possible
violations of the parallel trends assumption that are commonly expressed in applied work. For
example, as discussed in Manski and Pepper (2018), researchers may be willing to assume that
the confounding factors that create post-treatment violations of parallel trends are similar in
magnitude to those in the pre-treatment period. This intuition can be formalized by specifying a
� that bounds the maximal post-treatment violation of parallel trends by a parameter M̄ times the
maximal pre-treatment violation of parallel trends. In other contexts, researchers are concerned
about violations of parallel trends from secular trends that are assumed to evolve smoothly over
time. This intuition can be formalized by bounding the extent to which the slope of the violation
of parallel trends can change over time. We adopt a flexible framework that allows researchers
to capture these intuitions, as well as many other restrictions that are implied by context-specific
knowledge about possible confounding factors.

We then introduce methods to conduct uniformly valid inference on a scalar parameter of
the form θ = l ′τpost under the restriction δ ∈ �. As emphasized in the recent literature on pre-
trends testing, the pre-treatment coefficients β̂ pre are often imprecise estimates of δpre. It is
therefore important to introduce inference methods that account for the statistical uncertainty
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in the estimation of the event-study coefficients. We introduce two main inference approaches,
with different desirable properties depending on the shape of �.

We first introduce a general inference approach that can accommodate a large class of choices
for�. This approach is based on the observation that conducting inference on θ can be cast as the
problem of testing a system of moment inequalities, allowing us to leverage a large economet-
rics literature on moment inequality testing (Canay and Shaikh, 2017 provide a recent review).
The moments have a potentially large number of nuisance parameters that enter linearly, and
we therefore consider an implementation of this approach based on the conditional and hybrid
approaches of Andrews et al. (forthcoming, henceforth ARP), who considered moment inequal-
ities with this structure. Uniform size control for these tests follows nearly immediately from
results in ARP.

We then prove that the tests proposed by ARP have some desirable power properties in our
context. First, the conditional and hybrid tests are consistent, in the sense that they have power
approaching 1 against fixed alternatives outside of the identified set. Second, we prove that
the conditional test has optimal local asymptotic power under a linear independence constraint
qualification (LICQ) assumption. As described in Kaido et al. (2021), LICQ and related con-
straint qualifications have been used widely in the partial identification literature, and are often
imposed to ensure size control. By contrast, we show that the ARP conditional test is asymp-
totically valid even when LICQ fails, but has optimal local asymptotic power when LICQ is
satisfied. Intuitively, this result implies that the conditional test will perform well when the bind-
ing and non-binding moments are “far apart” relative to the sampling variation in the data. We
provide several intuitive examples to illustrate when this result will and will not be applicable.
Our result also implies that the ARP hybrid test will have near-optimal local asymptotic power
under LICQ. These power results are new, and exploit additional structure in our context not
contained in ARP.

Our second approach to inference is based on fixed length confidence intervals (FLCIs)
(Donoho, 1994). FLCIs have desirable finite-sample guarantees for particular �s of interest. In
particular, results from Armstrong and Kolesár (2018, 2020b) imply that when � is convex and
centrosymmetric, FLCIs have near-optimal expected length in the finite-sample normal model.
These results are applicable for one of our leading examples, �SD, which restricts the smooth-
ness of the difference in trends. In Monte Carlo simulations, we find that the use of such FLCIs
can lead to substantial power gains over the conditional/hybrid approaches for �SD when the
length of the identified set is short relative to the sampling variation in the data. This is intuitive
since the asymptotic power guarantees for the conditional/hybrid approaches are in the asymp-
totic regime where sampling uncertainty is small relative to the length of the identified set, in
contrast to the finite-sample guarantees for FLCIs. On the other hand, FLCIs are applicable for
a much smaller class of �s: indeed, we show that for many other choices of �, they will be
inconsistent in the strong sense that power against fixed points outside the identified set need not
converge to one asymptotically.

Based on our theoretical results and Monte Carlo simulations, we recommend the ARP
hybrid approach for general forms of �, but prefer the FLCI approach in special cases (such
as for �SD) where the conditions for consistency and finite-sample near-optimality are met.

We recommend that applied researchers use our methods to construct robust confidence sets
under economically-motivated restrictions on how the pre-trends relate to the post-treatment vio-
lations of parallel trends. Our tools can also be used to to conduct sensitivity analyses in which
the researcher reports confidence sets under varying restrictions on the possible differences in
trends. For example, if the researcher suspects that the confounding factors in the post-treatment
periods are similar in magnitude to those in the pre-treatment periods, then it may be reasonable
to impose that the post-treatment violations of parallel trends are no larger than the maximum
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2558 REVIEW OF ECONOMIC STUDIES

pre-treatment violation of parallel trends. As a sensitivity analysis, the researcher might also
report confidence sets that allow the maximum post-treatment violation of parallel trends to be
up to M̄ times larger than the maximum pre-treatment violation for different values of M̄ . The
proposed sensitivity analysis thus follows the “top-down” approach described by Tamer (2010),
in which the researcher reports what can be learned under a sequence of progressively weaker
assumptions. Performing such sensitivity analyses makes clear what must be assumed about the
possible differences in trends in order to draw specific causal conclusions, in line with the par-
tial identification paradigm initiated by Charles Manski and co-authors in a variety of contexts
(Manski, 1989, 1990, 2003, 2008). We provide the HonestDiD R and Stata packages to imple-
ment our methods.1 We illustrate our recommended approach with applications to two recently
published papers, in which we show how the choice of the restrictions � can be tailored to the
economic context.

1.1. Related literature

The approach in this paper builds on the foundational partial identification analysis for DiD in
Manski and Pepper (2018). Manski and Pepper consider identification under researcher-specified
bounds on the magnitude of δpost (what they call “bounded DiD variation”), and calibrate these
bounds using the maximal pre-treatment violation of parallel trends in their empirical applica-
tion on the effects of right-to-carry gun laws.2 One of our leading classes of restrictions, �RM ,
formalizes this calibration approach by bounding the magnitude of post-treatment violations of
parallel trends by M̄ times the maximal pre-treatment violation. Our framework also allows for
many other intuitive restrictions—such as bounds on how far δ can deviate from linearity—and
it can be applied to a variety of DiD estimators, including recent proposals for settings with
staggered treatment timing. Most importantly, while Manski and Pepper (2018) provide a frame-
work for identification, we provide inference methods to construct uniformly valid confidence
sets for the treatment effect of interest. This allows applied researchers to account for statisti-
cal uncertainty in their analyses, which can be important since event-study coefficients are often
imprecisely estimated in practice.

Several other recent papers consider various relaxations of the parallel trends assumption.
Keele et al. (2019) develop techniques for testing the sensitivity of DiD designs to violations of
the parallel trends assumption, but they do not incorporate information from the observed pre-
trends in their sensitivity analysis. Empirical researchers commonly adjust for the extrapolation
of a linear trend from the pre-treatment periods when there are concerns about violations of the
parallel trends assumption, which is valid if the difference in trends is exactly linear (e.g.Bhuller
et al., 2013; Dobkin et al., 2018; Goodman-Bacon, 2018, 2021). Our methods nest this approach
as a special case, but allow for valid inference under less restrictive assumptions about the class
of possible differences in trends (such as when δ is only approximately linear). Freyaldenhoven
et al. (2019) propose a method that allows for violations of the parallel trends assumption but
requires an additional covariate that is affected by the same confounding factors as the outcome
but not by the treatment of interest. Ye et al. (2020) consider partial identification of treatment
effects when there exist two control groups whose outcomes have a bracketing relationship with

1. The latest version of the R and Stata packages are respectively available at
https://github.com/asheshrambachan/HonestDiD and https://github.com/mcaceresb/stata-honestdid/.

2. Manski and Pepper (2018) also consider “bounded time” and “bounded state” restrictions that bound how
much the mean of Y (0) can differ either across treatment groups or within-groups over time. Such restrictions could also
be incorporated into our framework by augmenting the vector β̂ to include group-specific sample averages.
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the outcome of the treated group. Leavitt (2020) proposes an empirical Bayes approach cali-
brated to pre-treatment differences in trends, and Bilinski and Hatfield (2020) and Dette and
Schumann (2020) propose non-inferiority approaches based on pre-tests for the magnitude of
the pre-treatment violations of parallel trends.

Our methods address several concerns related to current empirical practice in DiD and event-
study designs. First, pre-trends tests may be underpowered against meaningful violations of
parallel trends, potentially leading to severe undercoverage of conventional confidence inter-
vals (Freyaldenhoven et al., 2019; Bilinski and Hatfield, 2020; Kahn-Lang and Lang, 2020;
Roth, 2022). Second, statistical distortions from pre-trends tests may further undermine the per-
formance of conventional inference procedures (Roth, 2022). Third, parametric approaches to
controlling for pre-existing trends may be sensitive to functional form assumptions (Wolfers,
2006; Lee and Solon, 2011). We address these issues by providing tools for inference that
do not rely on an exact parallel trends assumption, incorporate statistical uncertainty about
the estimated event-study coefficients, and make clear the mapping between the researcher’s
assumptions about the potential differences in trends and the strength of their causal conclusions.

Our work complements a growing literature on the causal interpretation of event-study
coefficients in two-way fixed effects models in the presence of staggered treatment timing
and heterogeneous treatment effects (Borusyak and Jaravel, 2016; Callaway and Sant’Anna,
2020; de Chaisemartin and D’Haultfæuille, 2020; Sun and Abraham, 2020; Athey and Imbens,
2021; Goodman-Bacon, 2021). A key finding is that regression coefficients from conventional
approaches may not produce convex weighted averages of treatment effects even if parallel
trends holds. Several alternative estimators have been proposed that consistently estimate inter-
pretable causal estimands under a suitable parallel trends assumption. Our methodology can be
used in conjunction with these alternative estimators to assess their sensitivity to violations of
the corresponding parallel trends assumption; see Section 2.1 for additional details.

More broadly, our work contributes to a larger econometric literature that uses partial
identification to provide empirical researchers with tractable tools to conduct inference under
assumptions that may be more credible in empirical practice; see, for example, Manski (2003,
2007, 2013), Tamer (2010), Ho and Rosen (2017), and Molinari (2020) for reviews.

2. MODEL SET-UP

2.1. Event-study coefficients

We suppose that the researcher has estimated a vector of “event-study coefficients” β̂n ∈ R¯T +T̄ ,
which can be partitioned into vectors of coefficients corresponding with the pre-treatment
and post-treatment periods, β̂n = (β̂

′
n,pre, β̂

′
n,post ), where β̂n,pre ∈ R¯T and β̂n,post ∈ RT̄ . Event-

study estimates of this form arise from non-staggered DiD as well as a variety of related
estimators, as we illustrate with several examples

Example 1 (Non-staggered DiD). Consider the canonical DiD setting in which we have a bal-
anced panel of units from period t = −¯T, . . . , T̄ , and units with Di = 1 receive a treatment
beginning in period t = 1, while units with Di = 0 never receive the treatment. It is common to
report DiD estimates of the form

β̂s = (Ȳs1 − Ȳs0)− (Ȳ01 − Ȳ00),

where Ȳsd is the sample mean of the outcome for units with Di = d in period t = s. Intuitively,
β̂s compares the change in the mean outcome between period 0 and period s for the treated
and comparison units. In this setting, the estimates β̂s are numerically equivalent to the OLS
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coefficients from the regression

Yit = λi + φt +
∑
s �=0

βs × 1[t = s] × Di + εi t . (2)

In this case, β̂ post collects the estimated coefficients corresponding with treated periods,

(β̂1, . . . , β̂ T̄ ), while β̂ pre collects the estimated coefficients corresponding with periods before

treatment (β̂−¯T
, . . . β̂−1).

Example 2 (Staggered DiD). Event-study coefficients can also be obtained from more compli-
cated DiD procedures. For example, in settings with staggered treatment timing, Callaway and
Sant’Anna (2020) propose event-study estimates of the form

β̂r =
∑

g

wg ÂT T (g, g + r),

where ÂT T (g, t) is a DiD estimate that compares the evolution of the outcome for units first
treated at period g to units first-treated after period t between time periods g − 1 and t , and
the wg are weights that sum to one (e.g. proportional to sample size). In this case, β̂ post col-

lects the values of β̂r for r ≥ 0 (i.e. estimates where one of the groups is treated), and β̂ pre

collects the values of β̂r for values of r < 0. Several other related procedures have been pro-
posed for constructing event-study coefficients in contexts with staggered treatment timing; see
de Chaisemartin and D’Haultfæuille (2021) and Roth et al. (2022) for reviews.

Example 3 (Other related estimators). Other examples of estimators that can be used to produce
event-studies coefficients of the form considered here include the GMM procedure proposed by
Freyaldenhoven et al. (2019), instrumental variables event-studies (Hudson et al., 2017), as well
estimators that flexibly control for differences in covariates between treated and comparison
groups (e.g. Heckman et al., 1998; Abadie, 2005; Sant’Anna and Zhao, 2020).

2.2. Causal decomposition

Under mild regularity conditions, all of the estimators described above will be asymptotically
normally distributed, satisfying

√
n(β̂n − β) → N (0, 
∗) for some parameter vector β. We

assume the parameter vector β satisfies the following causal decomposition.

Assumption 1. The parameter vector β can be decomposed as

β =
(
τpre

τpost

)
︸ ︷︷ ︸

=:τ

+
(
δpre

δpost

)
︸ ︷︷ ︸

=:δ

with τpre = 0. (3)

The first term, τ , represents the treatment effects of interest. We assume the treatment has
no causal effect prior to its implementation, so τpre = 0. The second term, δ, represents the
difference in trends between the treated and comparison groups that would have occurred absent
treatment. The parallel trends assumption imposes that δpost = 0, and therefore βpost = τpost

under parallel trends.3

3. Although our focus is on generalized DiD settings, our results apply to any setting where the researcher has an
asymptotically normally distributed estimator β̂ of a reduced form parameter β that satisfies (3). For example, β̂ could
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2.2.1. Example: non-staggered DiD (continued). Suppose the observed outcome satisfies
Yit = Di Yit (1)+ (1 − Di )Yit (0), where Yit (1) and Yit (0) are, respectively, the potential out-
comes when unit i is ultimately treated/not treated. Assume further that there is no anticipation of
treatment, so that Yit (1) = Yit (0) for all t < 1. Then, for any s, under mild regularity conditions
β̂s will be consistent for

βs = τAT T,s + E [Yis(0)− Yi0(0) | Di = 1] − E [Yis(0)− Yi0(0) | Di = 0]︸ ︷︷ ︸
differential trend =:δs

,

where τAT T,s = E [Yis(1)− Yis(0) | Di = 1] is the average treatment effect on the treated in
period s, and δs is the difference in trends in potential outcomes between period 0 and period
s.4 Since the no-anticipation assumption implies that τAT T,s = 0 for s < 0, this yields the
decomposition (3).

2.2.2. Example: staggered DiD (continued). Likewise, in the staggered DiD context,
define Yit (g) to be the potential outcome for unit i in period t if they are first treated
at period g and Yit (∞) to be the never-treated potential outcome. Then β̂r will be con-
sistent for the parameter βr = τr + δr , where τr = ∑

g wg AT T (g, g + r) and AT T (g, g +
r) = E

[
Yi,g+r (g)− Yi,g+r (∞) | Gi = g

]
is the ATT in period g + r for units first treated at

period g. Likewise, δr = ∑
wgδg,g+r , where δg,g+r = E

[
Yi,g+r (∞)− Yi,g−1(∞) | Gi = g

] −
E

[
Yi,g+r (∞)− Yi,g−1(∞) | Gi > g + r

]
is the difference in trends in never-treated potential

outcomes between units first treated at period g and units first treated after period g + r . Under
a no-anticipation assumption, τr = 0 for r < 0, which again yields the decomposition (3).

2.2.3. Example: other related estimators (continued). We can decompose β as in (3) for
other estimators as well. For example, for event-study IVs (with non-staggered timing), τpost

is a vector containing the local average treatment effect for each period, and δ represents the
asymptotic bias of the IV estimator (e.g. from violations of independence or exclusion) for each
period. For methods that flexibly control for covariate differences between treated and compar-
ison groups, τpost is again a vector of ATTs, and δpost represents a weighted average (across
covariates) of the violation of the conditional parallel trends assumption.

2.3. Target parameter and identification

We suppose the target parameter is a linear combination of the post-treatment causal effects,
θ := l ′τpost for some known T̄ -vector l. For example, θ equals the t th period causal effect τt

when the vector l equals the t th standard basis vector. Similarly, θ equals the average causal
effect across all post-treatment periods when l = (1/T̄ , . . . , 1/T̄ )′.

We obtain partial identification of θ by assuming that δ lies in a researcher-specified set

of possible differences in trends � ⊆ R¯T +T̄ . This nests the usual parallel trends assumption as
the special case with � = {δ : δpost = 0}. Since δpre = βpre is identified, the assumption that

correspond with a vector of first-differences or triple-differences estimators, and δ the violation of the corresponding
identifying assumption.

4. We focus on the ATT as the target parameter, as in most of the DiD literature. If one is interested in the
population-wide average treatment effect (ATE), one could obtain bounds on the ATE under restrictions on treatment
effect heterogeneity, or other assumptions that allow one to bound the treatment effects for untreated units; see Manski
and Pepper (2013) for an insightful discussion.
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δ = (δ′
pre, δ

′
post )

′ ∈ � restricts the possible values of δpost given the identified value of the pre-
treatment difference in trends δpre.

It is natural to place restrictions on the relationship between δpre and δpost , since applied
researchers frequently test the null hypothesis δpre = 0 in order to assess the plausibility of the
assumption that δpost = 0. Our identification framework, which generalizes the partial identifi-
cation framework in Manski and Pepper (2018), thus helps formalize the intuition motivating
pre-trends testing.

Under the assumption that δ ∈ � �= {δ : δpost = 0}, the parameter θ will typically be set-
identified. The identified set is the set of values for θ that are consistent with a given value of β
under the restriction δ ∈ �,

S(β,�) :=
{
θ : ∃δ ∈ �, τpost ∈ RT̄ s.t. l ′τpost = θ, β = δ +

(
0
τpost

)}
. (4)

When � is a closed and convex set, the identified set has a simple characterization.5

Lemma 2.1. If � is closed and convex, then S(β,�) is an interval in R, S(β,�) =
[θ lb(β,�), θub(β,�)], where

θ lb(β,�) := l ′βpost −
(

max
δ

l ′δpost , s.t. δ ∈ �, δpre = βpre

)
︸ ︷︷ ︸

=:bmax (βpre,�)

, (5)

θub(β,�) := l ′βpost −
(

min
δ

l ′δpost , s.t. δ ∈ �, δpre = βpre

)
︸ ︷︷ ︸

=:bmin(βpre,�)

. (6)

Proof. Re-arranging terms in (4), the identified set can be equivalently written as S(β,�) =
{θ : ∃δ ∈ � s.t. δpre = βpre, θ = l ′βpost − l ′δpost }. The result is then immediate.

2.3.1. Example: non-staggered DiD (continued). In the three-period DiD model
(¯T = T̄ = 1), the ATT in period 1 is point identified if we assume that the counterfactual
post-treatment difference in trends δ1 is exactly zero (parallel trends). Instead, we assume
δ = (δ−1, δ1)

′ ∈ � for some set �. When � is closed and convex, the identified set for the ATT
in period 1 is [β1 − bmax , β1 − bmin], where bmax = maxδ δ1 s.t (δ−1, δ1)

′ ∈ � is the maximum
possible bias of β̂1 given δ−1 = β−1 and bmin is defined analogously.

Additionally, it is immediate from the definition of the identified set in (4) that if � is the
finite union of sets, � = ⋃K

k=1�k , then the identified set is the union of the identified sets for
its subcomponents,

S(β,�) =
K⋃

k=1

S(β,�k). (7)

This fact will be useful, since several empirically relevant choices of � can be written as the
finite union of convex sets, as we will see below.

5. Our focus is on inference on θ . If one were instead interested in estimating the endpoints of the identified, a
natural estimator when � is closed and convex would be [θ lb(β̂,�), θub(β̂,�)], which is the sample analogue to the
bounds derived in Lemma 2.1; see Supplementary Material, Appendix C for additional discussion.
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2.4. Possible choices of �

The class of possible differences in trends � must be specified by the researcher, and the choice
of � will depend on the economic context. We highlight several possible choices of � that may
be reasonable in empirical applications and formalize intuitive arguments that are commonly
made by applied researchers regarding possible violations of parallel trends. Throughout our
discussion, we write δpre = (δ−¯T

, . . . δ−1)
′ and δpost = (δ1, . . . δT̄ )

′, with δ0 normalized to zero.
This aligns the notation with Example 1, where δ corresponds to the difference in trends between
treated and comparison groups, and δ0 is normalized to zero.

2.4.1. Bounding relative magnitudes. In empirical applications, researchers may be will-
ing to assume that the confounding factors which produce non-parallel trends in the post-
treatment periods are not too much larger in magnitude than the confounding factors in the
pre-treatment periods. In their empirical application to right-to-carry gun laws, Manski and Pep-
per (2018) operationalize this intuition by calibrating bounds on |δ1| to the largest violations
of parallel trends in the pre-treatment period (see their Table 3).6 Such a restriction can be
formalized in our framework by imposing that δ ∈ �RM(M̄) for M̄ ≥ 0, where

�RM(M̄) = {δ : ∀ t ≥ 0, |δt+1 − δt | ≤ M̄ · max
s<0

|δs+1 − δs |}.

�RM(M̄) bounds the maximum post-treatment violation of parallel trends between consecutive
periods by M̄ times the maximum pre-treatment violation of parallel trends. We use the abbre-
viation RM for “relative magnitudes.” The choice �RM(M̄) may be reasonable if the researcher
suspects that possible violations of parallel trends are driven by confounding economic shocks
that are of a similar magnitude to confounding economics shocks in the pre-period. When
the number of pre-treatment and post-treatment periods is similar, a natural benchmark may
be M̄ = 1, which bounds the worst-case post-treatment difference in trends by the equivalent
maximum in the pre-treatment period.7

2.4.2. Example: non-staggered DiD (continued). In the three-period DiD model
(¯T = T̄ = 1), assuming δ ∈ �RM(M̄) = {(δ−1, δ1)

′ : |δ1| ≤ M̄ |δ−1|} bounds the magnitude of
δ1 based on the magnitude of δ−1. The larger the magnitude of the pre-treatment violation
in parallel trends, |δ−1|, the wider the range of possible post-treatment violations of parallel
trends. �

2.4.3. Smoothness restrictions. In other empirical settings, researchers may be worried
about confounding from secular trends (e.g. long-run changes in labour supply) that they suspect
evolve smoothly over time. In such settings, it is common for empirical researchers to control
for a linear group-specific time trend.8 This approach is valid if the difference in trends is linear,

6. In their application, Manski and Pepper (2018) observe the outcome for the entire population of interest, and
thus their observed pre-treatment data corresponds with δpre rather than β̂ pre .

7. In settings where later pre-periods are thought to be more informative, the researcher could use a different value
of M̄ for different pre-periods, e.g. imposing that |δt+1 − δt | ≤ max{|δ0 − δ−1|, 2 · |δ−1 − δ−2|}. Likewise, although
we’ve considered bounds on changes across consecutive periods, the researcher could also impose bounds on changes
across multiple periods, e.g. |δt+2 − δt | ≤ M̄ · maxs<−1 |δs+2 − δs |.

8. Specifically, researchers often augment specification (2) with group-specific linear trends, an approach Dobkin
et al. (2018) refer to as a “parametric event-study.” An analogous approach is to estimate a linear trend using only
observations prior to treatment, and then subtract out the estimated linear trend from the observations after treatment
(Bhuller et al., 2013; Goodman-Bacon, 2018, 2021).

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/90/5/2555/7039335 by guest on 07 Septem

ber 2023



2564 REVIEW OF ECONOMIC STUDIES

i.e. � = {δ : δt = γ · t, γ ∈ R}. There are often concerns, however, that the linear specification
is not exactly correct (Wolfers, 2006; Lee and Solon, 2011). A natural relaxation is therefore
to impose only that the differential trends evolve smoothly over time by bounding the extent to
which its slope may change across consecutive periods. Such a restriction can be formalized in
our framework by imposing that δ ∈ �SD(M) for M ≥ 0, where

�SD(M) := {δ : |(δt+1 − δt )− (δt − δt−1)| ≤ M, ∀ t}. (8)

The parameter M ≥ 0 governs the amount by which the slope of δ can change between con-
secutive periods, and thus bounds the discrete analogue of the second derivative. We use the
abbreviation SD for “second differences” or “second derivative.”9 In the special case where
M = 0, �SD(0) requires that the difference in trends be exactly linear, which corresponds with
the assumption underlying the parametric linear specification common in applied work.

2.4.4. Example: non-staggered DiD (continued). In the three-period DiD model, assum-
ing the differential trend is exactly linear is equivalent to assuming � = {δ : δ1 = −δ−1}.
Assuming δ ∈ �SD(M) requires only that the linear extrapolation be approximately correct,
δ1 ∈ [−δ−1 − M,−δ−1 + M].

2.4.5. Combining smoothness and relative magnitudes bounds. In some contexts,
researchers may be willing to assume that the difference in trends evolves relatively smoothly
over time but may be unsure about the smoothness bound M ≥ 0 introduced above. In such
cases, it may be reasonable to assume that the possible non-linearities in the post-treatment dif-
ference in trends are bounded by the observed non-linearities in the pre-treatment difference in
trends. This can be formalized with the restriction

�SDRM(M̄) = {δ : ∀ t ≥ 0, |(δt+1 − δt )− (δt − δt−1)| ≤ M̄ · max
s<0

|(δs+1 − δs)− (δs − δs−1)|},

which bounds the maximum deviation from a linear trend in the post-treatment period by M̄ ≥ 0
times the equivalent maximum in the pre-treatment period. The set �SDRM(M̄) is thus similar
to �SD(M) introduced above, except it allows the magnitude of the possible non-linearity to
explicitly depend on the observed pre-trends.

2.4.6. Sign and monotonicity restrictions. Context-specific knowledge may sometimes
also suggest sign or monotonicity restrictions on the differential trend. For instance, if the
policy of interest occurs at the same time as a confounding policy change that we expect to
have a positive effect on the outcome, we might restrict the post-treatment bias to be positive,
δ ∈ �P B := {δ : δt ≥ 0 ∀ t ≥ 0}. Likewise, there may be secular pre-existing trends that we
expect would have continued following the treatment date.10 We may then wish to impose that
the differential trend be increasing, δ ∈ �I := {δ : δt ≥ δt−1 ∀ t}, or monotone with unknown
sign, δ ∈ �Mon := �I ∪ (−�I ). Sign and monotonicity restrictions may be combined with the

9. Restrictions on the second derivative of the conditional expectation function or density have been used in
regression discontinuity settings (Kolesár and Rothe, 2018; Frandsen, 2016; Noack and Rothe, 2020). Smoothness
restrictions are also used to obtain partial identification in e.g. Manski (1997); Kim et al. (2018).

10. Monotone violations of parallel trends are often discussed in applied work. For example, Lovenheim and
Willen (2019a) argue that violations of parallel trends cannot explain their results because “pre-[treatment] trends are
either zero or in the wrong direction (i.e. opposite to the direction of the treatment effect).” Greenstone and Hanna (2014)
estimate upward-sloping pre-existing trends and argue that “if the pre-trends had continued” their estimates would be
upward biased.
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previously discussed restrictions, such as �SD P B(M) := �SD(M) ∩�P B , �SDI (M) := �SD

(M) ∩�I , and �RM I (M̄) := �RM(M̄) ∩�I .

2.4.7. Polyhedral restrictions. Although the restrictions described above will be sensi-
ble in many empirical contexts, researchers will often have context-specific knowledge that
motivates alternative restrictions than what we introduced above. To accommodate such cases,
we consider the broad class of �s that can be written as polyhedra (sets defined by linear
inequalities), or the finite union of polyhedra.

Definition 1 (Polyhedral restriction). The class � is polyhedral if it takes the form � = {δ :
Aδ ≤ d} for some known matrix A and vector d.

All of the examples described above can be written either as polyhedral restrictions or finite
unions of such restrictions. For instance, �SD(M) and �SD P B(M) can be written directly as
polyhedra.11 Likewise,�RM(M̄) and�SDRM(M̄) can be written as the finite union of polyhedra,
where each polyhedron corresponds with a different location for the maximum pre-treatment
violation.12

The class of (finite unions of) polyhedra is quite broad, and allows for a variety of other
restrictions that may be relevant in empirical work. For example, researchers studying labour
market training and related programs may be concerned about Ashenfelter’s dip (Ashenfelter,
1978), in which earnings for the treated group trend downwards (relative to control) before treat-
ment and upwards afterwards. In this type of setting, researchers might naturally use a polyhedral
� to impose (i) restrictions on the signs of the pre-treatment and post-treatment biases, as well
as (ii) restrictions on the magnitude of the rebound effect relative to the pre-treatment shock.

2.5. Inferential goal

As discussed above, the event study coefficients β̂n will satisfy
√

n(β̂n − β) →d N (0, 
∗)
for a wide variety of commonly used estimators. This suggests the finite-sample normal
approximation

β̂n ≈d N (β, 
n) , (9)

where ≈d denotes approximate equality in distribution and 
n = 
∗/n. We will construct
confidence sets that are uniformly valid for all parameter values θ in the identified set when
the approximation in (9) holds exactly with 
n known. That is, we construct confidence sets
Cn(β̂n, 
n) satisfying

inf
δ∈�,τ inf

θ∈S(δ+τ,�)
Pβ̂n∼N (δ+τ,
n)

(
θ ∈ Cn(β̂n, 
n)

)
≥ 1 − α. (10)

In Section 3.3, we will show that finite-sample size control in the normal model in the sense of
(10) translates to uniform asymptotic size control over a large class of data-generating processes
when 
n is replaced by a consistent estimate 
̂n . That is, we will show that the constructed
confidence sets further satisfy

11. In our ongoing three-period DiD example, �SD(M) = {δ : ASDδ ≤ dSD} for ASD =
(

1 1−1 −1

)
and dSD =

(M,M)′. This generalizes naturally when there are multiple pre-periods and multiple post-periods.
12. For example, define the polyhedra�RM

s,+ (M̄) = {δ : ∀ t ≥ 0, |δt+1 − δt | ≤ M̄(δs+1 − δs )} and�RM
s,− = {δ :

∀ t ≥ 0, |δt+1 − δt | ≤ −M̄(δs+1 − δs )}. Then �RM (M̄) = ⋃
s<0(�

RM
s,+ (M̄) ∪�RM

s,− (M̄)).
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lim inf
n→∞ inf

P∈P
inf

θ∈S(δP +τP ,�)
PP

(
θ ∈ Cn(β̂n, 
̂n)

)
≥ 1 − α. (11)

for a large class of distributions P such that δP ∈ � for all P ∈ P .
We will focus on constructing confidence sets for the case where � is a polyhedron. For the

case where� is the finite union of polyhedra, a valid confidence set can be constructed by taking
the union of the confidence sets for each of its components.

Lemma 2.2. Suppose that for each k = 1, . . . , K , the confidence set Cn,k(β̂n, 
n) satisfies
(10) with � = �k . Then the confidence set Cn(β̂n, 
n) = ⋃K

k=1 Cn,k(β̂n, 
n) satisfies (10) with
� = ⋃K

k=1�k .

In the next two sections, we introduce two approaches to obtain confidence sets satisfying
(10), with different desirable properties depending on the form of �. The first approach, based
on moment inequalities, accommodates a wide range of restrictions � and has some desirable
asymptotic power guarantees. The second approach, based on FLCIs, can potentially offer finite-
sample power improvements for certain special classes of � of interest, such as �SD(M).

3. INFERENCE USING MOMENT INEQUALITIES

In this section, we introduce a general approach for inference that has good asymptotic properties
over a large class of possible restrictions �. We show that inference on the partially identified
parameter θ = l ′τpost in this setting is equivalent to testing a system of moment inequalities
with a potentially large number of nuisance parameters that enter the moments linearly. We
consider an implementation based on the conditional approach developed in ARP, which allows
us to obtain computationally tractable confidence sets with desirable power properties for many
parameter configurations.

3.1. Representation as a moment inequality problem with linear nuisance parameters

Consider the problem of conducting inference on θ = l ′τpost when � takes the polyhedral
form � = {δ : Aδ ≤ d}. We will develop tests that control size under the null hypothesis
H0 : θ = θ̄ , δ ∈ �when the normal approximation (9) holds exactly with known variance matrix

n . In Section 3.3, we will provide conditions under which size control in the finite sample nor-
mal model translates to uniform asymptotic size control over a large class of data-generating
processes.

As a first step, we show that testing H0 is equivalent to testing a system of moment inequali-
ties with linear nuisance parameters in the normal model. Observe that if β̂n ∼ N (β, 
n) for β
satisfying (3), then Eβ̂n∼N (β,
n)

[β̂n − τ ] = δ. It follows that δ ∈ � = {δ : Aδ ≤ d} if and only if

Eβ̂n∼N (β,
n)
[Aβ̂n − Aτ ] ≤ d. Defining Yn = Aβ̂n − d and L post = [0, I ]′ to be the matrix such

that τ = L postτpost , it is immediate that the null hypothesis H0 is equivalent to the composite
null

H0 : ∃τpost ∈ RT̄ s.t. l ′τpost = θ̄ and Eβ̂n∼N (β,
n)

[
Yn − AL postτpost

] ≤ 0. (12)

Testing the null hypothesis H0 is therefore equivalent to testing that the moment inequalities
Eβ̂n∼N (β,
n)

[Yn − AL postτpost ] ≤ 0 hold for some value of τpost satisfying l ′τpost = θ .
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For the purposes of developing tests, it will be useful to re-cast this null hypothesis in terms
of moments involving an unrestricted nuisance parameter τ̃ of dimension T̄ − 1. By applying a
change of basis to the matrix AL post , we can re-write the expression AL postτpost as Ã (θ, τ̃ ′)′

for τ̃ ∈ RT̄ −1.13 The null H0 is then equivalent to

H0 : ∃τ̃ ∈ RT̄ −1 s.t. E

[
Ỹn(θ̄)− X̃ τ̃

]
≤ 0, (13)

where Ỹ (θ̄) = Yn − Ã(·,1)θ̄ and X̃ = Ã(·,−1).14 Since Ỹn(θ̄) is normally distributed with covari-
ance matrix 
̃n = A
n A′ under the finite-sample normal model, testing H0 : θ = θ̄ , δ ∈ � is
equivalent to testing a system of moment inequalities with linear nuisance parameters.

The testing problem (13) is a special case of the problem studied in ARP, which focuses
on testing null hypotheses of the form H0 : ∃τ s.t. E [Y (θ)− Xτ | X ] ≤ 0 (a.s.). Our setting is
a special case of this framework in which: i) the variable X takes the degenerate distribution
X = X̃ , and ii) Y (θ) = Ỹ (θ) is linear in θ . This additional structure will play an important role
in the development of our asymptotic power results below.

3.2. Constructing conditional and hybrid confidence sets

We consider tests for the system of moment inequalities described above using the conditional
and hybrid methods proposed by ARP. This is for both computational and efficiency reasons.
From the computational perspective, a practical challenge to testing the hypothesis (13) in our
setting is that the dimension of the nuisance parameter τ̃ is T̄ − 1, and thus will be large if there
are many post-treatment periods. For example, 5 of the 12 recent event-study papers reviewed
in Roth (2022) have T̄ > 10. This renders many moment inequality methods, especially those
which rely on test inversion over a grid for the full parameter vector, computationally infeasible.
To tractably deal with the nuisance parameter, we consider tests based on the conditional and
hybrid approaches of ARP, which directly exploit the linear structure of the hypothesis (13)
to deliver computationally tractable tests even when the number of post-treatment periods T̄
is large.15 From the perspective of power, we will show that the tests proposed by ARP have
(near-)optimal local asymptotic power in our setting when an LICQ condition is satisfied.

We briefly sketch the construction of the conditional testing approach in our setting, and refer
the reader to ARP for full details. These tests are implemented in the HonestDiD R and Stata
packages that accompany the paper.

13. Let 
 be a square matrix with the vector l ′ in the first row and remaining rows chosen so that 
 has full rank.

Define Ã := AL post

−1. Then AL post τpost = Ã
τpost = Ã

( θ

(−1,·)τpost︸ ︷︷ ︸

:=τ̃

)
. If T̄ = 1, then τ̃ is 0-dimensional and

should be interpreted as 0.
14. We use the notation V(·,1) to denote the first column of a matrix V , and V(·,−1) to denote the matrix containing

all but the first column of V .
15. Other moment inequality methods have been proposed for subvector inference, but typically do not exploit

the linear structure of our setting—see, e.g. Romano and Shaikh (2008), Chernozhukov et al. (2015), Bugni et al.
(2017) and Chen et al. (2018) and Kaido et al. (2019). Cho and Russell (2019), Gafarov (2019), and Flynn (2019) also
provide methods for subvector inference with linear moment inequalities, but in contrast to our approach require a linear
independence constraint qualification (LICQ) assumption for size control. More recently, Cox and Shi (2022) introduced
new tests for the linear moment inequality setting in ARP; see Section 3.5 below for further discussion.
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3.2.1. Conditional confidence sets. Suppose we wish to test (13) for some fixed θ̄ . The
conditional testing approach considers tests based on the profiled test statistic

η̂ := min
η,τ̃

η s.t. Ỹn(θ̄)− X̃ τ̃ ≤ σ̃n · η, (14)

where σ̃n =
√

diag(
̃n). This linear program selects the value of the nuisance parameters

τ̃ ∈ RT̄ −1 that minimizes the maximum studentized moment. Duality results from linear pro-
gramming (e.g. Schrijver (1986), Section 7.4) imply that the value η̂ obtained from the primal
program (14) equals the optimal value of the dual program16

η̂ = max
γ
γ ′Ỹn(θ̄) s.t. γ ′ X̃ = 0, γ ′σ̃n = 1, γ ≥ 0. (15)

If a vector γ∗ is optimal in the dual problem above, then it is a vector of Lagrange multipliers for
the primal problem. Standard results in linear programming imply that the optimum is always
obtained at one of the finite set of vertices, V (
n) (also known as the set of basic feasible
solutions). We denote by V̂n ⊂ V (
n) the set of optimal vertices of the dual program.17

To construct critical values, ARP use the fact that the distribution of η̂ has a truncated normal
distribution conditional on the event that γ∗ is optimal in the dual problem. Specifically,

η̂ | {γ∗ ∈ V̂n, Sn = s} ∼ ξ | ξ ∈ [v lo, vup],

where ξ ∼ N (γ ′∗μ̃(θ̄ ), γ ′∗
̃nγ∗), μ̃(θ̄ ) = E[Ỹn(θ̄)], Sn = (I − (
̃nγ∗/γ ′∗
̃nγ∗)γ ′∗)Ỹn(θ̄), and
v lo, vup are known functions of 
̃n, s, γ∗ (see Lemma 1 in ARP).18 Intuitively, the distribution
of η̂ depends on the vector μ̃(θ̄ ), and so to eliminate the dependence on the components of μ̃(θ̄ )
other than γ ′μ̃(θ̄ ), we condition on Sn , which is a sufficient statistic for the components of μ̃(θ̄ )
that are orthogonal to γ ′∗μ̃(θ̄ ).

ARP show that all quantiles of the conditional distribution of η̂ in the previous display are
increasing in γ ′∗μ̃(θ̄ ). Moreover, the null hypothesis (13) implies γ ′∗μ̃(θ̄ ) ≤ 0. To see why this
is the case, note that the definition of the dual problem (15) implies that γ∗ ≥ 0 and γ ′∗ X̃ = 0,
whereas the null hypothesis implies that there exists τ̃ such that μ̃(θ̄ )− X̃ τ̃ ≤ 0. It follows
that γ ′∗μ̃(θ̄ ) = γ ′∗(μ̃(θ̄ )− X̃ τ̃ ) ≤ 0 under the null. The ARP conditional test therefore uses
the critical value max{0, cC,α}, where cC,α is the 1 − α quantile of the truncated normal dis-
tribution ξ | ξ ∈ [v lo, vup] under the worst-case assumption that γ ′∗μ̃(θ̄ ) = 0.19 We denote by

16. Technically, the duality results require that η̂ be finite. However, one can show that η̂ is finite with probability
1, unless the span of X̃ contains a vector with all negative entries, in which case the identified set for θ is the real line.
We therefore trivially define our test never to reject if η̂ = −∞.

17. In general, there may not be a unique solution to the dual program. ARP show that in the context of the finite
sample normal, conditional on any one vertex of the dual program’s feasible set being optimal, every other vertex is
optimal with either probability 0 or 1. In the finite sample normal model, it thus suffices to condition on the event that
a vector γ∗ ∈ V̂ . Our conditions for asymptotic validity of the conditional test below, however, ensure that the optimal
vertex will be unique w.p.a. 1.

18. The cut-offs vlo and vup are the maximum and minimum of the set {x : x = maxγ∈Fn γ
′(s +

(
̃nγ∗/γ ′∗
̃nγ∗)x)} when γ ′∗
̃nγ∗ �= 0, where Fn is the feasible set of the dual program (15). When γ ′∗
̃nγ∗ = 0, we
define vlo = −∞ and vup = ∞, so the conditional test rejects if and only if η̂ > 0.

19. As noted in ARP, the truncation at 0 is not necessary for the conditional test to control size in the finite
sample normal model, but it simplifies asymptotic arguments. It also prevents the test from rejecting when all moments
are satisfied in sample.
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ψC
α (β̂n, A, d, θ̄, 
n) an indicator for whether the conditional test rejects the null that θ = θ̄ for
� = {δ : Aδ ≤ d}.

We can then form a confidence set for θ by test inversion, CC
α,n(β̂n, 
n) := {θ̄ : ψC

α (β̂n,

A, d, θ̄, 
n) = 0}. The construction of the conditional test implies that Eβ̂n∼N (δ+τ,
n)

[ψC
α (β̂n, A, d, l ′τpost , 
n)] ≤ α for any δ ∈ �. It therefore follows that CC

α,n(β̂n, 
n) satisfies
the finite-sample coverage requirement (10). In Section 3.3 below, we show that coverage in the
normal model translates to uniform asymptotic coverage over a large class of DGPs.

Example 4. An instructive example is when T̄ = 1 (so that there are no nuisance parameters),
and 
̃n = I . Then η̂ = max j Ỹn, j is the maximum component of Ỹn , v lo = max j �= ĵ Ỹn, j is the

second-largest element of Ỹn (where ĵ denotes the index of the max), and vup = ∞. Thus, the
conditional test rejects when η̂ exceeds the 1 − α quantile of the standard normal distribution
truncated to [v lo,∞). Intuitively, this means that the conditional test will tend to reject when
the maximum sample moment is far enough away from the second-largest sample moment. Two
special cases are worth special consideration. First, consider the case where in population one
moment is violated and the remaining moments are very slack, e.g. μ̃1 > 0 while μ̃ j � 0 for
j �= 1. Then with high probability η̂ will equal Ỹn,1 and v lo will be very negative. Thus, the con-
ditional test will behave similarly to a one-sided t-test using Ỹn,1, which can be shown to be
the most powerful test in the finite-sample normal model in this example. On the other hand,
if μ1 ≈ μ2 > 0, then the maximum and second-largest sample moments (i.e. η̂ and v lo) will be
close together with high probability, so the conditional test may not reject with substantial prob-
ability even if both μ1 and μ2 are large, and thus the conditional test may have poor power. To
improve power in these settings where the binding and non-binding moments are close together
(relative to sampling variation), ARP introduce a “hybrid” test, which we describe next.

3.2.2. Hybrid confidence sets. ARP propose a “hybrid” test that combines the condition-
ing approach above with a test based on the “least-favourable” assumption that μ̃(θ̄ ) = 0. In
particular, ARP show that the distribution of η̂ under the null is bounded above (in the sense
of first-order stochastic dominance) by the distribution of η̂ when μ̃(θ̄ ) = 0 (see Section 3.2
of ARP). One can therefore construct a size-κ least-favourable (LF) test in the finite-sample
normal model that rejects whenever η̂ exceeds the 1 − κ quantile of maxγ∈V (
) γ

′ξ , where
ξ ∼ N (0, 
̃n). This critical value, which we will denote by cL F,κ , can easily be calculated by
simulation. For 0 < κ < α, the ARP conditional-LF hybrid test is defined to reject if a first-
stage, size-κ LF test rejects. If this first-stage test does not reject, then in the second stage the
hybrid test conducts a modified version of the size-((α − κ)/(1 − κ)) conditional test that also
conditions on the event that the first-stage LF test did not reject. In particular, by similar logic as
for the conditional test, we have that

η̂ | {γ∗ ∈ V̂n, Sn = s, η̂ ≤ cL F,κ} ∼ ξ | ξ ∈ [v lo, v
up
H ],

where vup
H = min{v lo, cL F,κ} (see Section 3.4 of ARP). The second-stage of the hybrid test

rejects if η̂ exceeds the critical value for the size-((α − κ)/(1 − κ)) conditional test that uses vup
H

instead of vup. We will denote by ψC-L F
κ,α (β̂n, A, d, θ̄, 
n) an indicator for whether the hybrid

test rejects at a particular value θ̄ , and denote by CC-L F
κ,α,n (β̂n, 
n) the confidence set that collects

the values of θ̄ for which the hybrid test does not reject. As with the conditional test, by construc-
tion the hybrid confidence set satisfies that coverage criterion (10) in the finite-sample normal
model. In our implementation below, we use κ = α/10, following ARP.
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3.3. Uniform asymptotic size control

We now provide conditions under which size control in the finite sample normal model trans-
lates to uniform asymptotic size control over a large class of data-generating processes P under
which β̂n is asymptotically normally distributed and 
n is replaced with a consistent estimator

̂n . In particular, we provide sufficient conditions on β̂n, 
̂n , and � such that the higher-level
conditions for size control in ARP are satisfied (Proposition 2 in ARP).

Throughout this section, we fix � = {Aδ ≤ d} for some A with all non-zero rows, and
assume that � is non-empty. We consider a class of data-generating processes, indexed by
P ∈ P , under which

√
n(β̂n − βP) is asymptotically normal, where βP satisfies the causal

decomposition in (3), i.e. βP = δP + L postτP,post for δP ∈ � and τP,post ∈ R¯T . The parame-
ter of interest is θP := l ′τP,post , for some fixed l �= 0. Our first assumption imposes uniform
asymptotic normality of β̂n .

Assumption 2. Let BL1 denote the set of Lipschitz functions which are bounded by 1 in absolute
value and have Lipschitz constant bounded by 1. We assume

lim
n→∞ sup

P∈P
sup

f ∈BL1

∣∣∣EP

[
f (

√
n(β̂n − βP))

]
− E

[
f (ξP)

]∣∣∣ = 0,

where ξP ∼ N (0, 
P), and βP = δP + L postτP,post for δP ∈ � and τP,post ∈ RT̄ .

Convergence in distribution is equivalent to convergence in bounded Lipschitz metric (see
Theorem 1.12.4 in van der Vaart and Wellner, 1996), so Assumption 2 formalizes the notion of
uniform convergence in distribution of

√
n(β̂n − βP) to a N (0, 
P) variable under P .

Our next two assumptions require that the eigenvalues of the asymptotic variance of β̂n be
bounded above and away from zero, and that there exists a uniformly consistent estimator for
the variance of β̂n .

Assumption 3. Let S denote the set of matrices with eigenvalues bounded below by ¯λ > 0 and
above by λ̄ ≥ ¯λ. For all P ∈ P , 
P ∈ S.

Assumption 4. We have an estimator 
̂n that is uniformly consistent for 
P ,

lim
n→∞ sup

P∈P
PP

(
‖
̂n −
P‖ > ε

)
= 0,

for all ε > 0.

Finally, we impose some regularity conditions on the matrix A.

Assumption 5. At least one of the following holds.

(A) For k1 + k2 = dim(δ), the matrix A can be written as T Q, where Q has full row-rank

and T =
( Ik1 0

−Ik1 0
0 Ik2

)
. (We allow for the case where one of k1 or k2 is 0, in which case the

zero-dimensional blocks can be ignored).
(B) Let γ̄1, . . . , γ̄K be the elements of V (I ). Then for all k, either γ̄ ′

k A = 0 or
infa≥0 inf j �=k ‖(γ̄k − aγ̄ j )

′ A‖ > 0.

Part (A) of Assumption 5 imposes that the only source of degeneracy in the rows of A is
matching inequalities of opposite signs. This is the case for many restrictions of interest, such
as �SD(M) and the polyhedra that form �RM(M̄). Part (B) provides an alternative, higher-
level condition that ensures that for distinct vertices γ̄k, γ̄ j , the random variables γ̄ ′

j Ỹn and γ̄ ′
k Ỹn
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are not perfectly positively correlated with each other. Assumption 5 is used to guarantee that
degeneracy in the asymptotic distribution of γ ′Ỹn arises only from known degeneracies in A. We
note, however, that Assumption 5 does not rule out settings where the solutions to the bounds
of the identified set given in equation (5) and (6) are non-unique or degenerate (i.e. where the
extreme points for θ occur at “flat faces” of the identified set). If A is full-rank, for example,
then Assumption 5(A) holds trivially with T = I , and thus the mean of the moments μ̃(θ̄ ) is
completely unrestricted.20

The assumptions stated above are sufficient for the conditions in Proposition 2 in ARP, which
establishes uniform size control for the conditional and hybrid tests.

Proposition 3.1. Suppose Assumptions 2–5 hold. Then the conditional and LF-hybrid tests
uniformly control size. That is, for any α < 0.5,

lim sup
n→∞

sup
P∈P

EP

[
ψC
α

(
β̂n, A, d, θP ,

1

n

̂n

)]
≤ α.

lim sup
n→∞

sup
P∈P

EP

[
ψC-L F
κ,α

(
β̂n, A, d, θP ,

1

n

̂n

)]
≤ α.

3.4. Uniform asymptotic consistency

We next provide conditions under which the conditional and hybrid tests are uniformly asymp-
totically consistent, in the sense that power against fixed alternatives outside the identified set
converges uniformly to 1. To establish uniform consistency of the conditional and hybrid tests,
we strengthen Assumptions 2 and 3 as follows.

Assumption 6. Let Wn = ((β̂n − βP)
′, (vec(
̂n)− vec(
P))

′)′, where vec(
) is the vector of
the elements of the matrix 
. We assume

lim
n→∞ sup

P∈P
sup

f ∈BL1

∣∣∣∣EP
[

f (
√

nWn)
] − E

[
f (ξ+

P )
]∣∣∣∣ = 0,

where ξ+
P ∼ N (0, VP), VP =

(

P VP,β


VP,
β VP,


)
.

Assumption 7. For all P ∈ P , 
P ∈ S and the matrix VP defined in Assumption 6 lies in a
compact set V. Additionally, (
P − VP,β
V †

P,
VP,
β) has eigenvalues bounded below by λ̃ > 0,
where † denotes the Moore–Penrose inverse.

Assumption 6 strengthens Assumption 2 to require that β̂n and 
̂n have a joint normal
asymptotic distribution. Although somewhat more restrictive, event-study estimates are often
estimated via OLS, and standard covariance estimators for OLS, including cluster-robust vari-
ance estimators, produce asymptotically normal estimates as the number of clusters grows large
(Hansen, 2007; Stock and Watson, 2008; Hansen and Lee, 2019). We do not impose that the
asymptotic distributions of β̂n and 
̂n are independent, as would occur in linear models if
the linear model is correctly specified. Assumption 7 strengthens Assumption 3 to require that
the asymptotic distribution of β̂n is not perfectly asymptotically colinear with 
̂n .

20. Some values of A satisfying Assumption 5 may imply that certain pairs of moments cannot simultaneously
be binding. For example, the restriction that |δ1| ≤ 1 can be represented as δ1 ≤ 1 and −δ1 ≤ 1, which satisfies Assump-
tion 5(A), but clearly both moments cannot simultaneously bind. Nevertheless Assumption 5(A) is compatible with “flat
faces” even when A is not full rank. For example, if � corresponds with the restrictions |δ1| ≤ 1 and |δ2| ≤ 1, then the
extreme points for θ = τ2 occur at flat faces of the identified set for (τ1, τ2).
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Under the imposed assumptions, we obtain uniform consistency of the conditional and hybrid
tests.

Proposition 3.2. Suppose Assumptions 4–7 hold. Then for any x > 0 and α < 0.5,

lim
n→∞ inf

P∈P
EP

[
ψC
α

(
β̂n, A, d, θub

P + x,
1

n

̂n

)]
= 1

lim
n→∞ inf

P∈P
EP

[
ψC-L F
κ,α

(
β̂n, A, d, θub

P + x,
1

n

̂n

)]
= 1,

where θub
P = supS(βP ,�) is the upper bound of the identified set. The analogous result holds

replacing θub
P + x with θ lb

P − x for θ lb
P = infS(βP ,�).

3.5. Optimal local asymptotic power

We next provide conditions under which the conditional test has optimal local asymptotic
power. We first state the conditions and our formal results, and then provide several examples
highlighting when the assumptions will and will not hold.

3.5.1. Main results. We begin by defining LICQ. Recall that the upper bound of the
identified set is given by

θub(β,�) = l ′βpost −
(

min
δ

l ′δpost , s.t. Aδ ≤ d, δpre = βpre

)
.

Since δpost = βpost − τpost , we can re-write the upper bound as a maximization over τpost ,

θub(β,�) = max
τpost

l ′τpost , s.t. − A(·,post)τpost ≤ d − Aβ, (16)

where A(·,post) contains the columns of A corresponding with δpost . Let τ ∗
post denote a solution to

the optimization for θub(β,�) in (16), and let B∗ denote the indices of the binding constraints,
so that −A(B∗,post)τ

∗
post = dB∗ − A(B∗,·)β and −A(−B∗,post)τ

∗
post < d−B∗ − A(−B∗,·)β.

Definition 2 (LICQ). We say that LICQ holds in direction l if there exists a solution τ ∗
post to

(16) such that the gradient of the binding constraints with respect to τpost , −A(B∗,post), has full
row rank.21 We define LICQ in the direction −l analogously for the optimization that replaces
max with min in (16).

For ε > 0, we define Pε to be the set of distributions P ∈ P such that LICQ holds in the
direction l and the non-binding constraints are slack by at least ε, i.e. −A(−B∗,post)τ

∗
post < d −

AβP − ε.
Our next result states that for P ∈ Pε , the local power of the conditional test converges to

the power envelope for tests that control size in the finite sample normal model. To state this
result formally, we define Iα(�,
n) to be the collection of confidence sets that control size in
the finite sample normal model, i.e. confidence sets satisfying (10).

21. The definition of LICQ in Kaido et al. (2021) would require that this condition holds for all solutions τ∗
post .

For our results, however, it is sufficient for the condition to hold for some solution τ∗
post .
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Proposition 3.3. Suppose Assumptions 2–4 hold. Let θub
P = supS(βP ,�). Then for any ε > 0,

x > 0, and α < 0.5,

lim
n→∞ sup

P∈Pε

∣∣∣∣EP

[
ψC
α

(
β̂n, A, d, θub

P + 1√
n

x,
1

n

̂n

)]
− ρ∗

α(P, x)

∣∣∣∣ = 0,

where

ρ∗
α(P, x) = lim

n→∞ sup
Cα,n∈Iα(�, 1

n
P)
Pβ̂n∼N(βP ,

1
n
P)

((
θub

P + 1√
n

x

)
�∈ Cα,n

)

is the optimal local asymptotic power of a size-α test in the finite sample normal model. An
analogous result holds for the lower bound under the class of distributions where LICQ holds in
direction −l.

Since the LF-hybrid test rejects whenever the conditional test with size (α − κ)/(1 − κ)
rejects, it is immediate that the local asymptotic power of the LF-hybrid test is at least as good
as the power of the optimal size-((α − κ)/(1 − κ)) test.

Corollary 3.1. Under the conditions of Proposition 3.3,

lim inf
n→∞ inf

P∈Pε

(
EP

[
ψC-L F
κ,α

(
β̂n, A, d, θub

P + 1√
n

x,
1

n

̂n

)]
− ρ∗

(α−κ)/(1−κ)(P, x)

)
≥ 0.

We emphasize that Proposition 3.3 and Corollary 3.1 are new, and exploit structure in our
context not contained in the more general setting considered in ARP.

3.5.2. Discussion and examples. As discussed in Kaido et al. (2021), LICQ and related
constraint qualifications have been used frequently in the partial identification literature. Intu-
itively, LICQ ensures that the bounds of the identified set are differentiable with respect to the
means of the moments (μ̃(θ̄ )), and thus avoids challenges related to estimation and inference for
non-differentiable parameters (Hirano and Porter, 2012). Uniform LICQ conditions have been
invoked recently by Gafarov (2019) and Cho and Russell (2019), and a related Slater constraint
qualification is used in Kaido and Santos (2014). One important distinction between our results
and previous results using LICQ is that we do not require LICQ for our size control results
(Proposition 3.1). Thus, our tests control size even when LICQ fails (and so the bounds may
be non-differentiable), but Proposition 3.3 shows that this does not come at the cost of power
asymptotically when indeed LICQ holds.22

Figure 1 provides geometric intuition for when LICQ will and will not hold in the case where
T̄ = 2 and the target parameter is the average of the post-treatment effects, θ = 1

2 (τ1 + τ2). In
panel (a), there is a unique τ ∗

post (coloured in red) at which two linearly independent moments
bind, so LICQ is satisfied. LICQ is likewise satisfied in panel (b), where the optimal τ ∗

post is not
unique (a so-called “flat-face” problem). This is because at the indicated values τ ∗

post (coloured
in red), there is either one or two linearly independent binding moments. A failure of LICQ is
shown in panel (c). In this example, there are three binding moments at τ ∗

post (coloured in red),
so the binding constraints cannot be linearly independent in R2. Such a situation may arise when
there are both smoothness restrictions and sign or shape restrictions that are simultaneously
binding at the boundary of the identified set.

22. We view this result as loosely parallel to results in the weak identification literature showing that certain
procedures control size under weak identification but are efficient under strong identification (e.g. Moreira, 2003).
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(a) (b) (c)

FIGURE 1
Diagram illustrating when LICQ (Assumption 2) will and will not hold in the case where T̄ = 2.

Note: In each panel, we assume that the rows associated with binding moments are ordered first in the matrix A for ease of notation. The
blue shading denotes the identified set for (τ1, τ2) and the dashed red arrow points in the direction l = ( 1

2 ,
1
2 )

′. In panel (a), LICQ is
satisfied since there is a unique τ∗

post (coloured in red) at which two linearly independent moments are binding. In panel (b), even though
τ∗

post is not unique, LICQ is satisfied as there is either one or two linearly independent binding moments at the values of τ∗
post coloured

in red. In panel (c), there are three binding moments at τ∗
post (coloured in red), and so LICQ is violated.

In the three period DiD model (where there are no nuisance parameters, since T̄ = 1), LICQ
is satisfied when the bounds of the identified set are each determined by one moment. This holds
everywhere for�SD(M)when M > 0. It holds almost everywhere for�SD P B(M)when M > 0,
although it fails when both the sign restrictions and smoothness restrictions are simultaneously
binding. (For LICQ to hold with non-binding moments slack by at least ε, i.e. P ∈ Pε , δP must
not be local to a point at which LICQ fails.) When M = 0, both the upper and lower bounds for
�SD(M) and �SD P B(M) are binding, so LICQ fails.

More generally, the result in Proposition 3.3 is under the asymptotic regime where the sam-
pling variation grows small relative to the length of the identified set, and thus the binding and
non-binding moments are “far” apart relative to sampling variation. Importantly, it can be shown
that the LICQ condition rules out settings where θ is point identified. Thus, the asymptotics
considered in Proposition 3.3 may not provide a good approximation to the finite-sample per-
formance of the conditional test in settings where θ is point-identified, or when the length of the
identified set is “small” relative to sampling variation.

We are not aware of results analogous to Proposition 3.3 for any test that controls size in the
finite-sample normal model. Kaido and Santos (2014) provide an efficiency result under a related
Slater constraint qualification condition, but their test does not control size when the constraint
qualification fails. It is worth highlighting that if LICQ holds for a particular set of moments,
then it also holds if one adds moments that are slack at the optimal τ ∗

post . Proposition 3.3 thus
requires that the asymptotic power of the test is not affected by the inclusion of slack moments.
The only other non-trivial tests that we are aware of that control size in the finite-sample normal
model and have this form of insensitivity to slack moments are the tests proposed by Cox and
Shi (2022). An interesting open question is whether the tests proposed by Cox and Shi (2022)
also converge to the power envelope under LICQ.23

3.5.3. Extensions. Proposition 3.3 is stated for the case when � is a single polyhedron.
An immediate corollary, however, is that when � = ⋃K

k=1�k , the conditional test based on the
union of confidence sets has optimal local asymptotic power when the �k that determines the
identified set bounds is unique and satisfies the conditions of Proposition 3.3. This implies,

23. Extending the results to the Cox and Shi tests is non-trivial given that they use a different test statistic and
construct critical values in a different way.
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for example, that when � = �RM(M̄), the power of the conditional test converges to the
power envelope when there is a unique (non-zero) pre-treatment maximum violation, i.e. when
maxs<0 |δs+1 − δs | > 0 and has a unique solution.24 Likewise, the conditional test has optimal
local asymptotic power for �SDRM(M̄) when there is a unique maximum non-linearity in the
pre-treatment period. Intuitively, this is because the upper bound of the identified set is deter-
mined by a single �k∗ satisfying LICQ, so the conditional test for this �k∗ has optimal local
asymptotic power, whereas our consistency results imply that the tests for the remaining�k that
do not determine the identified set bound reject with probability approaching 1. See Corollary
4.1 in the working paper version of this paper for a formal derivation (Rambachan and Roth,
2021).

Proposition 3.3 shows that under LICQ the local asymptotic power of the conditional test
converges to the power envelope for tests controlling size in the finite-sample normal model.
In the working paper version of this paper, we showed that the power envelope from the
finite-sample normal model corresponds with the power-envelope among tests that control size
asymptotically and have certain invariance properties using results in Müller (2011) (Proposition
E.4 in Rambachan and Roth, 2021).

4. INFERENCE USING FIXED LENGTH CONFIDENCE INTERVALS

We next consider FLCIs based on affine estimators. While the conditional and hybrid confidence
sets offer attractive asymptotic power guarantees under asymptotics in which sampling variation
grows small relative to the length of the identified set, FLCIs offer finite-sample power guar-
antees (in the normal model) for certain classes � of interest. In certain special cases, FLCIs
may thus outperform the ARP tests when sampling variation is large relative to the length of
the identified set. For brevity of exposition, we focus on the properties of FLCIs in the case
where the finite-sample normal approximation (9) holds exactly with
n known; Armstrong and
Kolesár (2020b) provide uniform asymptotic results for FLCIs under conditions similar to those
in Section 3.3.

4.1. Constructing FLCIs

Following Donoho (1994) and Armstrong and Kolesár (2018, 2020a), we consider FLCIs based
on an affine estimator for θ , denoted by Cα,n(a, v, χ) := (a + v ′β̂n)± χ , where a and χ are
scalars and v ∈ R¯T +T̄ . We minimize the half-length of the confidence interval, χ , subject to the
constraint that Cα,n(a, v, χ) satisfies the coverage requirement (10) in the finite-sample normal
model.

Observe that if β̂n ∼ N (β, 
n) , then a + v ′β̂n ∼ N (
a + v ′β, v ′
nv

)
, and hence |a +

v ′β̂n − θ | ∼ |N (
b, v ′
nv

) |, where b = a + v ′β − θ is the affine estimator’s bias for θ .

Observe further that θ ∈ Cα,n(a, v, χ) if and only if |a + v ′β̂n − θ | ≤ χ . For fixed values a and
v , the smallest value of χ that satisfies (10) is therefore the 1 − α quantile of the |N (

b̄, v ′
nv
) |

distribution, where b̄ is the affine estimator’s worst-case bias

b̄(a, v) := sup
δ∈�,τpost ∈RT̄

∣∣a + v ′ (δ + L postτpost
) − l ′τpost

∣∣ . (17)

24. For this convergence to hold uniformly, the non-binding moments must be slack by ε, so we would need that
maxs<0 |δs+1 − δs | is at least ε greater than the second largest difference.
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Let cvα(t) denote the 1 − α quantile of the folded normal distribution |N (t, 1) |.25 For fixed a
and v , the smallest value of χ satisfying the coverage requirement (10) is thus

χn(a, v;α) = σv,n · cvα(b̄(a, v)/σv,n), (18)

where σv,n := √
v ′
nv . The optimal (i.e. minimum-length) FLCI is constructed by choosing

the values of a and v to minimize (18). When � is convex, this minimization can be solved
as a nested optimization problem, where both the inner and outer minimizations are convex
(Low, 1995; Armstrong and Kolesár, 2018, 2020a). We denote the 1 − α level, optimal FLCI by
CF LC I
α,n (β̂n, 
n) := (an + v ′

nβ̂n)± χn , where χn := infa,v χn(a, v;α) and an , vn are the optimal
values in the minimization.

4.1.1. Example: �SD(M). Suppose θ = τ1. For �SD(M), the affine estimator used by the
optimal FLCI takes the form a + v ′β̂n = β̂n,1 − ∑0

s=−¯T +1ws(β̂n,s − β̂n,s−1), where the weights
ws sum to one (but may be negative). This estimator adjusts the event-study coefficient for t = 1
by an estimate of the differential trend between t = 0 and t = 1 formed by taking a weighted
average of the differential trends in periods prior to treatment. The worst-case bias will be smaller
if more weight is placed on pre-treatment periods closer to the treatment date, but it may reduce
variance to place more weight on earlier pre-periods. The weights ws are optimally chosen to
balance this trade-off.

4.2. Finite-sample near optimality

In particular cases of interest, such as when � = �SD(M), the optimal FLCIs introduced above
have near-optimal expected length in the finite-sample normal model. The following result,
which is an immediate consequence of results in Armstrong and Kolesár (2018, 2020a), bounds
the ratio of the expected length of the shortest possible confidence interval that controls size
relative to the length of the optimal FLCI.

Assumption 8. Assume (i) � is convex and centrosymmetric (i.e. δ̃ ∈ � implies −δ̃ ∈ �), and
ii) δ ∈ � is such that (δ̃ − δ) ∈ � for all δ̃ ∈ �.

Proposition 4.1. Suppose δ and � satisfy Assumption 8. Let Iα(�,
n) denote the class of
confidence sets that satisfy the coverage criterion (10) at the 1 − α level. Then, for any τ with
τpre = 0 and 
n positive definite,

infCα,n∈Iα(�,
n) Eβ̂n∼N (δ+τ,
n)

[
λ(Cα,n)

]
2χn

≥ z1−α(1 − α)− z̃α�(z̃α)+ φ(z1−α)− φ(z̃α)

z1−α/2
,

where λ(·) denotes the length (Lebesgue measure) of a set and z̃α = z1−α − z1−α/2.

Part (i) of Assumption 8 is satisfied for�SD(M) but not for our other ongoing examples. For
example, �SD P B(M) is convex but not centrosymmetric, and �RM(M̄) is neither convex nor
centrosymmetric. Part ii) of Assumption 8 is satisfied whenever parallel trends holds in both the
pre-treatment and post-treatment periods (δ = 0) and whenever δ is a linear trend for the case of
�SD(M).

FLCIs thus offer attractive guarantees for the case of �SD(M). When α = 0.05, the lower
bound in Proposition 4.1 evaluates to 0.72, meaning that the expected length of the shortest

25. If t = ∞, we define cvα = ∞.
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possible confidence set that satisfies the coverage requirement (10) is at most 28% shorter than
the length of the optimal FLCI when the conditions of the proposition hold.

4.3. (In)Consistency of FLCIs

As discussed above, these finite-sample guarantees do not apply for several types of restric-
tions � of importance, including those that construct bounds using the maximum pre-treatment
violation or incorporate sign and shape restrictions. We now show that the FLCIs can perform
poorly under such restrictions. We first provide two illustrative examples, and then state a formal
inconsistency result.

4.3.1. Example: �SD P B(M) and �SDI (M). Suppose θ = τ1. It can be shown that the
worst-case bias of an affine estimator over �SD P B(M) or �SDI (M) is the same as the worst-
case bias for that estimator over �SD(M).26 Since the construction of the optimal FLCI depends
only on the worst-case bias and variance of the affine estimator, it follows that the optimal FLCI
constructed using �SD P B(M) or �SDI (M) is the same as the one constructed using �SD(M).
Therefore, the optimal FLCI does not adapt to additional sign or monotonicity restrictions.

4.3.2. Example: �RM(M̄). Suppose θ = τ1. If � = �RM(M̄) and M̄ > 0, then all affine
estimators for τ1 have infinite worst-case bias, since δ ∈ �RM(M̄) can have |δ1| arbitrarily large
if |δ−1| is also sufficiently large. Thus, the only valid FLCI is the entire real line.

We next provide a formal result on the (in)consistency of the FLCIs. Specifically, we will
show that even as the sampling variation 
n converges to 0, the optimal FLCI will include fixed
points outside of the identified set with positive probability unless certain special conditions are
met.27 Recall from Lemma 2.1 that the identified set S(β,�) is an interval when � is convex,
with length equal to θub(β,�)− θ lb(β,�) = bmax (βpre,�)− bmin(βpre,�). Since the length
of the identified set only depends on βpre and �, denote it by L I D(βpre,�). Our next result
shows that CF LC I

α,n (β̂n, 
n) is consistent if and only if L I D(βpre,�) is its maximum possible
value, provided that the identified set is not the entire real line (in which case any procedure is
trivially consistent).

Assumption 9 (Identified set maximal length and finite). Suppose δ ∈ � is such
that L I D(δpre,�) = supδ̃pre∈�pre

L I D(δ̃pre,�) < ∞, where �pre = {δpre ∈ RT :
∃δpost s.t. (δ′

pre, δ
′
post )

′ ∈ �} is the set of possible values for δpre.

Proposition 4.2. Suppose� is convex and α < 0.5. Fix δ ∈ � and τ with τpre = 0, and suppose
S(δ + τ,�) �= R. Then (δ,�) satisfy Assumption 9 if and only if CF LC I

α,n (β̂n, 
n) is consistent,
meaning that for 
n = 
∗/n,

lim
n→∞ Pβ̂n∼N (δ+τ,
n)

(
θout ∈ CF LC I

α,n (β̂n, 
n)
)

= 0 for all θout �∈ S(δ + τ,�).

26. Suppose the vector δ̄ maximizes the bias for an affine estimator (a, v) over �SD(M). The vector that adds
a constant slope to δ̄, say δ̃c = δ̄ + c · (−¯T, . . . , T̄ )′, also lies in �SD(M), and for c sufficiently large, δ̃c will lie in
�SD P B (M). Moreover, the worse-case bias will be the same for δ and δ̃c , since if (a, v) has finite worst-case bias it
must subtract out a weighted average of the pre-treatment slopes.

27. For ease of exposition, we present a result using “small-
” asymptotics in the normal model, as in e.g.
Kadane (1971) and Moreira and Ridder (2019).
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Thus, if Assumption 9 fails, then CF LC I
α,n (β̂n, 
n) is inconsistent in the strong sense that it

includes fixed points outside of the identified set with non-vanishing probability. It follows that
there will be some δ ∈ � such that the FLCI is inconsistent under δ unless the identified set is
always the same length. Proposition 4.2 is new, and may be relevant for other settings in which
FLCIs are used.

The intuition for the possible inconsistency of FLCIs is as follows: to ensure that an FLCI
satisfies the coverage requirement (10), its length must be at least supδ̃pre∈�pre

L I D(δ̃pre,�).

However, this implies that if in fact L I D(δpre,�) < supδ̃pre∈�pre
L I D(δ̃pre,�), then the FLCI

is strictly longer than the length of the identified set, regardless of the value of 
n , and thus
some points outside of the identified set must be covered with non-vanishing probability. This
reflects the fact that FLCIs are by construction fixed length, and thus their length does not adapt
to information in the data about the length of the identified set. By contrast, the length of the
conditional/hybrid confidence sets can depend on β̂ pre and thus “adapts” to the length of the
identified set.

In the three-period DiD example, Assumption 9 holds everywhere for �SD(M) (since the
identified set is always the same length, 2M), for values of δ where the sign restrictions do not
bind for �SD P B(M), and nowhere for the polyhedra that form �RM(M̄). The restrictiveness of
Assumption 9 thus depends greatly on �.

The results in this section establish that when certain conditions on � are satisfied, optimal
FLCIs are consistent and have desirable finite-sample guarantees in terms of expected length.
FLCIs are thus attractive for our baseline smoothness class�SD(M), since they are guaranteed to
be consistent and offer attractive finite-sample guarantees. Our inconsistency result shows, how-
ever, that FLCIs may perform poorly for other choices of � that may be of interest in empirical
applications, such as those that construct bounds using a pre-treatment maximum or incorporate
sign and monotonicity restrictions.

5. SIMULATION STUDY

In this section, we conduct a simulation study to investigate the performance of the discussed
confidence sets across a range of relevant data-generating processes. We find good size control
for all of the procedures, and therefore focus in the main text on a comparison of power to pro-
vide concrete recommendations on the best approach in practice. In the supplementary material,
we present results on size control and other additional simulation results.

5.1. Simulation design

Our simulations are calibrated using the estimated covariance matrix from the 12 recently-
published papers surveyed in Roth (2022). For any given paper in the survey, we denote by 
̂
the estimated variance-covariance matrix from the event-study in the paper, calculated using the
clustering scheme specified by the authors. For a chosen mean vector β, we simulate event-study
coefficients β̂s from a normal model, β̂s ∼ N (β, 
̂).28 In simulation s, we construct nominal
95% confidence sets for the parameter of interest θ using the pair (β̂s, 
̂) for each proposed pro-
cedure. The parameter of interest is the causal effect in the first post-treatment period (θ = τ1);
in the supplementary material, we present simulation results in which the parameter of interest

28. We focus on the normal simulations in the main text since it allows for a tractable computation of the optimal
excess length of procedures that control size. In the supplementary material, we show that our procedures perform
similarly in simulations based on the empirical distribution in the original paper.
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TABLE 1
Summary of expected properties for each simulation design

Parallel Trends Pulse Pre-Trend

�SD(M) �SD P B (M) �SDRM (M̄) �RM (M̄)

Conditional and Hybrid
Consistent � � � �
Asymptotically (near-)optimal � � � ×
FLCI
Consistent � × × ×
Finite-sample near-optimal � × × ×

is the average causal effect in the post-treatment periods (θ = τ̄post ), with qualitatively similar
results.

For a given choice of �, we compute the identified set S(β,�) using the formulas provided
in Lemma 2.1 and calculate the expected excess length for each of the proposed confidence
sets. We benchmark the expected excess length of our proposed confidence sets relative to an
efficiency bound for confidence sets that satisfy the uniform coverage requirement.29 We report
the efficiency ratio of each procedure, which is defined as the ratio of the optimal benchmark
relative to the average excess length for the procedure. All results are calculated over 1,000
simulations per paper.

We consider four choices of � to highlight the performance of our proposed confidence sets
across a range of conditions: �SD(M), �SD P B(M), �RM(M̄), and �SDRM(M̄). We consider
simulations under the assumption of zero treatment effects, so that τ = 0 and thus β = δ. We
consider two forms for δ. First, we consider the baseline case of parallel trends (δ = 0). Second,
we consider a “pulse” pre-trend in which δ−1 is non-zero and the remaining elements of δ are
zero. Such a pre-trend might arise in practice if there are confounding policy changes or other
events close to the time of treatment. These different choices of δ allow us to highlight the
relative strengths of the proposed inference procedures. For example, FLCIs have near-optimal
expected length when δ = 0 and � = �SD(M), whereas the conditional test has optimal local
asymptotic power under the pulse design when � = �SD P B(M). Table 1 summarizes which of
our theoretical results hold for each of the simulation designs when M and M̄ are non-zero.

In practice, we find that for �SD(M) and �SD P B(M), the results depend on M but are quali-
tatively similar across values of δ. By contrast, for �SDRM(M̄) and �RM(M̄), the choice of δ is
more important than the choice of M̄ . Therefore, to highlight the most important dimensions for
each of the simulation designs, in the main text of the paper we report results for �SD(M) and
�SD P B(M) under different values of M and δ = 0 (parallel trends), whereas for �RM(M̄) and
�SDRM(M̄) we vary the magnitude of the pre-treatment pulse δ−1, holding M̄ = 1 constant. In
the supplementary materials, we report results for additional choices of these parameters.

29. For choices of� that are convex (e.g.�SD(M) and�SD P B (M)), we benchmark the expected excess length
of our proposed confidence sets against a sharp optimal bound over confidence sets that satisfy the finite-sample coverage
requirement (10). This optimal bound is provided in the supplementary materials, and follows as a corollary from results
in Armstrong and Kolesár (2018) on the optimal expected length of a confidence set satisfying the uniform coverage
requirement (10). For choices of � that can be written as the union of convex sets (e.g. �RM (M̄) and �SDRM (M̄)),
we compare the expected excess length of our proposed confidence sets against the maximal optimal bound over each
set in the union, which is a potentially non-sharp bound for any confidence set with correct coverage.
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FIGURE 2
Simulation results for �SD(M) and �SD P B (M): Median efficiency ratios for proposed procedures.

Note: Median efficiency ratios for our proposed confidence sets over �SD(M) and �SD P B (M) under the assumption of parallel trends
and zero treatment effects (i.e. β = 0). The efficiency ratio for a procedure is defined as the efficiency bound divided by the procedure’s
expected excess length. The results for the FLCI are plotted in purple, conditional-LF (“C-LF Hybrid”) hybrid in blue, and conditional
confidence set in green. Results are averaged over 1,000 simulations for each of the 12 papers surveyed, and the median across papers is
reported here.

We report results for three methods for constructing confidence sets: FLCIs, conditional
confidence sets, and conditional-least favourable hybrid confidence sets.30 For �RM(M̄) and
�SDRM(M̄), we omit results for the FLCI since the FLCIs have infinite length.

5.2. Simulation results

To compare results easily across the 12 papers in the simulation study, we normalize the units
of δ−1 and M by the standard deviation of β̂1 (denoted σ1). Large normalized values of M or
δ−1 correspond with the case where the identified set is large relative to sampling variation,
mimicking our asymptotic power results in which sampling variation grows small relative to the
identified set. In the graphs below, we report the median value of excess length efficiency across
the papers in the survey. The normalization described above implies that the units of the x-axis
correspond with the worst-case bias of the naive estimator β̂1 divided by its standard error.31

5.2.1. Results for �SD(M). The left panel of Figure 2 plots the efficiency ratio for each
procedure as a function of M/σ1 when � = �SD(M). All procedures perform well as M/σ1

grows large with efficiency ratios approaching 1, illustrating our asymptotic (near-)optimality
results for this design. However, the FLCIs perform best for smaller values of M/σ1, includ-
ing the point-identified case where M = 0, illustrating the finite-sample near-optimality results
for the FLCIs when Assumption 8 holds. Although the conditional and hybrid confidence sets
have efficiency approaching the optimal bound for M/σ1 large, their efficiency is only about
50% when M/σ1 = 0, in which case θ is point identified and thus LICQ does not hold. The
conditional and hybrid confidence sets perform similarly.

30. For the conditional-least favourable hybrid confidence sets, we use a first-stage least-favourable test of size
κ = α/10, following ARP and Romano et al. (2014).

31. For β̂1 normally distributed, the worst-case coverage of a conventional 95% confidence interval as a function
of the normalized worst-case bias b is �(1.96 + b)−�(−1.96 + b), which is 0.95 for b = 0, 0.83 for b = 1, 0.48 for
b = 2, etc.
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FIGURE 3
Simulation results for �SDRM (M̄) and �RM (M̄): Median efficiency ratios for proposed procedures.

Note: Median efficiency ratios for our proposed confidence sets over �SDRM (M̄) and �RM (M̄) with M̄ = 1 under the assumption of
zero treatment effects and a “pulse” pre-trend (i.e. β−1 = δ−1 and βt = 0 for all t �= −1). The efficiency ratio for a procedure is defined
as the efficiency bound divided by the procedure’s expected excess length. The results for the conditional-least favourable (“C-LF”)
hybrid are plotted in blue, and conditional confidence set in green. Results are averaged over 1,000 simulations for each of the 12 papers
surveyed, and the median across papers is reported here.

5.2.2. Results for �SD P B(M). The right panel of Figure 2 plots the efficiency ratio for
each procedure as a function of M/σ1 when � = �SD P B(M). The efficiency ratios for the con-
ditional and hybrid confidence sets are again (near-)optimal as M/σ1 grows large, highlighting
our asymptotic (near-)optimality results for these procedures in this simulation design. By con-
trast, the efficiency ratios for the FLCIs steadily decrease as M/σ1 increases, reflecting that the
FLCIs are not consistent in this simulation design when M > 0. The conditional-LF hybrid con-
fidence sets slightly improve efficiency relative to the conditional confidence sets when M/σ1 is
small and retain near-optimal performance as M/σ1 grows large.

5.2.3. Results for �SDRM(M̄). The left panel of Figure 3 plots the efficiency ratios for
the conditional and conditional-least favourable hybrid confidence sets as a function of δ−1/σ1

when � = �SDRM(M̄). We omit results for the optimal FLCI since the optimal FLCI has infi-
nite length for this design. Both procedures perform well as δ−1/σ1 grows large with efficiency
ratios approaching 1, illustrating our asymptotic (near-) optimality result for this design. Both
procedures also have similar power curves, with slightly higher power for the conditional.

5.2.4. Results for �RM(M̄). The right panel of Figure 3 plots the efficiency ratio for the
conditional and conditional-least favourable hybrid confidence sets as a function of δ−1/σ1 when
� = �RM(M̄). We again omit results for the optimal FLCI since the optimal FLCI has infinite
length for this design. The conditions for our asymptotic (near-) optimality result for unions of
convex sets do not hold in this simulation design (as the maximum pre-period violation is not
unique). Nonetheless, we find that the efficiency ratios for the conditional and hybrid confidence
sets approach about 83% when δ−1/σ1 grow large. We find it somewhat encouraging that these
procedures can have excess length within 17% of the optimum even in cases where LICQ fails.
Once again, we also find that the conditional and conditional-least favourable hybrid have similar
power.

5.2.5. Takeaways from simulations. Two clear patterns emerge from our simulations.
First, the conditional and hybrid confidence sets perform well across a wide range of speci-
fications, with particularly good power when the length of the identified set is large relative to
sampling variation. Second, the FLCIs have the best performance for�SD(M), particularly when
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M is small, which aligns with the finite-sample near-optimality results in Section 4. However,
FLCIs can perform quite poorly for other classes of �.

Overall, we therefore recommend to use the conditional-LF hybrid confidence sets for
generic forms of �, and optimal FLCIs for the special case of �SD(M) (or other special
cases where the consistency/finite-sample near-optimality of FLCIs is guaranteed). Although
the conditional and hybrid approaches perform similarly in our simulations, we recommend
the hybrid approach in general based on the guidance provided in ARP. We implement these
recommendations in our applications in the next section.

6. PRACTICAL GUIDANCE AND EMPIRICAL ILLUSTRATIONS

6.1. Practical guidance

We recommend that researchers use our methods to construct robust confidence intervals under
restrictions on the possible violations of parallel trends � that are motivated by domain knowl-
edge in their empirical setting. We also suggest that researchers report sensitivity analyses to
illustrate the sensitivity of their causal conclusions to alternative assumptions on the possible
violations of parallel trends.

6.1.1. Choice of �. The choice of� should be motivated by economic knowledge about the
types of possible confounding factors that could produce non-parallel trends. We now provide
some guidance on how the choice of � can be motivated by domain knowledge, highlighting
some cases where our leading examples, �RM(M̄) and �SD(M), would be sensible choices.

In some empirical settings, researchers may be concerned about differential economic shocks
to the treated and control groups that generate violations of parallel trends. If the researcher
believes that the magnitude of these differential shocks in the post-treatment period is not too
different from the magnitude in the pre-treatment period, then it may be reasonable to assume
δ ∈ �RM(M̄), which explicitly bounds the relative magnitudes of violations of parallel trends
in the post-treatment based on observed violations in the pre-treatment period. In other settings,
researchers may be worried about violations of parallel trends that arise due to differences in
smoothly evolving secular trends that differentially affect the treated and comparison groups.
In this case, it may be reasonable to assume δ ∈ �SD(M), which explicitly bounds the extent
to which the slope of the difference in trends can vary across consecutive periods. Economic
knowledge may imply additional restrictions as well. For example, if the researcher knows of a
confounding policy change that would have a positive effect on the outcome, then it is reasonable
to further assume that post-treatment difference in trends must be positive (i.e. δt ≥ 0 for t > 0).

In our empirical applications below, we illustrate how domain knowledge about the types
of possible violations of parallel trends can inform the choice of �. We encourage applied
researchers to use such domain knowledge to inform the restrictions they impose on the possible
choices of parallel trends in their context.

6.1.2. Choice of inference procedure. Based on our theoretical results and Monte Carlo
simulations, we recommend the ARP hybrid confidence sets for generic, polyhedral forms of�.
For the special case of �SD(M)—or other choices of � for which the consistency and finite-
sample-near-optimality of FLCIs are guaranteed—we recommend FLCIs. Our recommended
choice of inference procedure is implemented in the HonestDiD R and Stata packages that
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accompany the paper.32 Furthermore, these confidence sets are quick to compute. Each sensitiv-
ity analysis plot in the empirical applications below took less than 9 minutes to compute on a
2012 Macbook Pro with a 2.3 GHz Quad-Core Intel Core i7 and 16 GB RAM.

6.1.3. Sensitivity analyses. Once the researcher has chosen a baseline class of restrictions
on the possible violations of trends (e.g. relative magnitudes bounds �RM(M̄) or smoothness
bounds �SD(M)), we recommend conducting sensitivity analysis over the associated param-
eter (M̄ ≥ 0 or M ≥ 0, respectively) that governs how different the post-treatment violations
of parallel trends can be from the pre-trends. It is natural to report both the sensitivity of the
researcher’s causal conclusion to the choice of this parameter and the “breakdown” parameter
value at which particular hypotheses of interest can no longer be rejected; similar “breakdown”
concepts appear in the partial identification settings of Horowitz and Manski (1995), Kline and
Santos (2013), Manski and Pepper (2018), and Masten and Poirier (2020).33 We illustrate how
one can interpret the magnitudes of the breakdown points in our two empirical illustrations
below.

6.2. Estimating the incidence of a value-added tax cut

Benzarti and Carloni (2019b, henceforth, BC) study the incidence of a decrease in the value-
added tax (VAT) on restaurants in France. France reduced its VAT on sit-down restaurants from
19.6 % to 5.5 % in July of 2009. BC analyse the impact of this change using a dynamic DiD
design that compares restaurants to a control group of other market services firms that were not
affected by the VAT change, estimating the OLS regression specification

Yit =
∑

s �=2008

βs × 1[t = s] × Di + φi + λt + εi t , (19)

where Yit is the log of (before-tax) profits for firm i in year t ; Di is an indicator for whether
firm i is a restaurant; φi and λt are firm and year fixed effects; and standard errors are clustered
at the regional level. BC’s main finding is that the VAT reduction had a large, positive effect
on restaurant profits. Figure 4 shows the estimated event-study coefficients {β̂s} from specifi-
cation (19) (Benzarti and Carloni, 2019a). We can formally reject the hypothesis that βpre = 0
(p < 0.01), as there appears to have been a difference in trends between 2006 and 2007. Nev-
ertheless, the post-treatment coefficients for 2009–2011 appear to be substantially larger in
magnitude than any of the pre-trends coefficients.

A key concern in this empirical setting is that there may be unobserved, industry-specific
or macroeconomic shocks that would have affected restaurants differently from other market-
services firms even in the absence of a change in VAT. It seems reasonable to impose that
the industry-specific shocks to restaurants in the post-treatment period are not too much larger

32. The latest version of the R and Stata packages are respectively available at
http://github.com/asheshrambachan/HonestDiD and https://github.com/mcaceresb/stata-honestdid/.

33. Our main focus in this paper is on constructing robust confidence sets given a particular restriction �(M),
rather than inference on the identification breakdown point or breakdown frontier as in e.g. Masten and Poirier (2020).
Note, however, that if we define M∗ = min M s.t. 0 ∈ S(β,�(M)) to be the identification breakdown point for a null
effect, and M̂∗ = min M s.t. 0 ∈ C(β̂n , 
̂n;�(M)) to be the sample breakdown point, then P(M̂∗ ≥ M∗) ≥ P(0 ∈
C(β̂n , 
̂n;�(M∗)). It follows that (−∞, M̂∗] is a valid (1 − α)-level confidence interval for M∗ provided that our
conditions for size control are satisfied for �(M∗). We suspect that our results could be extended to allow for uniform
coverage of the breakdown frontier under additional regularity conditions, but leave this to future work.
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FIGURE 4

Event-study coefficients {βs } for log profits, estimated using the event-study specification in (19).

than those in the pre-treatment period—whereas imposing that industry-specific shocks fol-
low a smooth trend seems unreasonable—and so we base our analysis on bounds on relative
magnitudes �RM(M̄).

The left panel of Figure 5 shows robust confidence sets for the treatment effect in 2009 for
�RM(M̄) using different values of M̄ . The figure shows that if we impose M̄ = 1, meaning that
we restrict the post-treatment violations of parallel trends to be no larger than the maximal pre-
treatment violation of parallel trends, then we obtain a robust confidence set of [0.07, 0.31] for
the causal effect on restaurant profits in 2009. This is wider than the original OLS confidence
interval which is only valid if parallel trends holds exactly, but nevertheless rules out a null effect
on restaurant profits in 2009. Looking further to the right, we see that the “breakdown value” for
a null effect is around M̄ = 2. Thus, our conclusion of a significant effect on restaurant profits
depends on whether we are willing to restrict that the post-treatment violations of parallel trends
can be no more than twice as large as the maximal pre-treatment violation. Given that the first
year after the treatment coincided with a large recession in France (2009), it may be plausible
that the differential factors affecting restaurants were larger in that year than in the pre-treatment
period. Our approach helps formalize how much larger they would need to be to reject the
conclusion of a null effect (or other hypotheses).

The right panel of Figure 5 shows analogous results when the estimand is the average causal
effect on restaurant profits across all four post-treatment periods (τ̄ ). When M̄ = 1, our robust
confidence set now includes zero, and is about twice as large as for the first-period effect. The
intuition for why the confidence sets are larger when looking at τ̄ than τ2009 is that �RM(M̄)
bounds the violation of parallel trends across consecutive periods by M̄ times the max in the
pre-treatment period. Thus, the identified set will be larger for later periods, since the treatment
and control groups have more time to diverge (e.g. the identified set for the second period will
be twice as larger as for the first period).34 If we are willing to bound the magnitude of economic

34. This intuition holds generally for choices of � that bound changes across consecutive periods, but need not
necessarily hold for other types of restrictions.
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FIGURE 5

Sensitivity analysis for Benzarti and Carloni (2019b).

shocks by the max in the pre-treatment period, we will thus typically obtain wider confidence
sets for parameters involving later periods.

Finally, in Supplementary Material, Appendix C, we compare the confidence sets reported
in Figure 5 to the sample analogue to the identified set, S(β̂,�), which we show is a Hausdorff
consistent estimator of the identified set in this example. We find that the reported confidence
sets are between 40 and 80% longer than the estimated identified set, suggesting that both sam-
pling uncertainty and the length of the identified set play an important role in the width of the
confidence sets.

6.3. The effect of duty-to-bargain laws on long-run student outcomes

Lovenheim and Willen (2019a, henceforth LW) study the impact of state-level public sector
duty-to-bargain (DTB) laws, which mandated that school districts bargain in good faith with
teachers’ unions. LW examine the impacts of these laws on the adult labour market outcomes of
people who were students around the time that these laws were passed, comparing individuals
across different states and different birth cohorts to exploit the differential timing of the passage
of DTB laws across states. The authors estimate the following OLS regression specification
separately for men and women, using data from the American Community Survey (ACS),

Ysct =
21∑

r=−11

Dscrβr + X ′
sctγ + λct + φs + εsct . (20)

Ysct is an average outcome for the cohort of students born in state s in cohort c in ACS calendar
year t . Dscr is an indicator for whether state s passed a DTB law r years before cohort c turned
age 18.35 The event-study coefficients {β̂r } estimate the dynamic treatment effects (or placebo

35. Dsc,−11 is set to 1 if state s passed a law 11 years or more after cohort c turned 18. Likewise, Dsc,21 is set
to 1 if state s passed a law 21 or more years before cohort c turned 18.
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FIGURE 6

Event-study coefficient {βr } for employment, estimated using the event-study specification in (20).

effects) r years after DTB passage.36 The remaining terms include time-varying controls,
birth-cohort-by-ACS-year fixed effects, and state fixed effects. We normalize the event-study
coefficient β−2 to 0.37 We focus on the results where the outcome is employment.

Figure 6 plots the estimated event-study coefficients {β̂r } from specification (20) (Lovenheim
and Willen, 2019b). In the event-study for men (left panel), the pre-period coefficients are rel-
atively close to zero, whereas the longer-run post-period coefficients are negative. By contrast,
the results for women (right panel) suggest a downward-sloping pre-existing trend.

LW write that, the “primary concern in our identification strategy is the existence of secu-
lar trends that differ systematically with treatment” (p. 318), such as confounding changes in
labour supply or educational attainment. Given that the concern is long-run trends that are likely
to evolve smoothly over time, smoothness restrictions of the form �SD seem natural in this con-
text. Indeed, in some of their robustness checks, LW estimate models with group-specific linear
trends, which roughly corresponds with the case �SD(0).38 It thus seems natural to consider
relaxations of the form�SD(M), which allows for deviations from non-linearity of no more than
M between consecutive periods.

Figure 7 reports results for the treatment effect on employment for the cohort 15 years after
the passage of a DTB law (as in Table 2 of LW), constructing robust confidence sets about
how non-linear the difference in trends can be. In blue, we plot the original OLS confidence

36. Treatment timing in LW is staggered, and therefore the results in Sun and Abraham (2020) imply that βr
can be interpreted as a sensible weighted average of causal effects under parallel trends only if treatment effects are
homogeneous across adoption cohorts. For simplicity, we focus on the robustness of the results to violations of parallel
trends using the original specification in LW, which is valid under the assumption of homogeneous treatment effects.
As discussed in Section 2.1, our sensitivity analysis can also be applied to estimators that are robust to treatment effect
heterogeneity.

37. LW normalize event time −1 to 0, but discuss how cohorts at event time -1 may have been partially treated
since LW impute the year that a student starts school with error. Since our robust confidence sets assume that there is no
causal effect in the pre-period (τpre = 0), we instead treat event-time −2 as the reference period in our analysis.

38. The two are not exactly equivalent, however, because LW include parametric trends into what they call a
“parametric event-study” model (see their specification (2)), which imposes that treatment effects are linear in time
since treatment, rather than the flexible dynamic event-study specification (20).
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FIGURE 7

Sensitivity analysis for θ = τ15 using � = �SD(M).

intervals for β̂15 from specification (20). In red, we plot FLCIs when� = �SD(M) for different
values of M ; recall that M = 0 corresponds with allowing only for linear violations of parallel
trends, and larger values of M allow for larger deviations from linearity. In the analysis for men
(left panel), the FLCIs are similar to those from OLS when allowing for violations of parallel
trends that are approximately linear (M ≈ 0), but become wider as we allow for more non-
linearity; the breakdown value for a significant effect is M ≈ 0.01. For women (right panel), the
original OLS estimates are negative and the confidence interval rules out 0. When we allow for
linear violations of parallel trends (M = 0), however, the picture changes substantially owing
to the pre-existing downward trend that is visible in Figure 6. Indeed, for M < 0.01 the robust
confidence set contains only positive values. Intuitively, this is because the point estimate for
t = 15 lies above a linear extrapolation of the negative pre-trend. Thus, if we were to impose
the same smoothness restrictions for men as for women, we would either have to reconcile
significant effects of opposite signs by gender (if M < 0.01) or we would not be able to rule out
null effects for both genders (M ≥ 0.01).

How can we interpret the magnitudes of M in this example? We consider a calibration exer-
cise based on the magnitudes of possible possible confounds: if violations of parallel trends
were driven by confounding changes in education quality, what would a given value of M imply
about the evolution of those confounds? Chetty et al. (2014) estimate that a 1 standard deviation
increase in teacher value-added (VA) corresponds with a 0.4 percentage point increase in adult
employment. Hence, a value of M = 0.01 would correspond with allowing the slope of the dif-
ferential trend to change by the equivalent of a one-fourtieth of a standard deviation of teacher
VA across consecutive periods. Since the robust confidence sets for both men and women begin
to include zero around this value of M , the strength with which we can rule out a null effect
depends on our assessment of the economic plausibility of such non-linearities.

Finally, in Supplementary Material, Appendix C, we again compare the reported confidence
sets to the estimated identified set S(β̂,�). Our results suggest that sampling uncertainty is large
relative to the length of the identified set when M is close to zero, but becomes less important as
M increases.
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7. CONCLUSION

This paper considers the problem of conducting inference in DiD and related designs that is
robust to violations of the parallel trends assumption. We introduce a variety of restrictions on
the class of possible differences in trends that formalize commonly made arguments in empir-
ical work, generalizing the framework for partial identification in Manski and Pepper (2018).
We provide inference procedures that are uniformly valid so long as the difference in trends
satisfies these restrictions, and derive novel results on the power of these procedures. We rec-
ommend that applied researchers report robust confidence sets under economically motivated
restrictions on parallel trends. We also recommend that researchers conduct formal sensitivity
analyses, in which they report confidence sets for the causal effect of interest under a variety of
possible restrictions on the underlying trends. Such sensitivity analyses make transparent what
assumptions are needed in order to draw particular conclusions.
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