Skip to main content

Impact of Climate Change on Vector-Borne Disease in the Amazon

  • Chapter
  • First Online:
Global Climate Change and Public Health

Abstract

Impending changes in climate regimes coupled with anthropogenic changes in land use and land cover change pose the most pressing challenges to human societies and natural ecosystems. Global climate change is predicted to disrupt seasonal periodicities and long-term trends in rainfall and temperature, altering natural climate cycles and variation. The impact of environmental change on disease transmission will determine who, when, and where human livelihoods flourish and fail. Vulnerable populations will be particularly affected—i.e., chronically disadvantaged populations who are typically poor, have limited economic opportunities and access to services, and few (if any) options to improve their quality of life. Immediate action is needed to better understand, adapt, and respond to disease burdens that will be affected by changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christensen, J. H., B. Hewitson, et al. (2007). Regional Climate Projections. In: S. Solomon, D. Qin, M. Manning et al., editors. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  2. Malhi Y, Wood D, et al. The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob Chang Biol. 2006;12:1107–38.

    Article  Google Scholar 

  3. Saatchi SS, Houghton RA, et al. Distribution of aboveground live biomass in the Amazon Basin. Glob Chang Biol. 2007;13:816–37.

    Article  Google Scholar 

  4. Davidson EA, de Araujo AC, et al. The Amazon basin in transition. Nature. 2012;481(7381):321–8.

    Article  PubMed  CAS  Google Scholar 

  5. Coe MT, Costa MH, et al. Long-term simulations of discharge and floods in the Amazon Basin. J Geophys Res. 2002;107(D20):1–17.

    Article  Google Scholar 

  6. Marengo JA. Interdecadal variability and trends of rainfall across the Amazon basin. Theor Appl Climatol. 2004;78(1–3):79–96.

    Google Scholar 

  7. Bouma MJ, Dye C. Cycles of malaria associated with El Nino in Venezuela. JAMA. 1997;278(21):1772–4.

    Article  PubMed  CAS  Google Scholar 

  8. Bouma MJ, Poveda G, et al. Predicting high-risk years for malaria in Colombia using parameters of El Nino Southern Oscillation. Trop Med Int Health. 1997;2(12):1122–7.

    Article  PubMed  CAS  Google Scholar 

  9. Gagnon AS, Smoyer-Tomic KE, et al. The El Nino southern oscillation and malaria epidemics in South America. Int J Biometeorol. 2002;46(2):81–9.

    Article  PubMed  Google Scholar 

  10. Ruiz D, Poveda G, et al. Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System. Malar J. 2006;5:66.

    Article  PubMed  Google Scholar 

  11. Hanf M, Adenis A, et al. The role of El Nino Southern Oscillation (ENSO) on variations of monthly Plasmodium falciparum malaria cases at the Cayenne General Hospital, 1996–2009, French Guiana. Malar J. 2011;10:100.

    Article  PubMed  Google Scholar 

  12. Li W, Fu R, et al. Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. J Geophys Res. 2006;111(D2):2156–202.

    Article  Google Scholar 

  13. Marengo JA, Nobre CA, et al. Hydroclimate and ecological behaviour of the drought of Amazonia in 2005. Philos T Roy Soc B. 2008;363:1773–8.

    Article  CAS  Google Scholar 

  14. Malhi Y, Wright J. Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos T Roy Soc B. 2004;359(1443):311–29.

    Article  Google Scholar 

  15. Betts RA, Cox PM, et al. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor Appl Climatol. 2004;78:157–75.

    Article  Google Scholar 

  16. Salazar LF, Nobre CA, et al. Climate change consequences on the biome distribution in tropical South America. Geophys Res Lett. 2007;34(9), L09708.

    Article  Google Scholar 

  17. Coe MT, Costa MA, et al. The influence of historical and potential future deforestation on the stream flow of the Amazon river: land surface processes and atmospheric feedbacks. J Hydrol. 2009;369:165–74.

    Article  Google Scholar 

  18. Patz JA, Daszak P, et al. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ Health Perspect. 2004;112(10):1092–8.

    Article  PubMed  Google Scholar 

  19. Patz JA, Campbell-Lendrum D, et al. Impact of regional climate change on human health. Nature. 2005;438(7066):310–7.

    Article  PubMed  CAS  Google Scholar 

  20. Messina J, Pan WK. Different ontologies: land change science and health research. Curr Opin Environ Sust. 2013;5:1–7.

    Google Scholar 

  21. Walsh S, Evans TP, et al. Scale dependent relationships between population and environment in Northeast Thailand. Photogramm Eng Remote Sensing. 1999;65(1):97–105.

    Google Scholar 

  22. Verberg PH, Veldkamp A. Projecting land use transitions at forest fringes in the Philippines at two spatial scales. Landsc Ecol. 2004;19:77–98.

    Article  Google Scholar 

  23. Ermert V, Fink AH, et al. The impact of regional climate change on malaria risk due to greenhouse forcing and land-use changes in tropical Africa. Environ Health Perspect. 2012;120(1):77–84.

    Article  PubMed  Google Scholar 

  24. Contreras-Hermosillo A. The underlying causes of forest decline. CIFOR Occasional Paper 30. Bogor Barat: Center for International Forestry Research; 2000.

    Google Scholar 

  25. Geist HJ, Lambin EF. What drives tropical deforestation? A meta-analysis of proximate and underlying causes of deforestation based on sub-national case study evidence. Louvain-la-Neuve: LUCC International Project Office; 2001. p. 116.

    Google Scholar 

  26. Pan WK, Walsh SJ, et al. Farm-level models of spatial patterns of land use and land cover dynamics in the Ecuadorian Amazon. Agric Ecosyst Environ. 2004;101:117–34.

    Article  Google Scholar 

  27. Asner GP, Knapp DE, et al. Selective logging in the Brazilian Amazon. Science. 2005;310(5747):480–2.

    Article  PubMed  CAS  Google Scholar 

  28. Swenson JJ, Carter CE, et al. Gold mining in the Peruvian Amazon: global prices, deforestation, and mercury imports. PLoS One. 2011;6(4):e18875.

    Article  PubMed  CAS  Google Scholar 

  29. Carr DL, Pan WK, et al. Declining fertility on the frontier: The Ecuadorian Amazon. Popul Environ. 2006;28:17–39.

    Article  PubMed  Google Scholar 

  30. de Sherbinin A, Vanwey LK, et al. Rural household demographics, livelihoods, and the environment. Glob Environ Chang. 2008;18:38–53.

    Article  Google Scholar 

  31. Ishida K, Stupp P, et al. Stalled decline in fertility in Ecuador. Int Perspect Sex Reprod Health. 2009;35(4):203–6.

    Article  PubMed  Google Scholar 

  32. Potter JE, Schmertmann CP, et al. Mapping the timing, pace, and scale of the fertility transition in Brazil. Popul Dev Rev. 2010;36(2):283–307.

    Article  PubMed  Google Scholar 

  33. Yasuoka J, Levins R. Impact of deforestation and agricultural development on Anopheline ecology and malaria epidemiology. Am J Trop Med Hyg. 2007;76(3):450–60.

    PubMed  Google Scholar 

  34. Vittor AY, Pan WK, et al. Linking deforestation to malaria in the Amazon: Characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am J Trop Med Hyg. 2009;81(1):5–12.

    PubMed  Google Scholar 

  35. Olson SH, Gangnon R, et al. Deforestation and malaria in Mancio Lima County, Brazil. Emerg Infect Dis. 2010;16(7):1108–15.

    Article  PubMed  Google Scholar 

  36. Sawyer D. Economic and social consequences of malaria in new colonization projects in Brazil. Soc Sci Med. 1993;37(9):1131–6.

    Article  PubMed  CAS  Google Scholar 

  37. de Castro MC, Monte-Mor RL, et al. Malaria risk on the Amazon frontier. Proc Natl Acad Sci USA. 2006;103(7):2452–7.

    Article  PubMed  Google Scholar 

  38. Parker B, Olortegui MP, et al. Hyperendemic malaria transmission in areas of occupation-related travel in the Peruvian Amazon. Malar J. 2013;12:178.

    Article  PubMed  Google Scholar 

  39. World Health Organization. World malaria report: 2011. Geneva: WHO, Global Malaria Programme; 2011. p. 248.

    Google Scholar 

  40. Mendis K, Sina BJ, et al. The neglected burden of P. vivax malaria. Am J Trop Med Hyg. 2001;164:97–106.

    Google Scholar 

  41. Breman JG, Alilio MS, et al. Conquering the intolerable burden of malaria: what's new, what's needed: a summary. Am J Trop Med Hyg. 2004;71(2 Suppl):1–15.

    PubMed  Google Scholar 

  42. Duarte EC, Gyorkos TW, et al. Epidemiology of malaria in a hypoendemic Brazilian Amazon migrant population: a cohort study. Am J Trop Med Hyg. 2004;70(3):229–37.

    PubMed  Google Scholar 

  43. Vitor-Silva S, Reyes-Lecca RC, et al. Malaria is associated with poor school performance in an endemic area of the Brazilian Amazon. Malar J. 2009;8:230.

    Article  PubMed  Google Scholar 

  44. Fernando SD, Rodrigo C, et al. The “hidden” burden of malaria: cognitive impairment following infection. Malar J. 2010;9:366.

    Article  PubMed  Google Scholar 

  45. Lee G, Yori P, et al. Comparative effects of vivax malaria, fever and diarrhoea on child growth. Int J Epidemiol. 2012;41(2):531–9.

    Article  PubMed  Google Scholar 

  46. Pan, W. K. (unpublished). Population, Health and Environment Dynamics in the Peruvian Amazon (ongoing research). https://globalhealth.duke.edu/projects/population-environment-dynamics-influencing-malaria-risk-peruvian-amazon.

  47. Sawyer DO, Sawyer DR. Malaria on the Amazon frontier: economic and social aspects of transmission and control. In: Chen LL, Kleinman A, Ware NC, editors. Advancing health in developing countries. Belo Horizonte, Brazil: Centro de Desenvolvimento e Planejamento Regional (CEDEPLAR); 1987. p. 116.

    Google Scholar 

  48. Sawyer DR, Sawyer DO. The malaria transition and the role of social science research. In: Chen LL, Kleinman A, Ware NC, editors. Advancing health in developing countries. New York: Auburn House; 1992. p. 105–27.

    Google Scholar 

  49. Service MW. Mosquitoes (Culicidae). In: Lane RP, Crosskey RW, editors. Medical insects and arachnids. London: Chapman & Hall; 1993. p. 120–240.

    Chapter  Google Scholar 

  50. Wernsdorfer WH. Global challenges of changing epidemiological patterns of malaria. Acta Trop. 2012;121(3):158–65.

    Article  PubMed  Google Scholar 

  51. de Arruda M, Carvalho MB, et al. Potential vectors of malaria and their different susceptibility to Plasmodium falciparum and Plasmodium vivax in northern Brazil identified by immunoassay. Am J Trop Med Hyg. 1986;35(5):873–81.

    PubMed  Google Scholar 

  52. Deane LM. Malaria vectors in Brazil. Mem Inst Oswaldo Cruz. 1986;81(Suppl II):5–14.

    Article  Google Scholar 

  53. Vittor AY, Gilman R, et al. The effect of deforestation on the human biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. Am J Trop Med Hyg. 2006;74(1):3–11.

    PubMed  Google Scholar 

  54. Sinka ME, Rubio-Palis Y, et al. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic precis. Parasit Vectors. 2010;3:72.

    Article  PubMed  Google Scholar 

  55. Hiwat H, Bretas G. Ecology of Anopheles darlingi Root with respect to vector importance: a review. Parasit Vectors. 2011;4:177.

    Article  PubMed  Google Scholar 

  56. Rozendaal J. Observations on the distribution of anophelines in Suriname with particular reference to the malaria vector Anopheles darlingi. Mem Inst Oswaldo Cruz. 1990;85(2):221–34.

    Article  PubMed  CAS  Google Scholar 

  57. Rubio-Palis Y, Zimmerman RH. Ecoregional classification of malaria vectors in the neotropics. J Med Entomol. 1997;34(5):499–510.

    PubMed  CAS  Google Scholar 

  58. Wernsdorfer WH. The importance of malaria in the world. New York: Academic; 1980.

    Google Scholar 

  59. Gage KL, Burkot TR, et al. Climate and vectorborne diseases. Am J Prev Med. 2008;35(5):436–50.

    Article  PubMed  Google Scholar 

  60. Gething PW, Van Boeckel TP, et al. Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasit Vectors. 2011;4:92.

    Article  PubMed  Google Scholar 

  61. Montoya-Lerma J, Solarte YA, et al. Malaria vector species in Colombia: a review. Mem Inst Oswaldo Cruz. 2011;106 Suppl 1:223–38.

    Article  PubMed  Google Scholar 

  62. Magris M, Rubio-Palis Y, et al. Vector bionomics and malaria transmission in the Upper Orinoco River, Southern Venezuela. Mem Inst Oswaldo Cruz. 2007;102(3):303–11.

    Article  PubMed  Google Scholar 

  63. Camargo LM, Dal Colletto GM, et al. Hypoendemic malaria in Rondonia (Brazil, western Amazon region): seasonal variation and risk groups in an urban locality. Am J Trop Med Hyg. 1996;55(1):32–8.

    PubMed  CAS  Google Scholar 

  64. Galardo AK, Zimmerman RH, et al. Seasonal abundance of anopheline mosquitoes and their association with rainfall and malaria along the Matapi River, Amapa, [corrected] Brazil. Med Vet Entomol. 2009;23(4):335–49.

    Article  PubMed  CAS  Google Scholar 

  65. Barros FS, Arruda ME, et al. Spatial clustering and longitudinal variation of Anopheles darlingi (Diptera: Culicidae) larvae in a river of the Amazon: the importance of the forest fringe and of obstructions to flow in frontier malaria. Bull Entomol Res. 2011;101(6):643–58.

    Article  PubMed  CAS  Google Scholar 

  66. Hutchings RS, Sallum MA, et al. Mosquito (Diptera: Culicidae) diversity of a forest-fragment mosaic in the Amazon rain forest. J Med Entomol. 2011;48(2):173–87.

    Article  PubMed  Google Scholar 

  67. Manguin S, Roberts D, et al. Characterization of Anopheles darlingi (Diptera: Culicidae) larval habitats in Belize, Central America. J Med Entomol. 1996;33(2):205–11.

    PubMed  CAS  Google Scholar 

  68. Aramburu J, Asayag CR, et al. Malaria reemergence in the Peruvian Amazon region. Emerg Infect Dis. 1999;5(2):209–15.

    Google Scholar 

  69. Branch O, Casapia WM, et al. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a recently emerged, hypoendemic Peruvian Amazon community. Malar J. 2005;4:27–33.

    Article  PubMed  Google Scholar 

  70. Torres KJ, Clark EH, et al. Antibody response dynamics to the Plasmodium falciparum conserved vaccine candidate antigen, merozoite surface protein-1 C-terminal 19kD (MSP1-19kD), in Peruvians exposed to hypoendemic malaria transmission. Malar J. 2008;7:173.

    Article  PubMed  Google Scholar 

  71. Branch OH, Sutton PL, et al. Plasmodium falciparum genetic diversity maintained and amplified over 5 years of a low transmission endemic in the Peruvian Amazon. Mol Biol Evol. 2011;28(7):1973–86.

    Article  PubMed  CAS  Google Scholar 

  72. Sutton PL, Torres LP, et al. Sexual recombination is a signature of a persisting malaria epidemic in Peru. Malar J. 2011;10:329.

    Article  PubMed  Google Scholar 

  73. Clark EH, Silva CJ, et al. Plasmodium falciparum malaria in the Peruvian Amazon, a region of low transmission, is associated with immunologic memory. Infect Immun. 2012;80(4):1583–92.

    Article  PubMed  CAS  Google Scholar 

  74. Saleska SR, Didan K, et al. Amazon forests green-up during 2005 drought. Science. 2007;318(5850):612.

    Article  PubMed  CAS  Google Scholar 

  75. Lewis SL, Brando PM, et al. The 2010 Amazon drought. Science. 2011;331(6017):554.

    Article  PubMed  CAS  Google Scholar 

  76. Mackinnon MJ, Read AF. Virulence in malaria: an evolutionary viewpoint. Philos Trans R Soc Lond B Biol Sci. 2004;359(1446):965–86.

    Article  PubMed  Google Scholar 

  77. Wong J, Morrison AC, et al. Linking oviposition site choice to offspring fitness in Aedes aegypti: consequences for targeted larval control of dengue vectors. PLoS Negl Trop Dis. 2012;6(5):e1632.

    Article  PubMed  Google Scholar 

  78. Lambin EF, Tran A, et al. Pathogenic landscapes: Interactions between land, people, disease vectors, and their animal hosts. Int J Health Geogr. 2010;9:54.

    Article  PubMed  Google Scholar 

  79. van Lieshout M, Kovats RS, et al. Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Global Environ Change. 2004;14(1):87–99.

    Article  Google Scholar 

  80. da Silva-Nunes M, Codeco CT, et al. Malaria on the Amazonian frontier: transmission dynamics, risk factors, spatial distribution, and prospects for control. Am J Trop Med Hyg. 2008;79(4):624–35.

    PubMed  Google Scholar 

  81. da Silva-Nunes M, Moreno M, et al. Amazonian malaria: asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies. Acta Trop. 2012;121(3):281–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to OraLee Branch Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pan, W., Branch, O., Zaitchik, B. (2014). Impact of Climate Change on Vector-Borne Disease in the Amazon. In: Pinkerton, K., Rom, W. (eds) Global Climate Change and Public Health. Respiratory Medicine, vol 7. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8417-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8417-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-8416-5

  • Online ISBN: 978-1-4614-8417-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics