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Abstract

Rationale One of the major complaints most people face
during aging is an impairment in cognitive functioning. This
has a negative impact on the quality of daily life and is even
more prominent in patients suffering from neurodegenerative
and psychiatric disorders including Alzheimer’s disease,
schizophrenia, and depression. So far, the majority of cogni-
tion enhancers are generally targeting one particular neuro-
transmitter system. However, recently phosphodiesterases
(PDEs) have gained increased attention as a potential new
target for cognition enhancement. Inhibition of PDEs in-
creases the intracellular availability of the second messengers
c¢GMP and/or cAMP.

Objective The aim of this review was to provide an overview
of the effects of phosphodiesterase inhibitors (PDE-Is) on
cognition, the possible underlying mechanisms, and the rela-
tionship to current theories about memory formation.
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Materials and methods Studies of the effects of inhibitors
of different PDE families (2, 4, 5, 9, and 10) on cognition
were reviewed. In addition, studies related to PDE-Is and
blood flow, emotional arousal, and long-term potentiation
(LTP) were described.

Results PDE-Is have a positive effect on several aspects of
cognition, including information processing, attention, memo-
ry, and executive functioning. At present, these data are likely to
be explained in terms of an LTP-related mechanism of action.
Conclusion PDE-Is are a promising target for cognition
enhancement; the most suitable candidates appear to be
PDE2-Is or PDE9-Is. The future for PDE-Is as cognition
enhancers lies in the development of isoform-specific PDE-Is
that have limited aversive side effects.

Keywords PDE inhibitors - Cognition - cAMP- cGMP-
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One of the problems many people come to face as they age is a
decline in cognitive functions, which has a negative impact on
their daily activities and quality of life (Mattson et al. 2002).
The loss of cognitive functioning is even more serious in
patients suffering from pathological conditions such as
Alzheimer’s disease or other types of dementia. Also in
depressed and schizophrenic patients, prominent cognitive
deficits are present (Blaney 1986; Frith 1996). Since these
deficits have a major impact on the quality life of these
patients, it is of utmost importance to develop strategies or
drugs that counteract cognitive decline. So far, several pre-
ventive strategies have been described which could amelio-
rate or slow down the cognitive decline resulting from brain
aging. Research has focused on avoiding genetic and
environmental factors that cause neuronal dysfunction and
death or by enhancement of the ability of neurons to adapt to
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the aging process (Mattson et al. 2002). Examples of avoiding
genetic factors are genetic counseling or germ line gene
therapy and examples of avoiding environmental factors are
dietary restrictions or behavioral modification. These strate-
gies can induce successful aging and can reduce the risk of
cognitive decline and dementia (for review, see Mattson et al.
2002). Despite these strategies, there is a great need for drugs
that counteract the processes involved in aging and more
specifically the decline of cognitive functions and memory.
For cognition enhancement or reversal of cognitive defi-
cits, different drug targets have been suggested based on
neurotransmitter systems. Serotonergic, cholinergic, and mo-
noaminergic neurotransmitter systems have been shown to be
involved in cognition. Furthermore, cognitive performance,
including memory, can be improved by numerous biological
factors such as neuromodulators, hormones, intracellular
molecules, plant extracts, and nutritional ingredients, which
enhance neurotransmission, blood flow, glucose metabolism,
or have free radical scavenging properties (Cahill et al. 1994;
Davis and Squire 1984; DeZazzo and Tully 1995; Izquierdo
etal. 1998; McGaugh 1989; Messier 2004; Parrott et al. 2004).

Second messengers cAMP and ¢cGMP

A relatively novel and promising field in cognition research
focuses on the involvement of second messenger systems.
Neurotransmitter receptors can be divided into two main
groups according to the way in which receptor and effector
function are coupled. One group consists of ionotropic (ion
channel) receptors and the other consists of the GTP-binding
protein (G protein) coupled receptor. G protein activation
engages second messenger cascades (Shah and Catt 2004).
Traditionally, the cyclic adenosine monophosphate (cAMP)
second messenger system (Gs and Gi linked) and the phos-
phoinositol second messenger system (Gq-linked) received
the most attention. The second messenger cAMP is syn-
thesized by adenylate cyclase (AC), which is stimulated or
inhibited by Gs or Gi, respectively. The second messenger
complex inositol-1,4,5 triphosphate/diacylglycerol (IP3/
DAG) is formed out of the hydrolysis of phosphatidylinosi-
tol 4,5-biphosphate (PIP2) by phospholipase C (PLC) after
activation by Gq. cAMP activates cAMP-dependent protein
kinase (PKA), which phosphorylates cAMP response ele-
ment-binding protein (CREB). P-CREB is an activated tran-
scription factor, which initiates transcription of specific
genes. DAG activates calcium-dependent protein kinase
(PKC) in the presence of calcium (Ca®"), which is mobilized
by IP3. PKC has an effect on CREB via the MAP kinase
pathway. Of note, Ca®" can also bind to calmodulin. This
so-called Ca*/CaM complex activates Ca®"/CaM protein
kinase (CaMK), which can activate calcium-dependent
protein kinase (PKC) as well, but also PKA. On the other
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hand, PKA can also activate the MAP kinase pathway.
Thus, interplay exists between the cAMP second messenger
system and the phosphoinositol second messenger system.
Recently, the cyclic guanosine monophosphate (cGMP)
second messenger system receives more and more atten-
tion. cGMP is produced by guanylate cyclase (GC) which
is stimulated by nitric oxide (NO) (Murad et al. 1978).
c¢cGMP activates cGMP-dependent protein kinase (PKG),
which in turn phosphorylates certain proteins which influ-
ence the synthesis and/or release of other neurotransmitters,
and thus signal transduction (Schmidt et al. 1993).

Cyclic nucleotide phosphodiesterases (PDEs) are enzymes
which play an important role in the abovementioned intra-
cellular signal transduction pathways. This is because these
enzymes hydrolyze the second messengers cAMP and cGMP
by breaking their phosphodiester bond with the corresponding
monophosphate (Bender and Beavo 2006). There are 11
families of PDEs (PDE1-PDEI11) and most of these families
have more than one gene product (e.g., PDE4A, PDE4B,
PDEA4C, PDEA4D). In addition, each gene product may have
multiple splice variants (e.g., PDE4D1-PDE4D9). In total,
there are more than 100 specific human PDEs (Bender and
Beavo 2006).

Localization of PDEs

PDEI is predominantly localized in the brain, heart, smooth
muscles, and lungs (Dent et al. 1998; Sonnenburg et al.
1998; Yan et al. 1994). In addition, PDE2 can be found in
the brain, heart, adrenal cortex, and platelets (Ito et al.
1996; Martins et al. 1982; Van Staveren et al. 2003). Fur-
thermore, the localization of PDE3 includes the brain, heart,
smooth muscles, kidneys, and platelets (Reinhardt et al.
1995; Shakur et al. 2001). PDE4 is expressed in a wide
variety of tissues, e.g., brain, lungs, and testes (Perez-Torres
et al. 2000; Reyes-Irisarri et al. 2008; Richter et al. 2005;
Salanova et al. 1999). PDES has been detected in the brain,
lungs, smooth and skeletal muscles, kidneys, and platelets
(Giordano et al. 2001; Hotston et al. 2007; Kotera et al.
2000; Yanaka et al. 1998). In contrast, PDE6 has been
found in the pineal gland and the rod and cone cells of the
photoreceptor layer of the retina (Holthues and Vollrath
2004; Morin et al. 2001; Stearns et al. 2007). PDE7 was
identified in the brain, heart, liver, skeletal muscles, kid-
neys, testes, and pancreas (Hetman et al. 2000; Miro et al.
2001), while the localization of PDES includes the brain,
liver, kidneys, colon, testes, ovary, spleen, and thyroid
(Fisher et al. 1998a; Gamanuma et al. 2003; Hayashi et al.
1998, 2002; Kobayashi et al. 2003; Soderling et al. 1998;
Wang et al. 2001). Also, PDE9 is located in the brain,
kidneys, spleen, prostate, and various gastrointestinal
tissues (Andreeva et al. 2001; Fisher et al. 1998b; Rentero
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et al. 2003; Soderling et al. 1998; van Staveren and
Markerink-van Ittersum 2005; Van Staveren et al. 2003;
Wang et al. 2003). The localization of PDE10 comprises the
brain, heart, muscles, testes, and thyroid (Fujishige et al.
1999; Loughney et al. 1999; Soderling et al. 1999). And
finally, it has been shown that PDE11 is primary located in
the pituitary, liver, skeletal muscles, kidneys, testes,
prostate, and thyroid (Fawcett et al. 2000).

The localizations of the different PDE isoforms differ
between specific brain areas as is illustrated in detail in
Table 1. Since PDEs are involved in the regulation of
second messenger signaling in numerous important body
and brain structures, specific inhibitors of the PDE families
have been generated. PDE inhibitors (PDE-Is) increase the
intracellular amount of cAMP and/or cGMP by inhibiting
the enzymatic degradation of these second messengers,
dependent on the substrate specificity of the corresponding
PDE (see also Table 2). Several selective PDE-Is and the
substrate, i.e., CAMP and/or cGMP, of their target PDEs are
classified in Table 2.

By far, not all classes of PDEs have selective inhibitors. In
addition, these inhibitors might have poor penetration
properties concerning the blood-brain barrier. In the litera-
ture, only five PDE-Is have been implicated in behavioral
cognition studies, namely, PDE 2, 4, 5, 9, and 10 inhibitors,
as will become evident in this review. These inhibitors are
widely available, can be administered peripherally, and show
central effects. The existing literature on PDE-Is and cog-
nition is rapidly emerging and procognitive effects of PDE-Is
have been described in fish, rodents, monkeys, and man
(e.g., Best et al. 2008; Rutten et al. 2007b, 2008a; Schultheiss
et al. 2001). Studies were conducted to asses the effects of
PDE-Is on intact cognition as well as in cognitive deficit
models. In addition, knockout models have been developed
to study the role of PDEs in cognition processes. This review
provides a comprehensive overview of the currently available
literature on the effects of selective PDE-Is on cognition in
preclinical models. Furthermore, possible implications for
human studies are discussed. Finally, the underlying mecha-
nisms of action for the procognitive effects of PDE-Is are

Table 1 Localization of the different PDE isoforms in the adult brain of rodents and humans

Isoform Localization in the brain Species Reference
PDEIA Hippocampus, cortex, olfactory bulb, striatum, Human, rat, mouse Billingsley et al. (1990); Cho et al. (2000);
thalamus, cerebellum Lal et al. (1999); Yan et al. (1994)
PDEIB Hippocampus, cortex, olfactory bulb, Mouse, rat Cho et al. (2000); Polli and Kincaid (1994);
striatum Reed et al. (1998)
PDEIC Hippocampus, cortex, amygdala, cerebellum Mouse Yan et al. (1996)
PDE2A Hippocampus, cortex, striatum, amygdala, Human, rat, mouse Bolger et al. (1994); Repaske et al. (1993);
hypothalamus, midbrain Reyes-Irisarri et al. (2007); van Staveren et al.
(2004, 2003)
PDE3 Throughout the brain Rat Bolger et al. (1994)
PDE4A Hippocampus, cortex, olfactory bulb, striatum, Human, rat, mouse Braun et al. (2007); Cherry and Davis (1999);
thalamus, hypothalamus, amygdala, midbrain, Cho et al. (2000); D’Sa et al. (2005); Fujita
cerebellum et al. (2007)
PDE4B Hippocampus, cortex, striatum, hypothalamus, Human, rat, mouse Braun et al. (2007); Cherry and Davis (1999);
midbrain, cerebellum Cho et al. (2000); Fujita et al. (2007)
PDE4D Hippocampus, cortex, striatum, hypothalamus, Human, rat, mouse Cherry and Davis (1999); Cho et al. (2000);
midbrain, cerebellum Fujita et al. (2007); McLachlan et al. (2007);
Richter et al. (2005)
PDESA Hippocampus, cortex, cerebellum Human, rat, mouse Reyes-Irisarri et al. (2007); van Staveren et al.
(2004, 2003)
PDE7A Hippocampus, cortex, olfactory bulb, striatum Human, rat Miro et al. (2001); Perez-Torres et al. (2003)
PDE7B Hippocampus, cortex, striatum, midbrain Human, rat Perez-Torres et al. (2003); Sasaki et al. (2002)
PDESB Hippocampus, cortex, olfactory bulb, striatum, Human, rat Kobayashi et al. (2003); Perez-Torres et al. (2003)
midbrain
PDE9A Hippocampus, cortex, olfactory bulb, striatum, Human, rat, mouse Reyes-Irisarri et al. (2007); van Staveren et al.
thalamus, hypothalamus, amygdala, midbrain, (2004, 2003)
cerebellum
PDE10 Hippocampus, cortex, striatum, midbrain, Rat Seeger et al. (2003)
cerebellum

Note that this table does not provide information with respect to the level of expression of the different isoforms in the brain. In addition,
expression can implicate mRNA levels or protein levels dependent on the study referred to
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Table 2 Overview of PDEs

Type Number of genes Property Substrate Selective inhibitors

PDE1 3 Ca*"-CaM-stimulated cAMP/cGMP IBMX, calimidazolium, phenethiazines, vinpocetine,
SCH51866

PDE2 1 cGMP-stimulated cAMP/cGMP EHNA, BAY 60-7550, aptosyn

PDE3 2 ¢GMP-inhibited cAMP Cilostamide, milrinone, SK&F 95654

PDE4 4 cAMP-specific cAMP Rolipram, rofluminast, ariflo, HT0712, ibudilast, mesembrine

PDES 1 cGMP-specific cGMP Zaprinast, sildenafil, vardenafil, tadelafil, SK&F 96231,
udenafil, avanafil, DA-8159

PDE6 4 Photoreceptor cGMP (Sildenafil)

PDE7 2 cAMP high affinity cAMP BRL 50481

PDES 2 cAMP high affinity cAMP ?

PDE9 1 c¢GMP high affinity cGMP SCH 81566, BAY 73-6691

PDE10 1 cAMP-inhibited cGMP Papaverine, TP-10, PQ10

PDEI11 1 Dual substrate cAMP/cGMP (Tadelafil)

The properties and substrate specificity are depicted (Bender and Beavo 2006). In addition, commonly used selective PDE inhibitors are

mentioned

PDE phosphodiesterase, cAMP cyclic adenosine monophosphate, cGMP cyclic guanosine monophosphate

discussed and a concomitantly novel theory describing the
relationship between different stages of memory consol-
idation and different types of long-term potentiation (LTP)
is proposed.

Effects of selective PDE-Is on cognition
PDE2

So far, only a couple of studies have been published that
investigated the effects of PDE2 inhibition in behavioral
models. To our knowledge, BAY 60-7550 is the only selective
PDE2-I which has been tested in animal models of cognition
(Boess et al. 2004; Domek-Lopacinska and Strosznajder
2008; Rutten et al. 2007b). It has been shown that BAY 60-
7550 improved memory acquisition and consolidation in the
object recognition task in both rats and mice and consolida-
tion in the social recognition task in rats (Boess et al. 2004;
Domek-Lopacinska and Strosznajder 2008; Rutten et al.
2007b). In addition, this PDE2-I improved acquisition and
consolidation in the object recognition task in age-impaired
rats (Domek-Lopacinska and Strosznajder 2008).

Furthermore, BAY 60-7550 reversed the MK-801-in-
duced working memory deficit in the T-maze in mice (Boess
et al. 2004). A more detailed overview of these studies is
provided in Table 3.

PDE4
The next section provides a general summary of the available

literature on PDE4-Is and cognition. A more detailed over-
view is provided in Table 4.
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It has been shown in several studies that acute as well as
subchronic administration of the PDE4-I rolipram improved
memory consolidation in unimpaired rats in the object re-
cognition task (Rutten et al. 2007a, b, 2008c). In addition,
memory deficits caused by scopolamine or acute tryptophan
depletion were reversed by rolipram in this task (Rutten et al.
2007a, 2006). Several spatial memory tasks (e.g., water
escape task and radial arm maze) showed that PDE4-Is did
not only improve spatial memory in unimpaired rats and
mice (Bach et al. 1999; Huang et al. 2007), but also in rats
of which spatial memory was impaired by age or micro-
sphere embolism-induced cerebral ischemia (Nagakura
et al. 2002). An impairment of spatial reference memory
in the radial arm maze caused by scopolamine, MK-801, or
MAPK/ERK kinase (MEK) inhibition was also reversed by
various PDE4-Is (Egawa et al. 1997; Zhang et al. 2000,
2004, 2005; Zhang and O’Donnell 2000).

In addition, various studies investigated the effects of
PDE4-Is on passive avoidance learning and PDE4-Is re-
versed impairments caused by scopolamine, MK-801, ani-
somycin, and MEK inhibition in this task (Egawa et al. 1997;
Ghelardini et al. 2002; Imanishi et al. 1997; Randt et al.
1982; Zhang et al. 2005, 2004; Zhang and O’Donnell
2000). Furthermore, it was shown that acute as well as
chronic treatment of rolipram improved the performance of
unimpaired rats and mice in contextual fear conditioning
(Barad et al. 1998; Comery et al. 2005; Monti et al. 2006).

The effects of PDE4-Is on working memory in rats have
been studied in various deficit models. It was shown that
working memory deficits caused by scopolamine, MK-801,
cerebral ischemia, or electroconvulsive shocks (ECS) were
reversed by the administration of PDE4-Is in the radial arm
maze and the three-panel runway task (Egawa et al. 1997;
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Table 3 Overview of effects of PDE2-Is on cognition

Task (cognitive process, Treatment

area involved)

Model (species)

Results Reference

Object recognition task ~ Unimpaired (rat)
(object memory,
hippocampus and
rhinal cortex) T1-T2)

Unimpaired (rat)

Impaired by age, 3,
12 and 24 months
old (rat)

(2 h interval T1-T2)

Unimpaired (mouse)

Social recognition
(social memory,
hippocampus
and amygdala)

T-maze (working

Unimpaired (rat)

Impaired by MK-
801, 0.125 mg/kg,
i.p., 30 min before
test session
(mouse)

memory,

hippocampus) test session

BAY 60-7550 (3 mg/kg, p.o.)
immediately after, 1 h, 3 h or
6 h after first trial (24 h interval

BAY 60-7550 (0.3, 1 or
3 mg/kg, p.o.) immediately after
first trial (24 h interval T1-T2)

BAY 60-7550 (0.3 mg/kg, s.c.)
1 h before first trial or
immediately after first trial

BAY 60-7550 (0.3, 1 or
3 mg/kg, p.o.) immediately after
first trial (24 h interval T1-T2)

BAY 60-7550 (0.3, 0.6, 1, 2, 3 or
6 mg/kg, p.o.) immediately after
first trial (24 h interval T1-T2)

BAY 60-7550 (0.3, 1, or
3 mg/kg, p.o.) 30 min before

BAY 60-7550 (3 mg/kg,
immediately after T1 or
3 h after T1) improved
memory consolidation

BAY 60-7550 (1 or 3 mg/kg,
immediately after T1)
improved memory
consolidation

BAY 60-7550 1 h before T1
improved acquisition in all
age groups. In addition, it
improved consolidation in
animals of 3 and 12 months
when given immediately
after T1

BAY 60-7550 (0.3 or 1 mg/kg,
immediately after T1)
improved memory
consolidation

BAY 60-7550 (1, 2, 3, or
6 mg/kg, immediately after
T1) improved memory
consolidation

BAY 60-7550 (3 mg/kg)
reversed MK-801 induced
deficit

Rutten et al. (2007b)

Boess et al. (2004)

Domek-Lopacinska
and Strosznajder (2008)

Boess et al. (2004)

Boess et al. (2004)

Boess et al. (2004)

TI trial 1, 72 trial 2, p.o. per os, i.p. intraperitoneal

Imanishi et al. 1997; Zhang et al. 2000, 2005, 2004). Of
note, the effects of rolipram on spatial working memory are
twofold; on one hand, rolipram tended to improve working
memory in young rhesus monkeys in a delayed responding
task (Ramos et al. 2003). However, on the other hand,
rolipram had a negative effect on working memory in aged
monkeys in this task (Ramos et al. 2003, 2006).

The effects of rolipram on information processing have
been studied in several behavioral setups in the prepulse
inhibition and startle response task. Rolipram did not only
facilitate information processing in unimpaired mice and
zebrafish, but also reversed deficits caused by b-amphetamine
in mice (Best et al. 2008; Kanes et al. 2007). In contrast,
PDE4-I RO-20-1724 did not reverse the prepulse inhibition
deficit caused by D-amphetamine (Halene and Siegel 2008).
In another model of information processing, sensory gating,
this PDE-I increased the amplitudes of P20 and N40 in the
CA3 area during the first stimulus and reversed the N40
deficit in the first click caused by D-amphetamine (Halene
and Siegel 2008). Additionally, executive functioning was

improved in an object retrieval task in cynomolgus macaques
after the administration of rolipram (Rutten et al. 2008a). In
this task, monkeys try to retrieve a food reward from a
transparent box with one open side that alternates between
trials. This is a prefrontal cortical-mediated task likely to
capture attention and response inhibition, and rolipram treat-
ment significantly dose-dependently enhanced performance, as
measured by an increased percentage of correct first reaches.
Besides deficit models based on pharmacological or
surgical interventions, the use of transgenic animals, i.e.,
isoform-specific knockout models of PDE4B or PDE4D, have
been recently introduced to study the role of PDE4 in the
central nervous system (CNS). It was shown that PDE4B
knockout (KO) in mice had no effect on spatial memory
performance in the water escape task and the passive
avoidance task (Siuciak et al. 2008a). Furthermore, these
mice showed an impairment in information processing in the
prepulse inhibition task (Siuciak et al. 2008a), although they
performed similar to wild-type animals on conditioned
avoidance responding (Siuciak et al. 2007). A recent study
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Table 4 Overview of effects of PDE4-Is on cognition

Task (cognitive process,
area involved)

Model (species)

Treatment

Results

Reference

Water escape task
(spatial memory,
hippocampus)

Delayed matching to
position water maze
(spatial memory,
hippocampus)

Radial arm water maze
(spatial memory,
hippocampus)

Barnes circular maze
(spatial memory,
hippocampus)

Radial arm maze
(working and reference
memory, hippocampus)

Passive avoidance
(inhibitory avoidance
learning, hippocampus
and amygdala)

@ Springer

Impaired by microsphere

embolism-induced cerebral

ischemia (rat)

Impaired by PDE4B KO
(mouse)

Unimpaired (rat)

Impaired by APP-PS1
Alzheimer KO (mouse)

Impaired by PS1/PDAPP
KO (mouse)

Impaired by age, 18 months

old (mouse)

Impaired by scopolamine

0.5/1.0 mg/kg, i.p., 30 min

before test (rat)

Impaired by scopolamine,
0.5 mg/kg, i.p., 30 min
before test (rat)

Impaired by MK-

801, 0.1 mg/kg, i.p., 60 min

before test (rat)
Impaired by MK-801,

0.1 mg/kg, i.p., 60 min

before testing (rat)

Impaired by MEK inhibitor

UO126, 8 pg/rat into

hippocampus, given twice:
60 and 30 min before test

(rat)

Impaired by (1) protein
synthesis inhibitor
anisomycin, 150 mg/kg,

s.c., 30 min before training,

(2) low baseline (mouse)
Impaired by scopolamine,

1 mg/kg, i.p., 30 min before

acquisition (mouse)
Impaired by scopolamine,
1.5 mg/kg, i.p.,

immediately affer training

(mouse)

Rolipram (3 mg/kg, i.p.)
10 days, after embolism

L-454,560 (0, 0.1, 0.3, or
1 mg/kg, p.o.) 30 min
before testing

Rolipram (0.03 mg/kg, s.c.)

for 3 weeks

Rolipram (0.03 mg/kg, s.c.)

once a day for 2 weeks
before testing

Rolipram (0.016 mg/kg, i.p.)

40 min before training

Rolipram (0.01-1 mg/kg,
i.p.) 45 min before test

Given 30 min before test

(¥)-rolipram 0.01-1 mg/kg,

p.o.; (—)-rolipram 0.005—

1 mg/kg, p.o.; (+)-rolipram

0.1-50 mg/kg, p.o.

Rolipram (0.01-0.1 mg/kg,

i.p.) 30 min before test

Rolipram (0.1 mg/kg, i.p.),
MEM 1018 or MEM 1091

(0.1-2.5 mg/kg, i.p.)
45 min before test

Rolipram (0.05, 0.1, mg/kg,

i.p.) 30 min before test

Rolipram (3 or 10 mg/kg,
i.p., immediately affer

training or 3 h after training
Rolipram (1-30 mg/kg, i.p.)
30 min before acquisition

Rolipram (10 or 30 mg/kg,
p.0.) 30 min before training

Rolipram attenuates
acquisition deficit measured
at days 7-9

No effect

L-454,560 (0.3 and 1 mg/kg)
improved performance

Improvement when tested at
2 months after 3-week
treatment

Rolipram improved working
memory

More mice acquire the task
and number of errors is
reduced

MED: 0.1 (working
memory) and >0.1 mg/kg
(reference memory)

MED (working memory):
(%)-rolipram 0.02—

0.2 mg/kg, (—)-rolipram
0.01-0.02 and

0.2/0.5 mg/kg (bi phasic),
(+)-rolipram 20/50 mg/kg

MED: 0.05 (working
memory) and 0.1 mg/kg
(reference memory)

MED: 0.1 mg/kg rolipram
working memory, MED:
2.5 mg/kg MEM 1018
working and reference
memory MED:2.5 mg/kg

MEM 1091 on reference
memory

MED: 0.1 mg/kg (reference
memory)

MED 10 mg/kg, given
immediately after training
(1+2)

MED: 10 mg/kg

MED: 30 mg/kg

Nagakura et al. (2002)

Siuciak et al. (2008a)

Huang et al. (2007)

Gong et al. (2004)

Costa et al. (2007)

Bach et al. (1999)

Zhang and O’Donnell

(2000)

Egawa et al. (1997)

Zhang et al. (2000)

Zhang et al. (2005)

Zhang et al. (2004)

Randt et al. (1982)

Imanishi et al. (1997)

Ghelardini et al. (2002)
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Table 4 (continued)

Task (cognitive process,
area involved)

Model (species)

Treatment

Results

Reference

Three-panel runway task
(working memory,
hippocampus and
prefrontal cortex)

Inhibitory avoidance
learning (hippocampus
and amygdala)

Contextual fear
conditioning (learning,
hippocampus and
amygdala)

Object recognition task
(object memory,
hippocampus and rhinal
cortex)

Impaired by scopolamine,
3 mg/kg, i.p., 30 min before
retention test (rat)

Impaired by MK-801
0.1 mg/kg, i.p., 60 min
before test (rat)

Impaired by MK-801,
0.1 mg/kg, i.p., 60 min
before testing (rat)

Impaired by MEK inhibitor
UO126, 8 pg/rat into
hippocampus, given twice:
60 and 30 min before test
(rat)

Impaired by PDE4B KO
(mouse)

Impaired by scopolamine,
0.56 mg/kg, i.p., 15 min
before first trial (rat)

Impaired by cerebral
ischemia by four-vessel
occlusion (rat)

Impaired by ECS immediately
after training (rat)

Impaired by (1) protein
synthesis inhibitor
anisomycin, 150 mg/kg,
s.c., 30 min before training,
(2) low baseline (mouse)

Unimpaired (mouse)

Unimpaired (rat)

Impaired by TG2576 KO
Alzheimer mice (mouse)
Impaired by APP-PS KO
Alzheimer mice (mouse)

Impaired by PDE4D KO
(mouse)
Unimpaired young (rat)

Given 60 min before
retention test. (+)-rolipram
0.01-0.1 mg/kg, p.o.; (-)-
rolipram 0.005-0.02 mg/kg,
p.0.; (+)-rolipram 0.3—

10 mg/kg, p.o.

Rolipram (0.1 mg/kg, i.p.)

30 min before test

Rolipram (0.1 mg/kg, i.p.),
MEM 1018 or MEM 1091
(0.1-2.5 mg/kg, i.p.)

45 min before test

Rolipram (0.1, mg/kg, i.p.)
30 min before test or
30 pg/rat into
hippocampus, 20 min
before test

Rolipram (0.032 or
0.1 mg/kg, i.p.) 30 min
before first trial

Rolipram (0.032 or
0.1 mg/kg, i.p.) 30 min
before first trial
(immediately after
reperfusion)

Rolipram (0.1 or 0.32 mg/kg,
i.p.) just before ECS

Rolipram (3 or 10 mg/kg,
i.p., immediately affer
training or 3 h after training

Rolipram (0.03 mg/kg, s.c.)
30 min before training
Rolipram 0.5 mg/kg/day for
7 days chronic delivery by
osmotic minipumps

Rolipram (0.1 mg/kg, i.p.)
30 min prior to training

Rolipram 0.1 uM/kg for
3 weeks

Rolipram (0.01, 0.03 or
0.1 mg/kg, i.p.) given:
(1) 30 min before training,
(2) directly after training,
(3) 3 h after training

MED: (%)-rolipram 0.02—
0.1 mg/kg, (—)-rolipram
0.01-0.02 mg/kg, (+)-
rolipram 2 mg/kg; no effect
at 10 mg/kg

MED: <0.1 mg/kg

MED: rolipram 0.1 mg/kg,
MEM1018 0.1-2.5 mg/kg,
and MEM 1091 0.5—

2.5 mg/kg on reversal
latency

Reversal retention deficit
48 h post training

No effect

MED: 0.1 mg/kg for
decrease errors

MED: 0.1 mg/kg for
decrease errors

MED: 0.32 mg/kg for

decrease errors

MED 10 mg/kg, given
immediately after training
(1+2)

Improved retention 24 h
after training

Improved memory
consolidation and slower
extinction of conditioned
fear

Improvement in mutants and
wild-type

Improvement when tested
2 months following 3-week
treatment

Impairment LTM for context
and cued fear

Rolipram (0.03 mg/kg 3 h
after T1) improved memory
consolidation in ORT

Egawa et al. (1997)

Zhang et al. (2000)

Zhang et al. (2005)

Zhang et al. (2004)

Siuciak et al. (2008a)

Imanishi et al. (1997)

Imanishi et al. (1997)

Imanishi et al. (1997)

Randt et al. (1982)

Barad et al. (1998)

Monti et al. (2006)

Comery et al. (2005)

Gong et al. (2004)

Rutten et al. (2008b)

Rutten et al. (2006)
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Table 4 (continued)

Task (cognitive process,
area involved)

Model (species)

Treatment

Results

Reference

Delayed responding
(spatial working
memory, prefrontal
cortex)

Object retrieval
(executive functioning
and response inhibition,
prefrontal cortex)

Prepulse inhibition
(information
processing, frontal
cortex)

Startle response
(nonassociative
learning)

Acquisition of
conditioned avoidance
responding (learning,
hippocampus)

@ Springer

Unimpaired young (rat)

Impaired by scopolamine,
0.1 mg/kg, i.p., 30 min
before training (rat)

Impaired by acute tryptophan
depletion, 3 h before
training (rat)

Unimpaired (rat)

Impaired by heterozygous
CBP mutation (mouse)

Unimpaired young and aged-

impaired (rhesus monkey)

Impaired by age (rhesus
monkey)

Unimpaired (cynomolgus
macaque)

Unimpaired (mouse)

Impaired by D-amphetamine,
10 mg/kg, i.p., 15 min
before testing (mouse)

Impaired by PDE4B KO
(mouse)

Impaired by D-amphetamine,
5 mg/kg (mouse)

Unimpaired (zebrafish)

Impaired by PDE4B KO
(mouse)

Rolipram (0.03 mg/kg, i.p.)
given: (1) directly after
training, (2) 1 h after
training, (3) 3 h after
training, (4) 6 h after
training

Rolipram (0.03, 0.1 or
0.3 mg/kg, i.p.) 30 min
before training

Rolipram (0.01, 0.03 or
0.1 mg/kg, i.p.) 30 min
before training

Subchronic treatment of
rolipram (0.5 mg/kg, p.o.)
for 5 days. Testing before,
during (day 2-3) and after
treatment (T1-T2 24 h)

Rolipram (0.1 mg/kg, i.p.) or
HT0712 (0.001-0.5 mg/kg,
i.p.) 20 min before training

Rolipram (0.01-100 pg/ke,
im.) 1 h before testing

Rolipram (0, 0.001—
0.05 pg/kg, i.m.) 2 h before
testing and guanfacine
(0, 0.0001-0.01 mg/kg, i.m.
(one animal 0.5 mg/kg))
Rolipram (0.003, 0.01, or
0.03 mg/kg, i.m.) 30 min
before testing

Rolipram (0.1, 0.66, 1 or
10 mg/kg, i.p.) 15 min
before testing

D-amphetamine (10 mg/kg,
i.p.) and rolipram
(0.66 mg/kg, i.p.) 15 min
before testing

RO-20-1724 (0.25, 2.5, or
4 mg/kg, s.c.) or rolipram
(mg/kg, s.c.), 5 min before
testing

Rolipram (3, 10, or 30 uM)

Rolipram (0.03 mg/kg 3 h
after T1) improved memory
consolidation in ORT

Rolipram (0.1 mg/kg)
reversed the scopolamine-
induced STM deficit

Rolipram (0.1 mg/kg)
reversed ATD induced STM
deficit

Subchronic rolipram
treatment improved object
recognition memory.
Timing of final dose did not
affect performance

MED: 0.1 mg/kg for both
drugs. Improved object
recognition at 24 h

At 0.1 pg/kg, trend for
improvement in young
subjects. Aged subjects
impaired by 10 pg/kg

Rolipram alone no effect.
Rolipram reversed
beneficial effect of
guanfacine on working
memory

Rolipram (0.01, 0.33 mg/kg)
improved object retrieval
performance

Rolipram (0.66, 1, 10 mg/kg)
increased PPI and decreased
startle response

Rolipram attenuated the PPI
deficit caused by
d-amphetamine, but had no
effect on startle response

Increased startle response
and decreased PPI
(independent of startle
response)

RO-20-1724 did not reverse
PPI deficit caused by
d-amphetamine

Rolipram (3 uM) enhanced
startle response

No effect

Rutten et al. (2007b)

Rutten et al. (2006)

Rutten et al. (2007a)

Rutten et al. (2008c)

Bourtchouladze et al.
(2003)

Ramos et al. (2003)

Ramos et al. (2006)

Rutten et al. (2008a)

Kanes et al. (2007)

Kanes et al. (2007)

Siuciak et al. (2008a)

Halene and Siegel
(2008)

Best et al. (2008)

Siuciak et al. (2007)
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Table 4 (continued)

Task (cognitive process, Treatment

area involved)

Model (species)

Results Reference

Auditory event-related
potentials (information
processing, frontal
cortex)

Unimpaired (mouse)

Impaired by D-amphetamine,
0.5 mg/kg (mouse)

RO-20-1724 (0.1, 0.25, 0.5,
1, 2.5 mg/kg, s.c.), 5 min
before testing

RO-20-1724 (0.25 mg/kg,
s.c.), 5 min before testing

First click: RO-20-1724
increased amplitude of P20
(at a dose of 0.25, 0.5,

1 mg/kg) and of N40 at a
dose of (0.25, 0.5,

2.5 mg/kg) in CA3 area.
No effects on second click

First click: P20 no effect.
N40 RO-20-1734 reversed
deficit caused by
d-amphetamine in CA3
area. No effects on second
click

Halene and Siegel
(2008)

Halene and Siegel
(2008)

This table is an adapted and updated version of the overview (Table 3) in Blokland et al. (2006)
KO knockout, i.m. intramuscular, i.p. intraperitoneal, p.o. per os, s.c. subcutaneous, MEK MAPK/ERK kinase, 7/ trial 1, 72 trial 2, ECS
electroconvulsive shocks, ATD acute tryptophan depletion, ORT object recognition task, MED minimum effective dose

showed more controversial data demonstrating enhanced LTP
but impaired fear conditioning in PDE4D knockout mice
(Rutten et al. 2008b).

In addition, a variety of transgenic mice models was used
in combination with the administration of PDE4-Is. It has
been shown that acute as well as chronic treatment of PDE4-
Is improved long-term memory (LTM) functioning in a
Rubenstein—Taybi syndrome and two Alzheimer’s disease
KO mouse models for cognitive impairment in the fear
conditioning and object recognition task (Bourtchouladze et
al. 2003; Comery et al. 2005; Gong et al. 2004). Also,
PDE4-I rolipram improved working memory and spatial
memory in a transgenic model of Alzheimer’s disease, i.e.,
PS1/PDAPP KO mice in the radial arm water maze (Costa
et al. 2007; Gong et al. 2004).

To our knowledge, no studies have been published in
which the effects of PDE4-Is on cognition in humans are
described. However, PDE4-1 MK 0952 is now entering
phase 2 clinical trials for cognition enhancement (Merck and
Co. 2006).

PDE5

Prickaerts et al. (1997) were the first to describe memory-
enhancing effects of PDES inhibition using the PDES-I
zaprinast. However, zaprinast is not selective for PDES, as it
also inhibits PDEL, 9, 10, and 11 (Bender and Beavo 2006).
Recently, more highly selective PDES5 inhibitors have been
developed mainly for the treatment of erection disorder, e.g.,
sildenafil (Viagra), vardenafil (Levitra), and tadalafil (Cialis)
(Setter et al. 2005). The next section will give a general
summary of the available literature on PDES-Is and
cognition; a more detailed overview is provided in Table 5.

So far, several studies have shown positive effects of
selective PDES-Is on memory performance in the object
recognition task in adult rats; zaprinast (Domek-Lopacinska
and Strosznajder 2008; Prickaerts et al. 1997), sildenafil
(Prickaerts et al. 2005, 2002b), and vardenafil (Prickaerts et
al. 2002b; Rutten et al. 2007b) improved memory consoli-
dation. In addition, Rutten et al. (2005) showed that sildenafil
also improved memory consolidation in mice in this task.
Previous work from our group showed that zaprinast
reversed the object memory deficits induced by the NOS
inhibitor 7-nitroindazole in rats in the object recognition task
(Prickaerts et al. 1997). However, zaprinast was unable to
reverse memory deficits in aged rats in this task (Domek-
Lopacinska and Strosznajder 2008).

Several studies have shown spatial memory improvement
in an adapted version of the elevated plus-maze in rats (Singh
and Parle 2003) and mice (Patil et al. 2004a) after treatment
with a PDES-I. Furthermore, sildenafil treatment ameliorated
the deficits induced by diabetes or ECS in this task (Patil et
al. 2004a, 2006). Previous studies showed no effects of
PDES-Is on spatial tasks in healthy rats, i.e., the water escape
task or the Y-maze (Prickaerts et al. 2004). However, since
only one dose was tested in this study, further investigation
will be needed. Finally, in hyperammonemia and portacaval
shunt deficit models for liver failure, both sildenafil and
zaprinast reversed spatial recognition deficits of rats in the Y-
maze (Erceg et al. 2006, 2005a, b). Recent work adds to this
since sildenafil reversed the effects the nitric oxide synthase
(NOS) inhibitor L-NAME in a complex maze learning
paradigm (Devan et al. 2006, 2007).

Furthermore, various studies investigated the effects of
PDES-Is on active and passive avoidance learning in rats,
mice, and neonatal chicks. Although one study failed to show
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Table 5 Overview of effects of PDES-Is on cognition

Task (cognitive process,
area involved)

Model (species)

Treatment

Results

Reference

Object recognition task
(object memory,
hippocampus and
rhinal cortex)

Adapted version of
elevated plus-maze
(spatial memory,
hippocampus)

@ Springer

Unimpaired (rat)

Unimpaired (rat)

Unimpaired (rat)

Unimpaired (rat)

Unimpaired (rat)

Unimpaired (mouse)

Impaired by NOS

inhibitor (rat)

Impaired by age, 3, 12,
and 24 months old (rat)

Unimpaired (rat)

Unimpaired (mouse),

age-impaired (mouse)

Unimpaired (mouse),
age-impaired (mouse)

Impaired by diabetes-
STZ (rat)

Sildenafil citrate (1, 3, or
10 mg/kg, p.o.) 30 min
before or immediately after
first trial (24 h interval
T1-T2)

Zaprinast (3 or 10 mg/kg,
i.p.) immediately after first
trial (4 h interval T1-T2)

Sildenafil (1, 3, or 10 mg/kg,
p.o.) immediately after first
trial (24 h interval T1-T2)

Vardenafil (0.1, 0.3, 1, or
3 mg/kg, p.o.) immediately
after first trial (24 h
interval T1-T2)

Vardenafil (1 mg/kg, p.o.)
immediately after, 1 h, 3 h
or 6 h after first trial (24 h
interval T1-T2)

Sildenafil (0.3, 1 or 3 mg/kg,
p-o.) immediately after first
trial (24 h interval T1-T2)

7-nitroindazole (10 or
30 mg/kg, i.p.); zaprinast
(3 or 10 mg/kg, i.p.)
immediately after first trial
(1 h interval T1-T2)

Zaprinast (0.3 mg/kg, s.c.)

1 h before first trial or
immediately after first trial
(2 h interval T1-T2)

Sildenafil (2, 4, or 8 mg/kg,
i.p.) 30 min before or
immediately after first trial

Sildenafil (0.25, 0.5, or
1 mg/kg, i.p.) immediately
after first trial

Zaprinast (0.5, 1 or 2 mg/kg,
i.p.) immediately after first
trial

Streptozotocin (STZ)
(60 mg/kg, i.p.), sildenafil
(0.25, 0.5, or 1 mg/kg, i.p.)
immediately after training

Sildenafil (3 mg/kg TO or
10 mg/kg T1-30 min)
improves memory
consolidation

Zaprinast (10 mg/kg)
improved memory
consolidation

Sildenafil (3 mg/kg)
improved memory
consolidation in ORT

Vardenafil (0.3 mg/kg)
improved memory
consolidation in ORT

Vardenafil (1 mg/kg
immediately after T1)
improved memory
consolidation in ORT

Sildenafil (1 mg/kg)
improved memory
consolidation in ORT

Zaprinast (10 mg/kg)
reversed the NOS-I
(10 mg/kg) deficit in ORT

Zaprinast 1 h before T1
improved acquisition in
3-month-old animals. In
addition, it improved
consolidation in animals of
3 months when given
immediately after T1

Sildenafil (8 mg/kg) before
T1 marginally increased
spatial memory acquisition.
Sildenafil (2, 4, 8 mg/kg)
immediately after T1
increased spatial memory
retention

Sildenafil improved spatial
memory performance in
young (0.5 and 1.0 mg/kg)
and aged (0.25-1 mg/kg)
animals

Zaprinast improved spatial
memory performance in
young (1.0 and 2.0 mg/kg)
and aged (0.5-2 mg/kg)
animals

Sildenafil (all doses)
reversed STZ spatial
memory deficits

Prickaerts et al. (2005)

Prickaerts et al. (1997)

Prickaerts et al. (2002b)

Prickaerts et al. (2002b)

Rutten et al. (2007b)

Rutten et al. (2005)

Prickaerts et al. (1997)

Domek-Lopacinska and
Strosznajder (2008)

Singh and Parle (2003)

Patil et al. (2004a)

Patil et al. (2004a)

Patil et al. (2006)
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Table 5 (continued)

Task (cognitive process,
area involved)

Model (species)

Treatment

Results

Reference

Y-maze (spatial memory,
hippocampus and
cerebellum)

Water escape task
(spatial memory,
(hippocampus)

Complex maze learning
(learning,
hippocampus)

Active avoidance
learning (hippocampus)

Passive avoidance
learning (hippocampus)

Impaired by diabetes-
LPS (mouse)

Impaired by
electroconvulsive
shock (rat)

Unimpaired (rat)

Impaired by
hyperammonemia (rat)

Impaired by
hyperammonemia (rat)

Impaired by portacaval
shunts (rat)

Unimpaired (rat)

Impaired by NOS
inhibitor (rat)

Impaired by NOS
inhibitor (rat)

Impaired by scopolamine,
0.75 mg/kg, i.p., 30 min
before training
(rat)

Unimpaired (mouse)

Unimpaired (rat)

Unimpaired (neonate
chick)

Lipopolysaccharide (LPS:
50 pg, i.p.) and sildenafil
(0.25, 0.5, or 1 mg/kg, i.p.)
or zaprinast (0.5, 1, or
2 mg/kg, i.p.) immediately
after training

Shocks (0.2 mA, 0.2 s/day
for 15 days) sildenafil
(0.5, 1, or 2 mg/kg, i.p.)
immediately after training

Vardenafil (3 mg/kg, p.o.)
daily after last trial

Sildenafil (50 mg/L) in
drinking water 2 days
before training

Ammonium acetate
containing diet (28 days
before testing), zaprinast
(50 uM, 0.25 uL/h, 2 days
before testing) in cerebral
ventricle

Portacaval shunt operation
28 days before test.
Sildenafil (50 mg/L) in
drinking water 2 days
before training

Zaprinast (10 mg/kg, i.p.)
daily after last trial

L-NAME (60 mg/kg, i.p.)
30 min before training,
sildenafil (1, 1.5, 3, or
4.5 mg/kg, i.p.) 15 min
before training

L-NAME (0, 45 ug/kg,
i.c.v.) 30 min before
training, sildenafil (0, 1.5,
or 3 mg/kg, i.p.) 15 min
before training

Sildenafil (1.5, 3, or
4.5 mg/kg, i.p.) 15 min
before training

Sildenafil (1, 3, 10, or
30 mg/kg, i.p.) 30 min
before training or
immediately after training

Sildenafil (1, 3, 10, or
20 mg/kg, i.p.) immediately
after training in young and
old rats

Zaprinast (0.1-750 uM/side,
i.c.) immediately after
training

Sildenafil (0.5 and 1 mg/kg)
and zaprinast (1 and
2 mg/kg) reversed LPS
spatial memory deficits

Sildenafil (all doses)
reversed spatial memory
deficits

No effects on spatial
recognition

Sildenafil (in drink water)
reversed spatial recognition
deficits

Zaprinast (through
minipump) reversed spatial
recognition deficits

Sildenafil (in drink water)
reversed spatial recognition
deficits

No effects on acquisition or
retention of spatial memory

Sildenafil (1.5 mg/kg)
attenuated the L-NAME
deficit in maze learning

Sildenafil (3 mg/kg)
attenuated the L-NAME
deficit in maze learning

Sildenafil (3 mg/kg) reversed
the scopolamine deficit in
active avoidance task

Sildenafil (3 mg/kg)
improved performance
(both 30 min before and
immediately after training)
in active avoidance

Sildenafil has no effect on
retention performance in
passive avoidance

Zaprinast (>100 uM)
enhanced early
consolidation

Patil et al. (2004a)

Patil et al. (2006)

Prickaerts et al. (2004)

Erceg et al. (2006)

Erceg et al. (2005a)

Erceg et al. (2005b)

Prickaerts et al. (2004)

Devan et al. (2006)

Devan et al. (2007)

Devan et al. (2004)

Baratti and Boccia
(1999)

Shafiei et al. (2006)

Campbell and Edwards
(2006)
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Table 5 (continued)

Task (cognitive process,
area involved)

Model (species)

Treatment

Results

Reference

Object retrieval
(executive functioning
and response inhibition,
prefrontal cortex)

Seven different
psychophysical tests
(psychophysical
performance, various
brain areas)

Auditory selective
attention and ERPs
(attention, prefrontal
cortex)

Verbal recognition
memory and ERPs
(memory and
information processing,
hippocampus and
frontal cortex)

Unimpaired (young
chick)

Unimpaired (mouse),
age-impaired (mouse)

Unimpaired (mouse),
age-impaired (mouse)

Impaired by diabetes
(rat)

Impaired by
electroconvulsive shock
(rat)

Impaired by diabetes-
LPS (mouse)

Unimpaired
(cynomolgus macaque)

Unimpaired (human)

Unimpaired (human)

Unimpaired (human)

Zaprinast (100 uM/side, i.c.)
immediately after training.
Retention times between 10
and 180 min

Sildenafil (0.25, 0.5, or
1 mg/kg, i.p.) immediately
after first trial

Zaprinast (0.5, 1, or 2 mg/kg,
i.p.) immediately after first
trial

STZ (60 mg/kg, i.p.),
sildenafil (0.25, 0.5, or
1 mg/kg, i.p.) immediately
after training

Shocks (0.2 mA, 0.2 s/day
for 15 days), sildenafil
(0.5, 1, 2 mg/kg, i.p.)
immediately after training

Lipopolysaccharide (LPS:
50 pg, i.p.) and sildenafil
(0.25, 0.5, or 1 mg/kg, i.p.)
or zaprinast (0.5, 1,
2 mg/kg, i.p.) immediately
after training

Sildenafil (0.3, 1, or
3 mg/kg, i.m.) 30 min
before testing

Sldenafil (100 mg, p.o.) 1 h
before testing

Sldenafil (100 mg, p.o.) 1 h
before testing

Sildenafil (100 mg, p.o.) I h
before testing

Zaprinast impaired
performance (at a retention
of 40, 60, 90, and 120 min)

Sildenatil improved
consolidation in young
(0.5 and 1.0 mg/kg) and
aged (0.25-1 mg/kg)
animals

Zaprinast improved spatial
memory performance in
young (1.0 and 2.0 mg/kg)
and aged (0.5-2 mg/kg)
animals

Sildenafil (all doses)
reversed STZ memory
deficit caused by diabetes

Sildenafil (all doses)
reversed memory deficit
caused by ECS

Sildenafil (0.5 and 1 mg/kg)
and zaprinast (1 and
2 mg/kg) reversed LPS
induced memory deficits

Sildenafil (1, 3 mg/kg)
improved object retrieval
performance

Sildenafil enhanced
performance on the simple
reaction time test; other
tests no effect

Sildenafil had no effect on
the behavioral
measurements of attention.
However, an increase in the
ERP components Nd and
P3 indicates an
improvement of attention

Sildenafil had no effect on
the behavioral
measurements of memory.
However, a reduction in
negativity between 150 and
250 ms might indicate an
effect on information
processing

Edwards and Lindley
(2007)

Patil et al. (2004a)

Patil et al. (2004a)

Patil et al. (2006)

Patil et al. (2006)

Patil et al. (2004b)

Rutten et al. (2008a)

Grass et al. (2001)

Schultheiss et al. (2001)

Schultheiss et al. (2001)

i.c.v. intracerebroventricular, i.c. intracerebral, i.p. intraperitoneal, LPS lipopolysaccharide, NOS nitric oxide synthase, ORT object recognition
task, p.o. per os, T/ trial 1, 72 trial 2, STZ streptozotocin
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improvement in learning performance after sildenafil treat-
ment in unimpaired and aged rats (Shafiei et al. 2006), others
have shown improvements in unimpaired and aged mice and
in neonatal chicks (Baratti and Boccia 1999; Campbell and
Edwards 2006; Patil et al. 2004a). In contrast, Edwards and
Lindley (2007) found that zaprinast could also have a
negative effect on learning and memory when given at a
high dose. Memory impairments in avoidance learning
caused by scopolamine, diabetes, or ECS in rats were
reversed by sildenafil treatment (Devan et al. 2004; Patil et
al. 2006). In addition, zaprinast as well as sildenafil reversed
memory deficits caused by a model for diabetes in mice
(Patil et al. 2004a).

Finally, a recent study showed that the PDES5-I sildenafil
dose-dependently improved performance in a prefrontal
task, i.e., the object retrieval task (see above), in cynomol-
gus macaques (Rutten et al. 2008a).

Most research regarding the cognition-enhancing effects
of PDES5-Is so far has focused on preclinical animal models;
there are only two papers in which the effects of the PDES-I
sildenafil on human cognition were investigated. Grass
et al. (2001) have shown that 100 mg sildenafil enhanced
performance in a simple reaction time test when given 1 h
before testing. However, no effects were found on short-
term memory (STM), divided attention, and other psycho-
motor tasks (Grass et al. 2001). In addition, Schultheiss
et al. (2001) studied the effects of sildenafil (100 mg, 1 h
before testing) on auditory attention and word recognition.
Again, no cognition-enhancing effects were found with
regard to the behavioral measures

In both studies, STM tasks were performed that are
thought to measure memory performance processes com-
parable to the object recognition task in rats. However, the
object recognition task in animals usually measures more
aspects of memory, such as that for object and for location,
even though only the object memory itself might have been
measured. The human tasks, on the other hand, only assess
memory for words, pictures, or location, but never the
combination of these aspects. Possibly, the fact that spatial
information was lacking in the human studies has caused
this discrepancy in findings.

Sildenafil changed certain components of event-related
potentials (ERPs) in the study of Schultheiss et al. (2001).
The Nd component, although it only showed a marginally
significant effect, was increased after treatment with
sildenafil. This indicates improved focused attention. The
P3 component, which measures controlled processes of
target selection, was significantly enhanced after the
administration of sildenafil (Schultheiss et al. 2001). Again,
this is evidence for improvements after treatment with
sildenafil. Finally, a reduced negativity between 150 and
250 ms was found in the word recognition experiment after
sildenafil treatment; this may also indicate an effect on

information processing, although the exact role of this
component remains uncertain (Schultheiss et al. 2001).

Several possible explanations for not finding any
cognition-enhancing effects after PDES-I treatment in
humans in contrast to the results in animal studies exist.
First, only one dose of sildenafil on one specific time point
was tested in both studies. Investigating different doses,
both higher and lower, at different administration time
points might reveal possible cognition-enhancing effects in
humans. In addition, a “ceiling effect” might have occurred
in the cognitive tasks; this means that healthy subjects in
these studies already perform at their maximal level, so
their performance cannot be further improved. A final
explanation might be that the number of participants was
not sufficient, since only six participants were tested by
Grass et al. (2001), whereas Schultheiss et al. (2001)
examined ten healthy participants.

PDE9

To our knowledge, only one paper has been published in
which the effects of PDE9 inhibition on cognition are
described (Van der Staay et al. 2008). In this paper, the
potent and selective PDE9-I BAY 73-6691 was used
(Wunder et al. 2005). It was shown that this PDE9-I im-
proved memory consolidation in unimpaired rats and mice in
the object recognition and social recognition task (Van der
Staay et al. 2008). Furthermore, this PDE9-I reversed the
MK-801- or scopolamine-induced memory deficit in the T-
maze and the passive avoidance task, respectively (Van der
Staay et al. 2008). More detailed information can be found in
Table 6.

PDEI10

Only very recently, PDE10-Is have become a target for
CNS research, especially concerning the cognitive deficits
related to schizophrenia (Schmidt et al. 2008). In the next
section, a summary of the available literature on PDE10-Is
and cognition will be given; a more detailed overview can
be found in Table 7.

Chronic treatment with the PDE10-I papaverine impaired
spatial memory and reversal learning in unimpaired mice in
the Morris water maze (Hebb et al. 2008). Administration of
TP-10 did not have an effect on information processing in a
prepulse inhibition task in unimpaired and MK-801-
impaired mice (Schmidt et al. 2008). However, TP-10
reversed the auditory gating deficit caused by D-amphet-
amine in rats (Schmidt et al. 2008). Papaverine improved
attention in the attention shifting task in rats that were
impaired by subchronic phenylcyclohexylpiperidine (PCP)
treatment, a model of schizophrenia, whereas no effect was
found in unimpaired rats (Rodefer et al. 2005).
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Table 6 Overview of effects of PDE9-I on cognition

Task (cognitive process, Model (species) Treatment

area involved)

Results Reference

Object recognition task Unimpaired (rat)
(object memory,

hippocampus and rhinal

cortex)
Passive avoidance Impaired by BAY 73-6691 (0.3, 1, or
(learning, scopolamine, 3 mg/kg, p.o.) 60 min before
hippocampus) 0.03 mg/kg, s.c., testing

30 min before

testing (rat)
Social recognition (social ~ Unimpaired (rat)
memory, hippocampus

and amygdala)

Unimpaired (rat)

BAY 73-6691 (0.1, 0.3, 1, or
3 mg/kg, p.o.) 30 min before
T1 (24 h interval T1-T2)

BAY 73-6691 (0, 0.03, 0.3,
or 3 mg/kg, p.o.) 60 min before
the first trial (T1), immediately
after T1 or 60 min before trial 2 (T2)
(24 h interval T1-T2)

BAY 73-6691 (0 or 1 mg/kg, p.o.)
60 min before the first trial (T1)
with a familiar juvenile or BAY
73-6691 (1 mg/kg, p.o.) 60 min
before the first trial (T1) with a

BAY 73-6691 (0.1, 0.3 mg/kg) Van der Staay et al.
had an intermediate effect on  (2008)
memory consolidation

BAY 73-6691 (1, 3 mg/kg)
attenuated the scopolamine-
induced retention deficit

Van der Staay et al.
(2008)

BAY 73-6691 (0.3, 3 mg/kg)
60 min before T1, or BAY
73-6691 (0.03, 0.3, 3 mg/kg)
immediately after T1 and
60 min before T2 improved
memory consolidation

BAY 73-6691 (1 mg/kg)
improved memory
consolidation with a
familiar as well as a novel

Van der Staay et al.
(2008)

Van der Staay et al.
(2008)

juvenile

novel juvenile (24 h interval

T1-T2)
Unimpaired (mouse)

T-maze (working
memory,
hippocampus)

0.06 mg/kg, s.c.,
30 min before testing
(mouse)

testing

BAY 73-6691 (0, 0.03, 0.3, or
3 mg/kg, p.o.) 30 min before the
first trial (24 h interval T1-T2)
Impaired by MK-801, BAY 73-6691 (0, 1, 3, or
10 mg/kg, p.o.) 60 min before

BAY 73-6691 (0.3, 3 mg/kg) Van der Staay et al.
30 min before T1 improved  (2008)
memory consolidation

BAY 73-6691 (10 mg/kg)
attenuated the MK-801
induced deficit in alternation
rate

Van der Staay et al.
(2008)

p.o. per os, T1 trial 1, T2 trial 2, s.c. subcutaneous

Several studies also used KO models to study the role of
PDE10 in cognition. It was shown that PDE10A knockout in a
DBA1Lac] background had no effect on learning and memory
in the passive avoidance and water escape task in mice
(Siuciak et al. 2006, 2008b). In addition, these mice showed
the same conditioned avoidance response as wild-type mice;
however, these KO mice required more training to reach the
performance of wild-type animals (Siuciak et al. 2006,
2008b). On the other hand, PDE10A KO mice with a
C57BL/6N background were unable to reach the performance
of the wild-type mice in this task (Siuciak et al. 2008b).

The data discussed in the previous paragraphs showed that
PDE10-Is can improve cognition in impaired animals, but can
also induce a cognitive impairment in healthy animals. There
are several explanations that might account for these contra-
dictory findings. First, the cognitive impairment in healthy
animals caused by papaverine was the result of a subchronic
treatment, which was not found after acute treatment in
impaired animals. Secondly, different aspects of cognition
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were addressed in these studies. In the healthy animals,
learning and memory were studied, whereas in the impaired
animals, information processing and attention were investigat-
ed. Thirdly, improving cognition of a healthy individual is not
the same as restoring impaired cognition; the underlying
processes, and thus the effect of a compound, may differ.

Mechanisms of action

There are several mechanisms of action which could account
for the cognition-enhancing effects of PDE-Is. First, it has
been proposed that these effects could be the result of
vasodilatory properties of PDE-Is. Secondly, cognition en-
hancement could be a consequence of emotional arousal.
Finally, positive effects may be due to enhanced second
messenger signaling (cAMP and/or ¢cGMP) resulting in
facilitated LTP processes. All three mechanisms will be
discussed in the next sections.
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Table 7 Overview of effects of PDE10-Is on cognition

Task (cognitive
process, area
involved)

Model (species)

Treatment

Results

Reference

Passive avoidance
learning
(hippocampus)

Acquisition of
conditioned avoidance
responding (CAR)
(learning,
hippocampus)

Morris water maze
(spatial memory,
hippocampus)

Auditory gating
(anesthetized)
(information
processing, frontal
cortex)

Prepulse inhibition
(information
processing,
frontal cortex)

Attention set-shifting
task (attention,
prefrontal cortex)

Impaired PDE10A
KO (mouse)

Impaired PDE10A
KO (mouse)

Impaired PDE10A
KO (mouse)

Impaired by PDE10A
KO; DBAI1Lac]
background (mouse)

Impaired by PDE10A
KO; C57BL/6N
background (mouse)

Impaired PDE10A KO
(mouse)

Unimpaired (mouse)

Impaired by D-amphetamine,
1 mg/kg, i.v., 5 min before
testing (rat)

Unimpaired (mouse)

Impaired by MK-801,
0.178 mg/kg, s.c., 30 min
before testing (mouse)
Impaired by subchronic PCP
treatment, 5 mg/kg, i.p.,
twice a day for 7 days (rat)

Chronic treatment of papaverine

(0, 5, 10, or 20 mg/kg, s.c.)
daily for 14 days. Then,
same treatment either prior
of 30 min after testing

TP-10 (0, 3 mg/kg); 5 min
before testing

TP-10 (0, 0.32, 1, 3.2, or
10 mg/kg, s.c.) 30 min
before testing

TP-10 (0, 1, 3.2, or
10 mg/kg, s.c.) 30 min
before testing

Papaverine (0, 3, 10, or
30 mg/kg, i.p.)

Apparent effect, but this
could be explained by a
locomotor effect

No effect

PDE10A—/— mice learned
the task as well as PDE10A
+/+ mice, but needed more
training

KO mice learned the task as
well as WT, but needed
more training

KO mice learned needed
more training and did not
reach performance of WT

Apparent effect, but this
could be explained by a
locomotor effect

Papaverine (5 mg/kg, after
testing) impaired latency
and distance. In addition,
papaverine (20 mg/kg,

30 min before testing and
5 mg/kg, 30 min after

testing) increased the time
spend in the old platform

quadrant in reversal learning

TP-10 reversed auditory
gating deficit

TP-10 had no effect on PPI
or startle response

TP-10 did not reverse PPI
deficit

Papaverine attenuated PCP
induced deficits at all doses.
No effect of papaverine on
saline treated rats

Siuciak et al. (2006)

Siuciak et al. (2008b)

Siuciak et al. (2006)

Siuciak et al. (2008b)

Siuciak et al. (2008b)

Siuciak et al. (2006)

Hebb et al. (2008)

Schmidt et al. (2008)

Schmidt et al. (2008)

Schmidt et al. (2008)

Rodefer et al. (2005)

CAR conditioned avoidance responding, ip. intraperitoneal, i.v. intravenous, KO knockout, PCP phenylcyclohexylpiperidine, PPI prepulse

inhibition, s.c. subcutaneous

Blood flow

An increase in blood flow and concomitantly an increase in
glucose metabolism might be related to the observed cognitive
enhancements after PDE-I treatments as predominantly
investigated and observed in rodents. This is because PDE-Is
increase the levels of cAMP and ¢cGMP, and vasodilatation

properties can be attributed to both cyclic nucleotides
(Dundore et al. 1993; Paterno et al. 1996).

Summarizing the rodent behavioral data with PDES
inhibition (see Table 5), it appears that zaprinast and sildenafil
are optimally effective at an oral dose of approximately 10
and 3 mg/kg, respectively. The effects of both zaprinast and
sildenafil on blood pressure, which is negatively related to
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blood flow, have been sparsely investigated in conscious
rodents. Administration of zaprinast does not decrease the
mean arterial blood pressure at a dose of 2 mg/kg (i.p.) in
mice (Patil et al. 2004a) and 10 mgkg (p.o.) in rats
(Prickaerts et al. 1997). Yet, a decrease in blood pressure
can be observed with zaprinast after systemic administration
(i.v.) of doses higher than 10 mg/kg (Dundore et al. 1993).

One milligram per kilogram sildenafil (i.p.) did not affect
the mean arterial blood pressure in mice up to 6 h after
administration (Patil et al. 2004a). Yet sildenafil can decrease
the mean arterial blood pressure up to 6 h, but an oral dose of
at least 10 mg/kg was needed in rats (Rehse et al. 1999).
Sildenafil has also been tested directly on cerebral blood
flow as measured with laser Doppler flowmetry, although
rats need to be anesthetized for this technique (Zhang et al.
2002). Surprisingly, localized cerebral blood flow was
increased after oral administration of 2 mg/kg sildenafil.

Cerebral blood flow and glucose utilization have been
investigated in mice with the ['*N]ammonia uptake and [*H]
2-deoxyglucose uptake technique (Ishikawa et al. 2002). It
was found that, within 5 min after 3 mg/kg rolipram (i.p.)
administration, blood flow and glucose metabolism in the
brain were both decreased by approximately 20% and 40%,
respectively. At 30 min after administration, glucose use was
still decreased by 60%. One milligram per kilogram rolipram
was also tested on central glucose use, which was found to
be decreased by 40% at 15 min after administration. Of note,
these doses of rolipram are rather high and behaviorally
effective doses are in general below 1 mg/kg (i.p.) (see
Table 4). Increasing the dose of rolipram above 1 mg/kg will
only result in sedation and locomotor depression.

Taken together, the PDE4-Is and PDES-Is tested in rodents
can have peripheral and central vascular and metabolic effects,
but these effects occur after treatment with doses that are
higher than required for cognition enhancement. Moreover,
detailed inspection of the behavioral data already suggests that
a uniform cerebrovascular effect is not sufficient to explain the
differential effects on cognitive processes. For instance,
administration of a ¢cGMP analog into the hippocampus
improved early consolidation, whereas a comparable cAMP
analog had no effect (Bernabeu et al. 1996; Prickaerts et al.
2002a). Along similar lines, sildenafil improved early con-
solidation, whereas rolipram did not (Rutten et al. 2007b).
On the other hand, late consolidation processes are improved
by rolipram while sildenafil is ineffective. Once more, these
findings indicate that it is not likely that cerebrovascular and
metabolic effects explain the cognitive improvements as
observed in rodents.

Sildenafil 100 mg has effects on the CNS of humans as
evident from influenced evoked potential and reaction times
(Grass et al. 2001; Schultheiss et al. 2001). The same dose of
sildenafil has been shown to increase heart rate and de-
creased diastolic blood pressure in healthy subjects (Kruuse
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et al. 2002). However, sildenafil had no effect on blood flow
in the middle cerebral artery, just as there were no changes in
radial and temporal artery diameters (Arnavaz et al. 2003;
Kruuse et al. 2002). This indicates that the effects on
cognition after sildenafil administration are not likely to be
related to cerebrovascular mechanisms in humans as well.

Emotional arousal

Anecdotic report and case studies describe emotional arousal
(anxiety, aggression) in men taking sildenafil (Milman and
Arnold 2002). In rats, it has been demonstrated that sildenafil
(1-3 mg/kg) has an anxiogenic effect (Kurt et al. 2004).
Effects on emotion and arousal are likely since animal studies
have shown that central cGMP is involved in sympathetic
activation (Krukoff 1998). Concomitantly, anxiolytics includ-
ing benzodiazepines reduced the stress-induced increase in
central cGMP levels (Tang et al. 1997). cAMP levels were
reduced as well after benzodiazepines administration, as
found in vitro (Niles and Wang 1999); although increases in
cAMP have also been observed (Cherry et al. 2001). In line
with the latter observation, PDE4-I rolipram (0.1 mg/kg, s.c.)
had an anxiolytic effect in rats (Silvestre et al. 1999). Yet it
has to be noted again that the dose of rolipram is still
relatively high and decreased locomotor activity might have
interfered with the behavioral response. Nevertheless, it is
evident that the cyclic nucleotides cAMP and cGMP play a
role in arousal and emotional processes. Emotional arousal,
to a certain maximum, is necessary for an optimal cognitive
performance (Prickaerts and Steckler 2005). Thus, the effects
of PDE-Is on cognition can be influenced by or attributed to
effects on processes of emotions and arousal.

Long-term potentiation

Hippocampal LTP is the most established cellular model for
the neuroplastic mechanisms that underlie learning and
memory (Bliss and Collingridge 1993). LTP is described by
the increase in the chemical strength of a synapse after
tetanus stimulation that lasts for over an hour. Experimen-
tally, series of short, high-frequency electric stimulations to a
nerve cell synapse can strengthen or potentiate that synapse
for several minutes to hours. Glutamate induces LTP via the
activation of the ionotropic NMDA receptor, after which
calcium enters the cell triggering various presynaptic and
postsynaptic changes. The mechanism of LTP and its rela-
tionship to learning and memory is quite complicated. It
depends on the fine-tuning of various components of the
glutamatergic system including ionotropic and metabotropic
glutamate receptors, other neurochemical systems, second
messengers, and signal transduction pathways. Hippocampal
LTP can, depending on the induction paradigm, last for less
than 3 h or longer. The former is called early-phase LTP (E-



Psychopharmacology (2009) 202:419-443

435

LTP) and the latter late-phase LTP (L-LTP). It has been
suggested that E-LTP (or LTP1) can be transformed into L-
LTP (LTP3), probably via an intermediate LTP2 form
(Reymann and Frey 2007). Furthermore, it has been assumed
that E-LTP is related to STM and L-LTP to LTM (Izquierdo
et al. 2002).

In general, both presynaptic and postsynaptic mechanisms
are related to LTP and can involve the second messengers
cAMP and cGMP. Figure 1 provides a schematic overview of
the cellular processes related to LTP and second messenger
signaling. More in detail, a postsynaptic cAMP/PKA/CREB
pathway (Impey et al. 1996) and cGMP/PKG/CREB path-
way (Lu et al. 1999) are involved in L-LTP. A postsynaptic
calmodulin-dependent protein kinase II (CaMKII) pathway
(Sweatt 1999) and presynaptic cGMP/PKG pathway (Arancio
et al. 1995) have been implicated in E-LTP.

Since PDE-Is influence the levels of the second messengers
cAMP and/or cGMP, it can be argued that the procognitive
effects of PDE-Is are related to the facilitation of LTP. Yet,
only a limited number of studies has investigated the effects of
PDE-Is on LTP. Most research has been aimed at the effects of
PDEA4 inhibition on LTP. The PDE4-I rolipram, when applied
to hippocampal slices, has been shown to facilitate hippo-
campal LTP in rats and mice (Ahmed and Frey 2003, 2005;
Gong et al. 2004; Navakkode et al. 2004, 2005). In addition,
we recently demonstrated that the PDE9-I BAY 73-6691

Pre- synaptic =———>> Post-synaptic

CREB

Fig. 1 Ca®" entry through the postsynaptic ionotropic NMDA receptor
triggers LTP induction. Ca®" results in the activation of CaMKII (a
specific form of CaMK). Activated CaMKII stimulates the insertion into
the membrane of the ionotropic AMPA receptor, which is involved in
regular signal transduction through the generation of excitatory
postsynaptic potentials. In addition, CaMKII activates AC resulting in
the production of the second messenger cAMP. The latter activates
PKA, which has a positive effect on the transcription factor CREB (via
MAP kinases possibly). CREB activation is known to result in an
increased gene expression, including the genes for AMPA receptors and
thus future signal transduction is enhanced. Ca®" is also known to
activate the enzyme NOS, which produces NO. The latter can activate
GC, which produces the second messenger cGMP. There are indications
that, postsynaptically, cGMP has similar effects as cAMP, but via the
activation of PKG. NO is also known to act as a retrograde messenger
and can thus stimulate presynaptic GC. It has been found that cGMP
stimulates the synthesis and release of glutamate via PKG

amplified E-LTP elicited by weak tetanic stimulation in
young Wistar rats (Van der Staay et al. 2008). These findings
are in line with observations of enhanced E-LTP after
treatment with the PDE2-1 BAY 60-7550 in rats (Boess et
al. 2004). Finally, chronic administration (1 mg/kg/day, i.p.),
for 15 days, of the PDES5-I sildenafil improved LTP in CA3—
CAL synapses of hippocampal slices in mice (Uthayathas et
al. 2007). To our knowledge, no studies have investigated
the effects of PDE10 inhibition on LTP. The few existing
studies that investigated the effects of PDE-Is on LTP
indicate that inhibition of PDEs may have a beneficial effect
on synaptic plasticity. Since LTP is considered the underly-
ing mechanism for learning and memory, it is relevant to
evaluate the effects of PDE-Is on LTP in addition to and in
parallel with behavioral studies.

The process opposed to LTP is long-term depression
(LTD), which decreases or depresses the strength of a synapse
for a certain amount of time as a result of either strong or
persistent weak stimulation. Several studies have shown that
PDE4-Is and PDES-Is can induce or reinforce LTD in the
hippocampus and the striatum among others (Bailey et al.
2003; Calabresi et al. 1999; Navakkode et al. 2005). Re-
cently, it has been found that a deficit in LTD can result in
memory impairment (Griffiths et al. 2008), which is in line
with the theoretical neural network models that depend on
bidirectional synaptic plasticity (LTP and LTD) to mediate
learning and memory (Malenka 1994). Accordingly, it is
now evident that, besides excitatory strengthening mecha-
nisms in LTP, stabilization or suppression mechanisms, e.g.,
LTD, are also crucial for the regulation of synaptic plasticity
(Abel et al. 1998). However, the exact underlying mecha-
nisms remain elusive and the role of PDE-Is in these pro-
cesses require further investigation.

Time windows in memory processes

PDE2, PDE4, and PDE9 inhibition improved both STM and
LTM (see Tables 3, 4, and 6). PDES inhibition has only been
investigated for LTM. Yet, based on the PDE9-I experiments
(Van der Staay et al. 2008), it might be expected that PDES
inhibition will result in STM improvements, though this
needs to be confirmed in future studies. Taken together,
treatment of rodents with different types of selective PDE-Is,
which inhibit the degradation of the second messengers
cAMP and/or cGMP, improved their STM as well as LTM.
Furthermore, with respect to LTM, it appears that, for con-
solidation processes, a distinction can be made between early
consolidation (<3 h) and late consolidation (>3 h) with
c¢GMP being involved in the former and cAMP in the latter
(Bernabeu et al. 1996; Izquierdo et al. 2006; Prickaerts et al.
2002a; Rutten et al. 2007b). These findings suggest that
different underlying mechanisms should explain consolida-
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tion processes. Or, in more detail, are different forms of LTP
involved in different phases of LTM consolidation?

Defining STM as not requiring protein synthesis may
implicate that the time window of E-LTP corresponds with the
duration of STM (1-3 h) (Izquierdo et al. 2002). Presynaptic
c¢GMP is involved in E-LTP (LTP1) (Arancio et al. 1995),
but cAMP is probably not (Nguyen and Woo 2003). Thus, it
can be argued that rolipram should not improve STM.
However, we found that rolipram can improve STM (Rutten
et al. 2006). This effect might be explained by a general
enhancement of synaptic transmission by increasing neuro-
transmitter availability, as rolipram has been found to acti-
vate the cognition-related cholinergic system (Imanishi et al.
1997), and also the noradrenergic and dopaminergic neuro-
transmitter systems (Schoffelmeer et al. 1985).

L-LTP (LTP2 and LTP3) is dependent on protein synthesis
and last longer than 3 h (Reymann and Frey 2007). It can be
assumed that L-LTP is related to LTM. Figure 2 illustrates
the interrelationship between STM and LTM with interme-
diate memory (IM) in between STM and LTM. It might be
speculated that LTP2 is representing early consolidation/IM
and LTP3 represents late consolidation/LTM. These ques-
tions clearly warrant further investigations.

E-LTP can be converted into L-LTP (Pang et al. 2004).
This is in line with the idea that information in the STM can
be transferred into LTM (Baddeley 2003). As presynaptic

c¢cGMP plays a role in E-LTP, theoretically, inhibition of
cGMP degradation with, for instance, a PDE9-I should,
therefore, be able to influence L-LTP/LTM via E-LTP/STM
as well. But cGMP as well as cAMP are involved in post-
synaptic L-LTP processes resulting in phosphorylation of the
transcription factor CREB eventually. However, as described
above, both cyclic nucleotides have different effects on con-
solidation processes. This implies that the signal transduction
pathways are far more complex than known thus far. It seems
likely that additional modulators are involved in regulating
and mediating the timed effect of the second messengers
c¢GMP and cAMP on memory processes.

Targeting cognitive functioning

The application of PDE-Is in studies of animal cognition
enhancement has been fruitful. These studies have extended
our fundamental knowledge about the possible underlying
cellular and molecular mechanisms of learning, memory, and
other cognitive functions. However, to predict which classes
of PDE-Is are possibly the most effective cognition enhancers,
in either preclinical or clinical studies, depends on various
factors.

First, it is important to know the exact localization of
specific PDE enzymes in the normal brain (see also Table 1).

Early
Consolidation

c > IM
S — Attention ‘ 4 3h
‘® —»| Sensory Store > STM/WM < Retrieval (<3h)
E—» (05-39) (10-30s) [ etrieva
S —
c

' Late

Retrieval
ev Consolidation
Rehearsal

STM: short-term memory
WM: working memory

IM: intermediate memory

LM: long-term memory

Fig. 2 A schematic classification of memory identifying four distinct
types of memory stages: sensory store, short-term memory (S7TM)/
working memory (WM), intermediate memory (/M), and long-term
memory (LTM). In the sensory store, all the incoming information from
the sensory organs is accumulated and, depending on attention
processes certain items, can be transferred to STM/WM (Baddeley
2003). These stores generally have limited capacity and duration.
Information can be stored for a longer period of time ranging from
hours to years. It is suggested that there are two stages involved, that is,
IM and LTM (Kesner and Hopkins 2006). The time frames of the three
stages of STM, IM, and LTM are not clearly defined and depend on the
definitions used by the researcher. In addition, the exact role of different
brain areas in this respect is not fully clear yet. But it is evident that the
hippocampus plays a key role and is particularly involved in IM
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LTM
(>3h)

processes (Kesner and Hopkins 2006). We propose that information is
processed from STM to IM via early consolidation and subsequently
from IM to LTM via late consolidation. In addition, we assume that
STM is supported by transient changes in neuronal transmission, not
requiring gene expression and protein synthesis whereas IM and LTM
are maintained by more stable and permanent neuronal changes that are
dependent on protein synthesis (Izquierdo et al. 2002). cGMP-specific
PDE-Is might be able to influence STM via enhanced LTP1. In addition,
cAMP-specific PDE-Is influence STM probably via an increased
neurotransmitter release directly. Furthermore, LTP2 might represent
IM and should be specifically influenced by cGMP-specific PDE
inhibition. Finally, LTM is likely represented by LTP3 which should be
influenced by cAMP-specific PDE inhibition
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The localization of the enzymes might predict that certain
cognitive functions that are primarily located in specific
brain structures may be enhanced by some PDE-Is, but not
by others. For example, PDE10 is predominantly expressed
in striatal areas (Schmidt et al. 2008) and is, therefore, a
target for schizophrenia. In contrast, PDE4 is highly
expressed in the hippocampus and cortex (Perez-Torres et
al. 2000) and is, therefore, considered a better target for
cognition enhancement. Of note, the development of a
specific antibody against a selective PDE, preferentially of
the level of isoform type, will more specifically target a PDE
for a certain cognitive function (Fujita et al. 2007).

Secondly, it must be taken into account that the constitution
of'the brain changes with age and the distribution of PDEs can
be modified by the aging process As a consequence, a PDE-I
can improve cognition in young subjects, but impair cognition
in old subjects. Likewise, Ramos et al. (2003) demonstrated
that rolipram had a positive effect on prefrontal cortex-
dependent working memory in young rhesus monkeys, but
had a negative effect on working memory in aged rhesus
monkeys. However, rolipram improved performance in the
passive avoidance task, a test of hippocampus-dependent
memory, in both young and aged mice (Barad et al. 1998).
With advancing age, opposite profiles between the function
of PKA in the hippocampus and prefrontal cortex were
suggested to explain the results of Ramos et al. (2003), i.e.,
the prefrontal cortex showed indices of increased PKA acti-
vity, while the hippocampus exhibited evidence of decreased
PKA activity (Ramos et al. 2003). In addition, is has been
shown that expression of PDES is strongly reduced in brains
of Alzheimer’s disease patients (Reyes-Irisarri et al. 2007).
However, PDE2 and PDE9 do not show this Alzheimer-
related reduction in expression patterns, but show the same
distribution as in healthy age-matched controls (Reyes-Irisarri
et al. 2007). Along similar lines, PDES inhibition did not
improve object memory in aged rats (Domek-Lopacinska
and Strosznajder 2008). Consequently, when developing a
PDE-I for the treatment of cognitive decline resulting from
Alzheimer’s disease, PDE2-Is and PDE9-Is may be better
targets in this population than PDES5-Is.

Thirdly, since most PDEs are transcribed by several genes,
which give rise to multiple PDE splice variants and isoforms,
further investigation into possible isoform-specific effects of
PDE-Is is a field of great interest. For example, four isoforms
of PDE4 mRNA have been found; PDE4A, PDE4B, PDEA4C,
and PDE4D. Indirect evidence suggests that PDE4A and
PDEA4B are involved in signaling pathways related to affective
(Ye et al. 2000) and memory (Ahmed and Frey 2003)
processes, respectively. Recently, the antidepressant potential
of PDE4A in the hippocampus has been found to be related
to specific splice variants of this PDE4 isoform (D’Sa et al.
2005). The same probably holds for PDE4B and memory
(Ahmed and Frey 2005) or schizophrenia (Siuciak et al.

2008a). PDE4D KO mice have already been generated and
these animals display both an antidepressant and procogni-
tive profile (Zhang et al. 2002). Furthermore, it has been
observed that the expression of the majority of PDE4D
isoforms (1-9) was reduced in the hippocampus of patients
with Alzheimer’s disease compared to healthy adults. Inter-
estingly, PDE4D1 and PDE4D2 were increased in the brains
Alzheimer’s patients (McLachlan et al. 2007). These findings
underscore the relevance of further investigations into the
role of isoform-specific PDEs in cognition enhancement.

Furthermore, the most widely used PDE4-I in behavioral
studies, rolipram, produces severe dose-limiting emetic side
effects including headache, gastric hypersecretion, and severe
emesis (e.g., nausea) in humans (Zhu et al. 2001). Novel
PDEA4-Is are thought to produce less emetic side effects, but
thus far no human cognition studies have been reported
using these second-generation PDE4-Is. Thus far, only
PDES5-Is can be prescribed to humans. However, particularly
cardiovascular effects limit their usefulness as a general
treatment for cognitive disorders, since patients with cardio-
vascular indications cannot be included. In addition, central
effects including visual disturbances and headache limit the
use of PDES-I such as sildenafil (Kruuse et al. 2002).
Especially chronic treatment with these drugs could be dis-
advantageous. Again, an isoform-specific PDE-I could cir-
cumvent the abovementioned side effects.

Future directions

In this review, we summarized all recent available literature of
the cognition-enhancing effects of PDE-Is in preclinical
studies. It has been shown that inhibitors of PDE2, PDE4,
PDES, PDE9, and PDE10 improve a wide range of cognitive
processes, including information processing, attention, learn-
ing, memory, executive functioning, and response inhibition,
in various behavioral models within different species. We
argue that it is unlikely that blood flow is the mechanism
underlying these procognitive effects. We feel that LTP
appears to be a better substrate for the cognition-enhancing
properties of PDE-Is.

Despite accumulating evidence for the procognitive effects
of PDE-Is, further investigation is still required. First, more
localization studies are required to obtain more knowledge
about the localization of the specific PDE isoforms in different
brain areas. In addition, the exact underlying working
mechanisms of selective PDE-Is have to be investigated by
using central administration paradigms, blood flow measure-
ments, and parallel LTP experiments. Clearly, it is crucial to
translate the procognitive findings in animals to human
subjects. Since PDES5-Is are already clinically accepted for
the treatment of erectile dysfunction, these drugs can be
readily tested in human subjects. Besides neuropsychological
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tasks to address cognitive functioning, imaging studies (EEG
and fMRI) are necessary to elucidate the central mechanisms
underlying the cognition-enhancing effects of PDE inhibition.

Taken together, PDE-Is offer a promising target for
cognitive enhancement. Yet, the future for cognition-enhanc-
ing PDE-Is lies in the development of isoform-specific PDE-Is
that are present in the aged or Alzheimer-diseased brain and
that have limited aversive side effect profiles within the
effective dose range for cognition enhancement. Suitable
candidates appear to be PDE2-Is or PDE9-Is, although little is
known about their side effect profiles and isoform specificity.
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