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Abstract 

Background  Emerging evidence suggests the potential mediating role of microbiome in health disparities. However, 
no analytic framework can be directly used to analyze microbiome as a mediator between health disparity and clinical 
outcome, due to the non-manipulable nature of the exposure and the unique structure of microbiome data, includ-
ing high dimensionality, sparsity, and compositionality.

Methods  Considering the modifiable and quantitative features of the microbiome, we propose a microbial causal 
mediation model framework, SparseMCMM_HD, to uncover the mediating role of microbiome in health dispari-
ties, by depicting a plausible path from a non-manipulable exposure (e.g., ethnicity or region) to the outcome 
through the microbiome. The proposed SparseMCMM_HD rigorously defines and quantifies the manipulable dispar-
ity measure that would be eliminated by equalizing microbiome profiles between comparison and reference groups 
and innovatively and successfully extends the existing microbial mediation methods, which are originally proposed 
under potential outcome or counterfactual outcome study design, to address health disparities.

Results  Through three body mass index (BMI) studies selected from the curatedMetagenomicData 3.4.2 package 
and the American gut project: China vs. USA, China vs. UK, and Asian or Pacific Islander (API) vs. Caucasian, we exhibit 
the utility of the proposed SparseMCMM_HD framework for investigating the microbiome’s contributions in health 
disparities. Specifically, BMI exhibits disparities and microbial community diversities are significantly distinctive 
between reference and comparison groups in all three applications. By employing SparseMCMM_HD, we illustrate 
that microbiome plays a crucial role in explaining the disparities in BMI between ethnicities or regions. 20.63%, 
33.09%, and 25.71% of the overall disparity in BMI in China-USA, China-UK, and API-Caucasian comparisons, respec-
tively, would be eliminated if the between-group microbiome profiles were equalized; and 15, 18, and 16 species are 
identified to play the mediating role respectively.

Conclusions  The proposed SparseMCMM_HD is an effective and validated tool to elucidate the mediating role 
of microbiome in health disparity. Three BMI applications shed light on the utility of microbiome in reducing BMI 
disparity by manipulating microbial profiles.
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Background
Health disparities refer to the inequalities in the quality 
of health, health care, and health outcomes experienced 
by groups that are usually classified by race, ethnicity, 
and region. Many factors, including genetics, social-
economic status, culture, dietary habits, and geographi-
cal conditions, contribute to health disparities between 
groups. Researchers have long been interested in iden-
tifying the modifiable environmental determinants of 
health disparity to pave the way to improve health equity. 
However, environmental exposures are often numerous, 
ubiquitous, descriptive, or hard to measure, which makes 
this task difficult.

The gut microbiome is the aggregate of all genomes 
harbored by gut microbiota, which is the collection of all 
microbes that reside in the human gut. Benefiting from 
the advent of high throughput sequencing technologies, 
a great number of microbiome studies have been con-
ducted to quantitatively characterize microbiota and 
understand its role in human health [1–4]. On the one 
hand, the gut microbiome has been closely linked with 
host metabolic, immune, and neuroendocrine functions 
[5–12]. On the other hand, many environmental and 
social factors, such as diet, drugs, lifestyle, psychological 
state, and behavior, aid in shaping gut microbial profiles 
[13–16]. Recently, the mediating role of the microbi-
ome between these environmental exposures and vari-
ous human diseases, including obesity, type 2 diabetes, 
inflammatory bowel disease, depression, and different 
cancers, has been investigated and recognized [17–22]. 
Given the modifiable and quantitative features of the 
microbiome, we here aim to disentangle health dispari-
ties by quantifying the extent of the observed disparity 
in outcome that could be reduced if the gut microbial 

profile was modified. Figure 1 depicts a schematic media-
tion framework to answer such questions. Here, the dis-
parity group, e.g., ethnicity or region, is the exposure 
denoted by R; the gut microbial profile is the mediator 
denoted by M; and the continuous study outcome, e.g., 
body mass index (BMI), is denoted by Y.

There are several existing mediation analysis frame-
works tailored for non-manipulable exposures, such as 
ethnicity, region, sex, or socioeconomic position [23]; 
however, due to the unique structure of microbiome 
data, including the high dimensionality, sparsity, and 
compositionality, these approaches are not immediately 
applicable for analyzing the microbiome as the mediator 
for the study of health disparities. Recently, we developed 
a rigorous Sparse Microbial Causal Mediation Model 
(SparseMCMM) [12] for interrogating the mediating 
role of microbiome in a typical three-factor (randomized 
treatments, microbiome as mediator, and outcome) clini-
cal trial causal study design. SparseMCMM quantifies the 
overall mediation effect of microbiome community and 
the component-wise mediation effect for each individual 
microbe under the counterfactual framework, identifies 
the signature causal microbes with regularization strate-
gies, and tests the mediation effects while fully acknowl-
edging the unique structure of microbiome data. In this 
paper, we extend SparseMCMM to a non-manipulable 
exposure setting, propose a microbial causal mediation 
framework for health disparity study, and denote it as 
SparseMCMM_HD (SparseMCMM for Health Dis-
parity). As VanderWeele and Robinson [24] discussed, 
causal interpretation of a non-manipulable exposure, 
i.e., ethnicity or region, is not definable in the traditional 
counterfactual framework, because a hypothetical inter-
vention on a non-manipulable exposure is not possible. 

Fig. 1  Microbiome (M) may play a mediating role in the health disparity of the continuous outcome (Y) between two categories 
of a non-manipulable exposure group (e.g., region or ethnicity) (R). We aim to investigate how much disparity of the outcome Y can be reduced 
by manipulating microbiome profiles
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Instead, one can interpret the causality of health inequal-
ity by the hypothesized intervention effect on the manip-
ulable mediating variable. Thus, in SparseMCMM_HD, 
we aim to quantify the overall health inequality on the 
outcome (called overall disparity), the health inequal-
ity effect that would be eliminated by equalizing micro-
biome profiles across ethnic or regional groups (called 
manipulable disparity), and the healthy inequality effect 
that would remain even after microbiome profiles across 
ethnic or regional groups were equalized (called residual 
disparity). In addition, we equip two hypothesis tests to 
examine the mediating role of microbiome in health dis-
parity and statistically identify which specific microbes 
contribute to it.

Obesity (defined via BMI) is a global epidemic and a 
persistent public health problem [25]. It is well docu-
mented that the prevalence of adult obesity is dis-
tributed unevenly across ethnic groups and regions. 
Partial effect of the manipulable exposures such as 
diet, medication, and antibiotics use [17–19] on obe-
sity has been shown to be mediated through micro-
biome. In addition, accumulating evidence indicates 
that the gut microbial profile varies across ethnicities 
as well as geographically [23, 26, 27]. Together, these 
studies suggest that the microbiome may play a medi-
ating role in the ethnic or regional disparity of obesity. 
It is crucial to investigate rigorously how much health 
inequalities in BMI can be reduced by manipulating 
microbiome profiles. Utilizing SparseMCMM_HD, we 
investigate the role of the microbiome in the dispar-
ity of BMI between ethnicities and regions. We use the 
curated microbiome data from the curatedMetagenom-
icData 3.4.2 package [28] and the American Gut Pro-
ject (AGP) (www.​ameri​cangut.​org) to illustrate a clear 
and plausible causal path analysis to understand the 
current ethnic or regional disparity in BMI and iden-
tify a comprehensive set of mediating microbial taxa. 
The proposed analytic pipeline is available through an 
interactive web app at https://​chanw0.​shiny​apps.​io/​
spars​emcmm_​hd/. We believe this novel pipeline will 
be useful for investigating the manipulable disparity 
through gut microbiome and understanding the causes 
of the health disparity.

Methods
SparseMCMM_HD framework
Casual mediation model
Suppose there are I subjects from two categories of 
a non-manipulable exposure group (e.g., ethnicity or 
region), J  taxa, and K  covariates. Subscripts i , j , and k , 
indicate a subject, a taxon, and a covariate, respectively. 
For the i th subject, let Ri = 1 or 0 indicate the refer-
ence or comparison group, let Mi = (Mi1, . . . ,MiJ )

T be 

the microbiome relative abundance vector with the con-
straint J

j=1Mij = 1 , and let X i = (Xi1, . . . ,XiK )
T repre-

sent the covariates, and let Yi be a continuous outcome of 
interest.

To statistically describe the causal relationships shown 
in Fig.  1, following our previous work [12], we use the 
linear log-contrast model to regress the continuous out-
come on the non-manipulable exposure, microbiome 
compositions, and interactions between the non-manip-
ulable exposure and microbiome compositions, while 
adjusting the confounding covariates:

where α0 is the intercept, αR is the coefficient of the 
non-manipulable exposure, αX = (αX1, . . . ,αXK )

T , 
αM = (αM1, . . . ,αMJ )

T , and αC = (αC1, . . . ,αCJ )
T are 

the vectors of coefficients of covariates, microbiome 
compositions, and interactions between the non-manip-
ulable exposure and microbiome compositions, respec-
tively. Due to the compositionality of the microbiome 
data 

∑J
j=1Mij = 1 , αM and αC are additionally subject to 

αT
M1 = 0, and αT

C1 = 0 . ǫi ∼ N (0, σ 2) is the error term. 
On the other hand, the Dirichlet regression [29] is used 
to model the microbial relative abundance as a function 
of the non-manipulable exposure and covariates:

Specifically, we assume that M i|(Ri,X i) ∼ Dirichlet(
�1(Ri,X i),… , �J (Ri,X i)

)
 , and their microbial relative 

means are linked with the non-manipulable exposure and 
covariates ( Ri,X i ) in the generalized linear model fashion 
with a log link. β0j is the intercept and βRj and βXj are the 
coefficients of the non-manipulable exposure and covari-
ates for the j th taxon, respectively.

Definition of disparity measures in the counterfactual 
framework
As discussed in the “Background” section, we propose to 
conceptualize an overall disparity measure (ODM) on the 
outcome that can be decomposed into manipulable dis-
parity measure (MDM) and residual disparity measure 
(RDM). MDM represents the portion of disparity that 
would be eliminated by equalizing microbiome profiles 
between comparison and reference groups, and RDM 
represents the portion that would remain even after 
microbiome profiles between comparison and reference 
groups were equalized. With the counterfactual notation, 
mathematically we have:

(1)

Y
i
= �0 + �

T

X
X

i
+ �

R
R
i
+ �

T

M
[log(M

i
)] + �

T

C
[log(M

i
)]R

i
+ �

i
,

subject to �
T

M
1 = 0, and �

T

C
1 = 0,

(2)
E
[

Mij

]

=
γj(Ri ,X i)

∑J
m=1 γm(Ri ,X i)

,

log
{

γj(Ri,X i)
}

= β0j + βRjRi + βTXjX i.

http://www.americangut.org
https://chanw0.shinyapps.io/sparsemcmm_hd/
https://chanw0.shinyapps.io/sparsemcmm_hd/
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Here, Mx(0) ( Mx(1) ) is a random value from the micro-
biome distribution of the reference (comparison) popula-
tion with given covariates x . Ym denotes an individual’s 
potential counterfactual outcome if his or her micro-
bial mediators were set to m , where m can be Mx(0) or 
Mx(1) . E[YMx(0)|R = 0, x] ( E[YMx(1)|R = 1, x] ) denotes 
the expected outcome for a reference (comparison) indi-
vidual with given covariates x , E

[

YMx(0)|R = 1, x
]

 denotes 
the expected outcome for a comparison individual with 
given covariates x if their microbial mediators were set 
to a random value from that of the reference population 
with the same covariates x.

MDM, RDM, and ODM expressions
Two assumptions must be satisfied for the identification 
of MDM, RDM, and ODM [24, 30]. The effect of the non-
manipulable exposure R on the outcome Y are uncon-
founded conditional on all covariates X , i.e., Y

∐

R|X 
and the effects of the mediator M on the outcome Y 
are unconfounded conditional on the non-manipulable 
exposure R and all covariates X , i.e., Y

∐

M|R,X . With 
these sufficient identifiability assumptions and the mod-
els (1)-(2) proposed in the SparseMCMM_HD frame-
work, disparity measures MDM, RDM, and ODM can be 
further expressed, respectively, as follows (see Section S1 
for the detailed derivations):

and

where E
�
log

�
Mj

�
�R = r, x

�
= ψ

�
�j(R = r, x)

�
− ψ

�∑J

m=1
�m(R = r, x)

�
 , 

γj(R = r, x) = exp
(

β0j + βRjr + βTXjx
)

 , r = 0 or 1, and 
ψ(•) = d

dx
ln(Ŵ(x)) is the digamma function, with given 

covariates x.
Note that these mathematical expressions of RDM 

and MDM are the same as the formulas of causal 
direct effect of treatment and mediation effect through 
microbiome correspondingly on the outcome in the 
typical three-factor causal design based on the tradi-
tional causal mediation inference, developed in our 

ODM = MDM + RDM,

MDM = E

[

E[YMx (1)
|R = 1, x]

]

− E

[

E

[

YMx (0)
|R = 1, x

]]

, and

RDM = E

[

E[YMx (0)
|R = 1, x] − E[YMx (0)

|R = 0, x]

]

.

MDM =
∑J

j=1(αMj + αCj)
{

E
[

log
(

Mj

)

|R = 1, x
]

− E
[

log
(

Mj

)

|R = 0, x
]}

,

RDM = αR + αT
CE[log(M)|R = 0, x] = αR +

∑J
j=1 αCjE

[

log
(

Mj

)

|R = 0, x
]

,

ODM = MDM+ RDM

= αR +
∑J

j=1(αMj + αCj)E
[

log
(

Mj

)

|R = 1, x
]

−
∑J

j=1 αMjE
[

log
(

Mj

)

|R = 0, x
]

,

SparseMCMM [12]. Analogous to ME in SparseM-
CMM, MDM is the summation of individual mediation 
effects from each taxon MDMj : MDM :=

∑J
j=1MDMj 

and MDMj = (�Mj + �Cj){E[log(Mj)|R = 1, x] − E[log(Mj)|R = 0, x]} . 
MDMj thus is non-zero only when both the jth microbial 
effect on the outcome and the exposure effect on the jth 
taxon are not zero. Therefore, SparseMCMM_HD illu-
minates the mediating role of microbiome in the health 
disparity of outcome and quantifies the manipulable dis-
parity for overall microbiome community and for each 
specific taxon, respectively.

Parameter estimation
Analogous to SparseMCMM [12], we employ a two-
step procedure to estimate the regression parameters 
in models (1)–(2) to obtain the estimated RDM, MDM, 
and MDMj for each taxon, and ODM. Furthermore, 
SparseMCMM_HD has the full capability to perform 
variable selection to select the signature causal microbes 
that play mediating roles in the disparity of the continu-
ous outcome with regularization strategies. Specifically, 
L1 norm and group-lasso penalties are incorporated for 
variable selection. To account for the biases introduced 
by the regularization techniques employed, we further 
implement splitting strategy [31], which can handle 
arbitrary penalties and provide asymptotically validated 
inference. We also incorporate this splitting strategy 
in the SparseMCMM package to refine its estimation 
procedure.

Hypothesis tests for manipulable disparity
Similarly, we employ the hypothesis tests for mediation 
effects in SparseMCMM to examine whether the micro-
biome has any mediation effect on the disparity in the 
outcome, at the community and taxon levels, respec-
tively. Specifically, regarding the null hypothesis of no 
manipulable disparity H0 : MDM = 0 , the first test sta-
tistic is defined as OMD = M̂DM , the estimator of the 
manipulable disparity. OMD examines whether or not the 
whole microbiome plays a mediating role in health dis-
parities. Meanwhile, we consider another null hypothesis, 
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H0 : MDMj = 0, ∀j ∈ {1, · · · , J } and define the second 
test statistic as CMD = 

∑J
j=1 M̂DM

2

j  , the summation of 
squared estimators of individual mediation effects across 
all taxa. CMD examines whether or not at least one taxon 
mediates the health disparities. Permutation procedure is 
employed to assess the significance of these two test sta-
tistics. This provides a mechanism to check whether the 
microbiome has any impact on health disparity that could 
be potentially eliminated through the microbiome.

Control for confounding covariates
Due to the non-manipulable nature of the exposure in 
health disparity research, in principle, it is not possible to 
design a randomized trial on the exposure of interest to 
eliminate the potential confounding effect on the inter-
ested causal pathway. Many studies on health disparity 
are observational and usually include significant degrees 
of confounding, due to factors such as lifestyle, health 
status, and disease history. We want to emphasize that 
it is a necessary step to control for confounding covari-
ates before utilizing the proposed SparseMCMM_HD 
to estimate RDM, MDM, and ODM in a typical obser-
vational study. Specifically, we propose to perform pro-
pensity score matching (PSM) [32], which is a commonly 
used method in biomedical research to create a balanced 
covariate distribution between two groups, to control 
confounding covariates in our applications (see Sec-
tion  S2). Standardized mean difference (SMD) is used 
to evaluate the balance of the covariate distributions 
between groups. An SMD that is less than 0.1 indicates 
a balanced distribution [33]. The matched data will then 
be used to quantify RDM, MDM, and ODM and examine 
whether the microbiome could reduce the health dispar-
ity between two non-manipulable exposure groups. Note 
that the PSM procedure controlling for confounding 
covariates has been included as a preprocessing step in 
the proposed SparseMCMM_HD analytic pipeline.

curatedMetagenomicDataV3.4.2
The curatedMetagenomicData 3.4.2 package [28] pro-
vides a curated human microbiome meta dataset aggre-
gated from 86 shotgun sequencing cohorts in 6 body 
sites. The raw sequencing data were processed using the 
same bioinformatics protocol and pipelines. Each sam-
ple has 6 types of data available including gene family, 
marker abundance, marker presence, pathway abun-
dance, pathway coverage, and taxonomic (relative) abun-
dance. The taxonomic abundance was calculated with 
MetaPhlAn3, and metabolic functional potential was 
calculated with HUMAnN3. The manually curated clini-
cal and phenotypic metadata are available as well. More 
details can be found in the curatedMetagenomicData 

package document [28]. Here, we focus on the healthy 
subjects to explore the relationship among region, 
microbiome, and BMI. Specifically, we chose the subjects 
from all cohorts based on the following inclusion crite-
ria: (1) healthy status; (2) no missing values in BMI, gen-
der, and age; (3) age ≥ 18; (4) no pregnant; (5) currently 
no antibiotic use; (6) currently no alcohol consumption; 
(7) no smoking; and (8) fecal sample with more than 
1250 sample reads. In addition, when multiple samples 
available for a subject, we randomly selected one sam-
ple. Overall, we identified 4868 healthy adults from vari-
ous regions. Here, we further focus on three regional 
groups which have large sample sizes: China (n = 570), 
United States (USA; n = 350), and United Kingdom (UK; 
n = 1019) for the analysis in the main text. Specifically, 
we conducted two comparison studies: China-USA and 
China-UK comparisons to investigate the regional differ-
ence of BMI in the China group compared to the USA 
and UK groups, respectively.

American gut project
The AGP project is a crowd-sourcing citizen science 
cohort to describe the comprehensive characterization 
of human gut microbiota and to identify factors being 
linked to human microbiota. The AGP includes 16S 
rRNA V4 gene sequences from more than 8000 fecal 
samples using standard pipelines and the host meta-
data. Detailed descriptions can be found in Liu et  al. 
and Hu et  al. [1, 34]. Our primary investigation is on 
the disparity of BMI between Asian or Pacific Islander 
(API) and non-Hispanic Caucasian adults. We selected 
a subset of the AGP data based on the following inclu-
sion criteria: (1) USA resident; (2) Asian or Pacific 
Islander or Caucasian ethnicity; (3) no missing values 
in gender, age, and BMI; (4) age ≥ 18; (5) 80 ≥ BMI; (6) 
210 cm ≥ height ≥ 80 cm; (7) 200 kg ≥ weight ≥ 35 kg; 
(8) fecal sample with more than 1250 sample reads; (9) 
not duplicate sample; and (10) no self-reported history 
of inflammatory bowel disease, diabetes, or antibiotic 
use in the past year. The subjects are filtered out when 
the reported BMIs are not consistent with the calcu-
lated BMI based on the reported heights and weights, 
i.e., ( 

∣

∣BMIreported − BMIcalculated
∣

∣/BMIcalculated > 5% ). A 
dataset with 130 API and 2263 Caucasian adults then is 
used in this paper (Figure S1a).

Statistical analysis
Data pre-processing and PSM were conducted in three 
BMI studies. Specifically, for the China-USA and China-
UK comparisons, we performed PSM with the parameters 
described in Section S2 to control for age and gender, with 
gender being used for exact matching. For the API-Cau-
casian comparison, as the AGP includes more than 400 
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covariates that were collected through self-reported sur-
veys, we first implemented several pre-processing steps 
to prepare the self-reported covariates for the subsequent 
analysis, including cleaning up the inconsistent definition 
of variables, and collapsing the sparse categorical variables 
into fewer and less sparse categories. Details are provided 
in Section S3. Forty-four covariates were retained for PSM. 
We performed univariate linear regressions to identify the 
potential confounding variables for the relationship among 
ethnicity, microbiome, and BMI. Twenty-three covariates 
(p value ≤ 0.05; Figure S1b) were identified as confounders 
that need to be controlled further based on PSM.

With the matched data, alpha (Observed, Shannon, 
and Simpson indices), and beta diversities (Bray–Cur-
tis dissimilarity and Jensen–Shannon divergence) were 
used to estimate microbial community-level diversity. T 
tests were used for group comparisons of BMI and alpha 
diversity. Permutational multivariate analysis of variance 
(PERMANOVA) [35] was used to assess group difference 
of beta diversity. We performed the proposed SparseM-
CMM_HD framework at the species rank (Section S4) to 
quantify RDM, MDM, and ODM and examine whether 
the microbiome could explain the health disparity between 
two non-manipulable exposure groups. The proposed 
SparseMCMM_HD pipeline was implemented through 
an interactive web app (https://​chanw0.​shiny​apps.​io/​spars​
emcmm_​hd/) for easy exploration. In terms of the splitting 
strategy used for bias correction in parameter estimation, 
aligning with discussions on inference-prediction trade-
off [31] and data-splitting rules [36], we randomly divided 
the dataset into two equal halves: the first half is utilized 
for variable selection, while the second half is dedicated to 
parameter estimation. The estimates of RDM, MDM, and 
MDMj were then calculated. We repeated this data split-
ting procedure 50 times to ensure robustness and accu-
racy in our estimations and inference. The average RDM, 
MDM, and MDMj estimates, and their standard errors 
and 95% confidence interval (CI) estimates based on 50 
times of repetitions were reported. Regarding hypothesis 
testing, as discussed in [37], we first applied a permuta-
tion strategy to the entire dataset. Subsequently, we imple-
mented a data split strategy on the permuted dataset to 
yield corresponding estimates. The statistical significance 
of OMD and CMD was established based on the p values, 
which were calculated from 1000 permutations. A p value 
≤ 0.05 was considered as statistical significance.

Results
Results for curatedMetagenomicDataV3.4.2
Matched datasets
With the healthy adults included in the China-USA 
and China-UK comparisons, by performing the PSM 
as described in the “Statistical analysis” subsection, we 

identified 328 matched Chinese-USA subject pairs, and 
559 matched Chinese-UK subject pairs, separately. Fig-
ures S2 and S3 show that both matched datasets have 
comparable propensity scores. The SMDs decrease dra-
matically on the matched subjects (SMD = 0.036 and 
0.033), from using all subjects (SMD = 0.302 and 0.470) 
in both China-USA and China-UK datasets. This indi-
cates that PSM has effectively evened the distribution of 
confounders between two exposure groups in our studies 
and practically eliminated or controlled the influence of 
the confounders. In the well-matched datasets, the China 
group still has significantly lower average BMIs com-
pared to the matched USA (mean [standard deviation]: 
22.64 [3.77] vs. 25.77 [4.56]) and the matched UK (22.98 
[4.48] vs. 25.77 [4.79]) groups (Fig. 2a and d).

Community level results
The Chinese group has distinctive microbial community 
diversities, compared to the matched USA or UK group. 
For alpha diversity, samples from China have lower Shan-
non and Simpson diversities and a higher observed diver-
sity than the matched USA or UK samples (Fig. 2b and e). 
For beta diversity, Bray–Curtis dissimilarity and Jensen-
Shannon divergence both indicate that the Chinese group 
is significantly different in community structure from the 
matched USA or UK groups (PERMANOVA [35] all p 
values < 1.0× 10−4 , Fig. 2c and f ).

Taxon‑level analysis
After implementing the filtering criteria described in 
Section  S4, 25 species remained in both matched data-
sets (China vs. USA and China vs. UK). The testing 
results for OMD and CMD show that the overall and 
component-wise MDMs through microbiome are signifi-
cant in both data sets for regional differences in BMI (all 
p values < 0.001 based on 1000 permutations). Figure 3a 
shows that the average ODM of BMI are 3.15 and 2.78, 
respectively, for the matched Chinese and USA subjects, 
and the matched Chinese and UK subjects; the corre-
sponding average MDMs due to microbiome are 0.65 and 
0.92. These results suggest that 20.63% and 33.09% of the 
disparity in BMI between the Chinese and matched USA 
and UK groups, respectively, would be eliminated if the 
between-group microbiome profiles were equalized.

Significant CMD testing results show that there is at 
least one species playing a mediating role in the disparity 
of BMI between Chinese and USA subjects and Chinese 
and UK subjects. Figure 3b reports 15 species and 18 spe-
cies further identified by SparseMCMM_HD, with the 
point and 95% CI estimates for their mediation effects 
on the regional differences of BMI between China and 
USA and between China and UK, respectively. Among 
the twelve overlapping species identified in both matched 

https://chanw0.shinyapps.io/sparsemcmm_hd/
https://chanw0.shinyapps.io/sparsemcmm_hd/
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datasets (Fig. 3b and c), five species—Anaerostipes had-
rus, Bacteroides plebeius, Bacteroides thetaiotaomicron, 
Escherichia coli, and Eubacterium rectale—play consist-
ent positive mediating roles in regional disparity in BMI 
for Chinese compared to USA subjects and for Chinese 
compared to UK subjects. The relative evaluation of these 
five species in terms of their relative abundances (Fig. 4a) 
and their associations with BMI (Fig. 4b) are quite simi-
lar between two independent studies: China-USA com-
parison and China-UK comparison, which validates their 
mediating roles in the regional disparity on BMI. Con-
firming with the published studies, B. plebeius and B. 
thetaiotaomicron belong to the same genus Bacteroides, 
and all play important roles in human metabolism and 
have been linked with diet-induced obesity, by improving 
whole-body glucose disposal, promoting lipid digestion 
and absorption, and degrading host-derived carbohy-
drates [38–41]. B. thetaiotaomicron also possesses gly-
cine lipid biosynthesis pathway (Figure S4). A. hadrus, E. 
coli, and E. rectale also have been reported by multiple 
studies that they contribute to or are associated with the 
BMI or obesity [42–44]. On the other hand, four species 
play mediating roles in BMI but with the opposite direc-
tions between China-USA comparison and China-UK 
comparison that reflects the distinguishing character-
istics between USA and UK (Figure S5). This is not sur-
prising considering the microbial profile is inherently 
dynamic and ethnically or geographically specific. More-
over, there are six and nine unique species identified in 

the China-USA and China-UK comparisons, respec-
tively (Figures S6 and S7). Most of these study-specific 
species have been reported being associated with BMI, 
obesity, or metabolic disorders [44–53]. Notably, Anaero-
stipes hadrus, Fusicatenibacter saccharivorans, Lachno-
spira pectinoschiza, and Roseburia inulinivorans belong 
to family Lachnospiraceae (Fig.  5d), which is related to 
metabolic syndrome and obesity and whose controversial 
role has been discussed across different studies [54].

Results for AGP
Matched dataset
After performing PSM, as described in Section  S2, 98 
Caucasians and 98 APIs are matched. Figures S8 and S9 
show that the matched Caucasians and APIs have very 
similar propensity scores (SMD = 0.005 for the matched 
subjects vs. SMD = 1.033 for the raw subjects), indicat-
ing that the confounding effects are well controlled. With 
this well-matched dataset, Fig. 5a shows that the Cauca-
sian group has a significantly higher BMI (23.96 [3.92]), 
compared to the API group (22.38 [3.59]), as observed in 
the other studies [56, 57].

Community level results
Caucasians and APIs have distinct microbial profiles in 
terms of community diversity. For alpha diversity, Cau-
casians have higher microbial richness and evenness as 
measured by Observed, Shannon, and Simpson diversi-
ties (p value = 3.1× 10−5 , 1.5× 10−4 , and 3.9× 10−3 , 

T−test, p < 2.2e−16

20

30

40

50

China USA

B
M

I

a

T−test, p = 0.0025 T−test, p = 6.5e−05
T−test, p = 1.5e−05

Observed Shannon Simpson

China USA China USA China USA

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

0

50

100

150

200

A
lp

ha
 D

iv
er

si
ty

b

PERMANOVA: p−value < 1e−04

−0.50

−0.25

0.00

0.25

−0.3 0.0 0.3 0.6
Axis.1   [14.5%]

A
xi

s.
2 

  [
9.

2%
]

Bray−Curtis dissimilarity

PERMANOVA: p−value < 1e−04

−0.4

−0.2

0.0

0.2

−0.4 −0.2 0.0 0.2 0.4
Axis.1   [23.2%]

A
xi

s.
2 

  [
14

.3
%

]

Jensen−Shannon divergence

China USA

c

T−test, p < 2.2e−16

20

30

40

50

60

70

China UK

B
M

I

d
T−test, p = 0.1

T−test, p < 2.2e−16
T−test, p < 2.2e−16

Observed Shannon Simpson

China UK China UK China UK

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

50

100

150

A
lp

ha
 D

iv
er

si
ty

e

PERMANOVA: p−value < 1e−04−0.2

0.0

0.2

0.4

−0.50 −0.25 0.00 0.25 0.50
Axis.1   [16%]

A
xi

s.
2 

  [
11

.4
%

]

Bray−Curtis dissimilarity

PERMANOVA: p−value < 1e−04−0.2

0.0

0.2

−0.4 −0.2 0.0 0.2 0.4
Axis.1   [26.3%]

A
xi

s.
2 

  [
15

.3
%

]

Jensen−Shannon divergence

China UK

f

Fig. 2  Association analyses in two matched datasets from the curatedMetagenomicData package [28]. a Violin plots of BMI in matched Chinese vs. 
USA subjects. b Violin plots of alpha diversities (Observed, Shannon, and Simpson indices) in matched Chinese vs. USA samples. c PCoA plots using 
Bray–Curtis dissimilarity and Jensen–Shannon divergence in matched Chinese and USA samples. d Violin plots of BMI in matched Chinese vs. UK 
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respectively, Figure S10a). For Beta diversity, Bray–Cur-
tis dissimilarity and Jensen-Shannon divergence both 
show that Caucasian samples have different community 
structures compared to API samples (PERMANOVA p 
value = 0.0036 and 0.0012, respectively, Figure S10b).

Taxon‑level analysis
The above community level results indicate that the 
microbiome may play a mediating role in the ethnic 
diversity of BMI. To investigate this assumption, we per-
form the proposed SparseMCMM_HD on this matched 
dataset. With the filtering criteria described in Sec-
tion  S4, 28 species are included in the following taxon-
level analysis.

We found that the average ODM of BMI between 
Caucasians and APIs is 1.75 (Fig.  5b). Microbiome 
plays a significant role in mediating the ethnic dispar-
ity of BMI indicated by the test results of both OMD (p 

value = 0.035) and CMD (p value = 0.036). The average 
manipulable disparity measure MDM is 0.45. This sug-
gests that the difference of microbiome profiles contrib-
utes to 25.71% of ODM, which would be eliminated if the 
microbiome profiles between the Caucasians and APIs 
were identical.

We further identified 16 species playing mediating 
roles in the ethnic disparity of BMI between the Cauca-
sians and APIs (Fig.  5c). Nine species ([Ruminococcus] 
gnavus, Rothia mucilaginosa, Bacteroides uniformis, 
Bacteroides eggerthii, Bacteroides ovatus, Veillonella 
parvula, [Eubacterium] biforme, Akkermansia muciniphila, 
Alistipes indistinctus) mediate positively on the ethnic 
disparity of BMI, meanwhile, seven species (Dorea for-
micigenerans, Staphylococcus aureus, Blautia product, 
Bifidobacterium adolescentis, Parabacteroides dista-
sonis, Eggerthella lenta, Ruminococcus callidus) play 
negative mediating roles. Remarkably, there are six 
common species A. muciniphila, B. ovatus, B. uniformis, 
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respectively, based on the splitting strategy with 50 times of repetitions. b Component-wise point and 95% CI estimates of MDMj for the identified 
species that have mediation effects on the differences of BMI between matched Chinese vs. USA subjects and between matched Chinese vs. 
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of comparisons that identify it among China-USA, China-UK, and API-Caucasian comparisons. APIs Asian or Pacific Islanders
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B. adolescentis, F. prausnitzii, and P. distasonis identi-
fied by China-USA or China-UK comparison illustrated 
in the previous subsection (Fig.  5d). Literature reveals 
that all identified species are associated with the BMI or 
obesity [44–52].

Collectively, the findings in the matched China vs. 
USA, China vs. UK, and API vs. Caucasian datasets show 
that the microbiome is an important mediator in the 
regional or ethnic disparity of BMI and they substantially 
shed light on how to reduce the disparity of BMI. The 
identified microbial agents can be used as the potential 
therapeutic target for the treatment based on microbiota 
modulation in the future.

Discussion
The emerging evidence highlights the potential of micro-
biome in understanding health disparity. In this paper, we 
proposed a mediation analytical framework, SparseM-
CMM_HD, to investigate the microbiome’s role in health 
disparity. Considering a health disparity framework with 
three components: a non-manipulable exposure (e.g., 
ethnicity or region), the microbiome as mediator, and a 
continuous outcome, the proposed SparseMCMM_HD 
deciphers the overall health disparity of the non-manip-
ulable exposure on the outcome into two components: 
MDM that would be eliminated by equalizing micro-
biome profiles and RDM that would remain and could 
not be explained through the microbiome. Remarkably, 
MDM paves a viable path towards reducing health dis-
parity with microbial modulation. Similar to the illustra-
tion in SparseMCMM, SparseMCMM_HD identified the 
signature causal microbes and examined whether the 
overall or component-wise MDM is significantly non-
zero, respectively. Moreover, we elucidated the relevance 
and novelties of SparseMCMM_HD in comparison to 
SparseMCMM in Section S5.

Due to the identifiability assumptions of the causal 
interpretation of microbial contributions to health dis-
parities, it is vital to control confounding effects. In three 
BMI applications, we employed PSM to remove the con-
founding effects by selecting matched subsets in which 
the distribution of confounders was notably comparable 
and then performed the proposed SparseMCMM_HD 
framework. The utilization of SparseMCMM_HD in two 
matched datasets, the curatedMetagenomicData 3.4.2 
package and the AGP dataset, depicts an explicit causal 
path among region or ethnicity, microbiome, and BMI. 
These findings confirm not only that the microbiome is 
differentially distributed across ethnicities or regions and 
affects the BMI, but also that the differential microbi-
ome profile contributes to the disparities in BMI across 
ethnicities or regions. The identified microbial signa-
tures potentially aid in the development of personalized 

medication or nutrition for the reduction of obesity dis-
parity by targeting the microbial profiles.

It is not surprising that the proportion of disparities in 
BMI explained by the microbiome profiles is not large 
(20 ~ 30%) in all three applications, due to the heritable and 
polygenic nature of BMI [58, 59]. Further investigations to 
integrate the microbiome profile and genetic factors are 
necessary to better understand disparity in BMI. However, 
we here emphasize that the proposed SparseMCMM_HD 
is a rigorous and validated causal mediation framework 
and has preeminent potential to identify the microbiome’s 
roles in much broader health disparity studies.

Recently, several other microbial mediation methods 
have been proposed, such as CMM [60], MedTest [61], 
Zhang et  al. [62], LDM-med [63], and MarZIC [64], in 
a typical three-factor (a manipulable exposure, microbi-
ome as mediator, and outcome) study design. Consider-
ing distinct model assumptions and characteristics, a few 
recent benchmark studies [12, 60–64] show that there is 
no method performing consistently and accurately bet-
ter than others in all circumstances. However, since the 
assumptions for model identification in health disparity 
are weaker than those for the causal mediation effects in 
the manipulable exposure-mediator-outcome framework 
[24], it is expected that the idea of how the proposed 
SparseMCMM_HD framework rigorously defines, quan-
tifies, and tests health disparity measures as an extension 
of SparseMCMM [12] can provide insight into extend-
ing these available mediation models to investigate the 
microbiome’s role in health disparity. Then, a useful 
path forward will be to mutually employ these multiple 
and complementary methods to better characterize the 
microbiome’s role in health disparity by capitalizing their 
distinct assumptions and strengths.

Our study has several limitations. First, similar to dis-
cussions in SparseMCMM [12], SparseMCMM_HD 
takes microbiome data at a fixed time point into the pro-
posed frame and is limited to accommodate the dynamic 
nature of microbiome. Second, the proposed SparseM-
CMM_HD currently deals with disparity in a continuous 
outcome. Given the fact that multiple binary or categori-
cal outcomes are disproportionately prevalent across eth-
nicities or regions [65–67], it will be worthwhile to extend 
the current framework to handle categorical outcomes. 
Third, microbiome studies typically characterize both 
taxonomic and functional profiles of the microbes within 
a community. Functional profile is generally thought to 
be more closely linked with human health and disease. 
Identifying the functional profile in the health disparity 
is of high practical value [68]. Fourth, the application of a 
splitting strategy is constrained due to the inference-pre-
diction tradeoff, particularly when dealing with smaller 
sample sizes. Fifth, due to the limited metadata available 
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in our three comparison datasets, the application of PSM 
may not adequately account for latent variables that exert 
confounding effects on the health disparities analysis. 
Future research is needed for further validation and com-
prehensive clinical assessments.

Conclusions
This paper elucidates the role of microbiome in health 
disparity by providing a causal mediation analytic frame-
work for investigating the relationship among ethnicity 
or region, microbiome, and the outcome of interest under 
the counterfactual framework. The proposed SparseM-
CMM_HD framework is a useful tool to investigate the 
underlying biological mechanism of health disparity and 
disentangles the substantial contributions of microbiome 
to health disparity. The applications of SparseMCMM_
HD in the disparity of BMI across ethnicities and regions 
uncover the microbial mediating roles in reducing the 
disparities of BMI and improving health equality.
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