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Abstract 

Background:  West Nile virus (WNV) is a mosquito-transmitted disease of birds that has caused bird population 
declines and can spill over into human populations. Previous research has identified bird species that infect a large 
fraction of the total pool of infected mosquitoes and correlate with human infection risk; however, these analyses 
cover small spatial regions and cannot be used to predict transmission in bird communities in which these species are 
rare or absent. Here we present a mechanistic model for WNV transmission that predicts WNV spread (R0) in any bird 
community in North America by scaling up from the physiological responses of individual birds to transmission at the 
level of the community. We predict unmeasured bird species’ responses to infection using phylogenetic imputation, 
based on these species’ phylogenetic relationships with bird species with measured responses.

Results:  We focused our analysis on Texas, USA, because it is among the states with the highest total incidence of 
WNV in humans and is well sampled by birders in the eBird database. Spatio-temporal patterns: WNV transmission is 
primarily driven by temperature variation across time and space, and secondarily by bird community composition. In 
Texas, we predicted WNV R0 to be highest in the spring and fall when temperatures maximize the product of mos-
quito transmission and survival probabilities. In the most favorable months for WNV transmission (April, May, Septem-
ber and October), we predicted R0 to be highest in the “Piney Woods” and “Oak Woods & Prairies” ecoregions of Texas, 
and lowest in the “High Plains” and “South Texas Brush County” ecoregions. Dilution effect: More abundant bird species 
are more competent hosts for WNV, and predicted WNV R0 decreases with increasing species richness. Keystone spe-
cies: We predicted that northern cardinals (Cardinalis cardinalis) are the most important hosts for amplifying WNV and 
that mourning doves (Zenaida macroura) are the most important sinks of infection across Texas.

Conclusions:  Despite some data limitations, we demonstrate the power of phylogenetic imputation in predicting 
disease transmission in heterogeneous host communities. Our mechanistic modeling framework shows promise both 
for assisting future analyses on transmission and spillover in heterogeneous multispecies pathogen systems and for 
improving model transparency by clarifying assumptions, choices and shortcomings in complex ecological analyses.
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Background
West Nile virus (WNV), a mosquito-borne pathogen of 
birds, is a model system for studying vector-borne dis-
ease transmission and virulence evolution [1–6]. West 
Nile virus caused infrequent outbreaks in Israel, Egypt, 
India, France and South Africa from 1937, when it was 
first isolated in Uganda, until the 1980s [4]. By the mid 
1990s WNV had spread across much of Europe; it 
remains a moderate human and equine health burden 
in Europe and Africa today [5, 7–13]. West Nile virus 
was first detected in North America in New York, USA 
in 1999, and by 2003 had spread to all contiguous US 
states, southern Canada and northern Mexico [1], and 
has now become the world’s most widespread arbovirus 
[13]. The North American WNV epidemic caused popu-
lation declines in numerous bird species [1, 14, 15] and 
hundreds of thousands of spillover infections in humans 
[16–18], including 23,000 reported cases of neuroinva-
sive WNV disease and more than 2000 deaths between 
1999 and 2017 [19].

The life-cycle of WNV is sensitive to abiotic and biotic 
factors at every stage [4]. First, an infected mosquito 
infects susceptible birds (“mosquito-to-bird transmis-
sion”). Transmission probability during a feeding event 
depends on the viral load (titer) in a mosquitoes’ sali-
vary glands, which is determined by the length of time 
the mosquito has been infected and the viral replication 
rate in the mosquito [20]; replication rate is a function of 
the dose the mosquito received when it became infected, 
the mosquito species and environmental variables such 
as temperature [6]. A mosquito’s overall ability to trans-
mit infection to a susceptible host is called “vector com-
petence” [21, 22]. Which bird species become infected 
depends on mosquitoes’ biting preferences [23] and on 
the abundance of each bird species in the community.

In the second step of transmission, infected birds 
infect susceptible mosquitoes (“bird-to-mosquito trans-
mission”). The probability that a susceptible mosquito 
becomes infected during a feeding event depends on the 
titer in the bird species, the species of the mosquito and 
environmental variables such as temperature [6]. Criti-
cally, bird species vary considerably in both their physi-
ological capacity for transmitting infection to mosquito 
vectors because of differences among species in survival 
and virus titer (which together comprise “host compe-
tence”), and in their relative contribution to the pool of 
infectious mosquitoes because of differences in their 
abundance and attractiveness to mosquitoes [23].

WNV has been intensely studied, including models 
and/or empirical analysis of prevention strategies for 
WNV [24, 25], ecological factors associated with the 
spread of WNV [26–29], risk assessment for invasion 
into new locations [11, 30–32], human infection risk 

[16, 33–36] and the importance of individual bird spe-
cies in transmitting WNV [1, 6, 37, 38]. This work has 
contributed substantially to our understanding of the 
dynamics of WNV. For example, Wonham et  al. [24] 
and four others reviewed in Wonham et  al. [39] laid 
the foundation for WNV transmission models, provid-
ing insight into the threshold number of mosquitoes at 
which WNV R0 = 1 [24], the impact of bird mortality 
on transmission [40] and the transition from an epi-
demic to endemic state [41]. However, all of these stud-
ies used a differential equation framework that ignores 
much of the heterogeneity in transmission probabilities 
over the course of infection and variation among hosts 
and mosquitoes. Vogels et al. [29] do incorporate trans-
mission probabilities from three vector species at three 
different temperatures; however, they considered only 
a single bird species. Kilpatrick et  al. [1] and Peterson 
et  al. [37] began to address the abundant variation in 
competence among bird species, which led to a variety 
of work on the connection between specific bird spe-
cies and human infection risk [16, 35, 36].

Most work neglects much of the heterogeneity in the 
life-cycle of WNV: all of these analyses were focused 
narrowly on a small subset of the species found in 
diverse bird communities and/or use a small fraction 
of the available empirical data. Ideally, predictions for 
the spread of WNV in diverse communities of birds 
would be obtained from a mechanistic model that uses 
as much of the available empirical data as possible on 
individual-level processes to scale up to transmission 
at the level of the community while retaining the het-
erogeneities in WNV transmission. These data include, 
among many other axes of heterogeneity, the physiolog-
ical responses of all of the bird species in the commu-
nity, the biting preferences of mosquitoes on these bird 
species and the relative abundance of each bird spe-
cies. Relative to phenomenological models, mechanistic 
models are often more powerful because they are better 
at prediction in conditions beyond those observed [42, 
43], and help elucidate biological unknowns when they 
fail [44]. A mechanistic model for WNV would allow 
for estimation of the force of infection of WNV in any 
bird community and help researchers explore causal 
links between bird community composition and human 
infection risk.

In North America, there have been over 100 infec-
tion experiments of mosquitoes and birds (see [6] for 
a synthesis of these data), and extensive studies on 
mosquito feeding preferences (for a review see [23]; for 
examples of field observations see [45, 46]). Despite this 
work, bird communities across North America contain 
hundreds of bird species with unmeasured physiologi-
cal responses to WNV and unknown mosquito biting 
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preferences. Because of this gap, WNV spread has not 
yet been predicted mechanistically using full bird 
communities.

We present a model for predicting WNV R0 for bird 
communities in any state or province in North America 
(aggregated in space and time by county, month and year) 
or larger region; for details about R code see Additional 
file 1. While our model is set up to provide estimates of 
WNV transmission anywhere in North America, suffi-
cient information about bird species abundance may be 
unavailable in some rural locations in the USA and many 
locations in Canada and Mexico. To get around the prob-
lem of unmeasured responses to WNV for many bird 
species, we estimated missing bird species’ responses 
using these species’ phylogenetic relationships with bird 
species with measured responses, a technique we call 
“phylogenetic imputation”. This is a general method that 
can be used to model the correlated responses of mul-
tiple species and efficiently estimate the response (e.g. 
traits, response to infection) of species with little or no 
data (see [47, 48] for a similar method and application). 
This technique allows us to scale up from the physiologi-
cal responses of individual birds to disease transmission 
at the scale of the whole community by considering spe-
cies-level variation in the physiological response to WNV 
and the biting preference by mosquito vectors of all of 
the birds in the community. This allows our model to 
retain all known heterogeneities in the life-cycle of WNV 
associated with the bird community.

A model allowing for all important WNV transmission 
heterogeneities would certainly need to allow for spatial 
and temporal variation in mosquito populations, tem-
perature and the effects of temperature on transmission 
probabilities, mosquito survival and biting rate [12], each 
of which has a large effect on WNV transmission [29]. 
While our model considers spatial and temporal varia-
tion in temperature and resulting variation in transmis-
sion probabilities and mosquito survival, we assumed a 
single homogenous population of mosquitoes because of 
a lack of data on mosquito populations. Thus, while our 
model is a step in the right direction, ignoring variation 
in vector competence among mosquito species is a short-
coming of our approach.

We used a variety of datasets to fit our model includ-
ing laboratory infections of birds and mosquitoes (full 
citations are available in Additional file 2; further details 
available in [6]), field data on mosquito biting preferences 
[45], bird body size data from a searchable database [49], 
bird detectability from field sampling (citations are listed 
in Additional file  2), the comprehensive phylogeny of 
birds [50, 51] and citizen science data on bird abundance 
from eBird, the Cornell Laboratory of Ornithology citi-
zen science database [52].

We show how our model can be used to predict 
the intrinsic reproductive number (R0) of WNV, the 
expected number of new infections a single infected 
individual generates in an otherwise susceptible 
population. We focused our analysis on Texas, USA, 
because it is among the states with the highest total 
incidence of WNV in humans [53] (Texas had an esti-
mated total of 534,000 cases between 2003 and 2010 
[16], and Dallas county specifically had the highest 
recorded number of cases anywhere in the USA in a 
2012 nationwide WNV epidemic [54]), and is well 
sampled in the eBird database. We used R0 as a met-
ric to compare transmission potential among bird 
communities; we did not use R0 as a metric to predict 
the exact size of a new epidemic, which would require 
detailed information on bird seroprevalence. We 
examined spatio-temporal patterns in WNV R0 across 
Texas and determined which bird species in Texas are 
the best and worst hosts for propagating WNV. For 
this case study we assumed a single mosquito species, 
which allows us to address our primary focus of varia-
tion in the bird community.

Using our imputed responses for full bird com-
munities and R0 estimates in Texas, we tested both 
an assumption and a prediction of the dilution effect 
hypothesis, which argues that increasing biodiversity 
(in either species richness or evenness) will decrease 
R0 or another quantity associated with the spread of 
disease such as the number of spillover infections into 
non-target hosts [55–57]. Previous work in this sys-
tem has found variable support for the dilution effect 
hypothesis [28, 33, 58, 59]. In an attempt to clarify these 
variable results, we tested if more abundant bird species 
are better hosts for WNV (an assumption of the dilu-
tion effect hypothesis), and whether bird species rich-
ness is positively or negatively correlated with WNV R0 
(an amplification or dilution effect respectively).

We structured our paper and supplemental code to 
serve as a reference for future work analyzing ecological 
problems that require multi-faceted mechanistic mod-
els, which consist of many sub-models that may use dif-
ferent data sources. We provide a detailed description 
of each of our sub-models and give reasons for our sta-
tistical choices; we emphasize principled ways to esti-
mate missing data, and the importance of propagating 
uncertainty. Additional file 1 provides details on how to 
access extensively commented R code and a complete 
list of all data cleaning and analysis steps required to 
obtain estimates for the R0 of WNV in any region in 
North America using a single compressed eBird data 
file available upon request from [60].
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Methods
Model overview
We introduce our model by working backwards, from 
the overarching biological questions to the specifics of 
individual models. We begin by describing our primary 
model outcomes. We then explain our method for calcu-
lating the R0 of WNV. Finally, we detail how we estimated 
each parameter in the equation for R0 using individual 
sub-models, and how we linked these estimates and 
propagated uncertainty to calculate R0. Table 1 describes 
the components of our overall model and how they fit 
into our analysis.

Model outcomes
First, we focused on spatial and temporal patterns in R0 
at the level of the community; we calculated WNV R0 for 
bird communities between 2000 and 2017 separated spa-
tially by county and temporally by month and year, and 
then fit a spatio-temporal model to the resulting WNV R0 
estimates which included 11 ecoregions in Texas, human 
population density, temperature and year as predictor 
variables. Secondly, we determined which bird species 
have the largest predicted impact on R0 in Texas, USA. 

We quantified the importance of each species within 
each community by calculating the proportional change 
in R0 that would be predicted to occur if that species 
were removed from the community and replaced by the 
other species in community in proportion to their rela-
tive abundance. We considered species whose removal 
strongly increases or decreases R0 as the least or most 
competent birds for WNV, respectively. In the language 
of the dilution effect hypothesis [55–57], species that 
increase R0 when removed are defined as “diluters”, and 
those that decrease R0 when removed as “amplifiers”. We 
test if more abundant bird species are more physiologi-
cally competent for transmitting WNV and if an increase 
in species richness is predicted to decrease WNV R0.

Community R0
We calculated R0 as the expected number of mosqui-
toes that become infected following the introduction 
of a single infected mosquito into a population of sus-
ceptible birds and otherwise uninfected mosquitoes. 
This calculation assumes that all mosquitoes have iden-
tical biting preferences and vector competence. We 
broke R0 into two transmission steps: mosquito-to-bird 

Table 1  Sub-model details for our multi-faceted ecological model for WNV R0. The two transmission steps (Column 2) of WNV’s 
life-cycle are: mosquito to bird (M-to-B) transmission, i.e. transmission from an infected mosquito to a susceptible bird; and bird to 
mosquito (B-to-M) transmission, i.e. transmission from an infected bird to a susceptible mosquito. Citations accompany data available 
in Additional file 2; details on data extraction can be found in [6]

Component of community R0 Transmission step R0 equation component (see 
Eq. 2)

Data source Details in

Raw eBird counts of bird 
species i

M-to-B Component of ωSi and ωµi 1,437,050 complete lists sub-
mitted between 2000 and 
2017 in Texas, USA

Methods, Model components: 
Bird community

Detectability of bird species i M-to-B Component of ωSi 12 publications including esti-
mates for 475 bird species

Methods, Model components: 
Bird detectability

Mosquito biting preference on 
bird species i

Both Component of ωSi [45] and eBird records for 
the same spatio-temporal 
sampling period

Methods, Model components: 
Mosquito biting preference

Mosquito incubation of WNV M-to-B Determines PMBd 9 publications including 45 
infection experiments (see 
Additional file 2 and [6])

Methods, Community R0; model 
from [6]

Mosquito survival M-to-B SMd [128] Methods, Community R0; model 
from [6]

Mosquito biting rate Both δ [46] from [24] and [62] Methods, Community R0

Titer profile of bird species i B-to-M Tij 30 publications including 111 
infection experiments of 47 
bird species (see Additional 
file 2 and [6])

Methods, Model components: 
Bird titer profile and survival

Survival of bird species i B-to-M SBij 30 publications including 111 
infection experiments of 47 
bird species (see Additional 
file 2 and [6])

Methods, Model components: 
Bird titer profile and survival

Bird-to-mosquito transmission 
probability

B-to-M PBMij 20 publications (see Additional 
file 2 and [6])

Methods, Model components: 
Bird titer profile and survival; 
model from [6]

No. of mosquitoes per bird B-to-M nMB Based loosely on [46] Methods, Community R0
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transmission, which measures the expected number 
of each bird of species i that would become infected 
by a single infected mosquito; and bird-to-mosquito 
transmission, which calculates the expected number of 
mosquitoes infected by the infected birds of species i 
calculated in the mosquito-to-bird transmission step. 
Written in this way, the sum of bird-to-mosquito trans-
mission gives the number of new infected mosquitoes 
resulting from the single infected mosquito, which is 
the R0 of WNV.

Mosquito-to-bird transmission is calculated by:

where µi is the number of birds of species i that become 
infected when a single infected mosquito is introduced 
into a community of susceptible birds. The quantity ωSi 
is the scaled proportion of susceptible individuals of bird 
species i, which is given by the observed proportions of 
species i (determined by eBird data; see “Methods”, Bird 
community), weighted by the detectability of species i 
(see “Methods”, Bird detectability) and the mosquito bit-
ing preference on species i (see “Methods”, Mosquito bit-
ing preference). The derivation of ωSi is given in Methods, 
Mosquito biting preference. Total transmission from the 
infected mosquito to susceptible birds is given by a sum 
over D, the duration of the mosquito’s infectious period. 
This sum is a measure of vector competence, the total 
ability of a vector to transmit infection to a susceptible 
host [21], a key component of which is the transmis-
sion probability per feeding event [22]. The probability 
of transmission per mosquito bite on each day (PMBd) 
follows a logistic function of titer in the mosquito’s sali-
vary glands, which is a function of time since infection, 
dose received from the infected bird, temperature, mos-
quito species and WNV strain (suppressed for clarity 
in Eq.  1; see [6] for a synthesis of these data). Here we 
assumed that the mosquito is introduced into the suscep-
tible population of birds on the first day following infec-
tion with the WN02 strain of WNV with a dose of 105.5 
viral particles. We predicted mosquito incubation rate 
of WNV and mosquito survival (SMd; estimates for mos-
quito survival are taken from a model for mosquito sur-
vival fit in [6]) for each Texas bird community using the 
average temperature in each Texas county by month and 
year with temperature data obtained from NOAA [61]. 
We ignored the effect of mosquito species, which was fit-
ted as a random effect in [6], due to the absence of data. 
These simplifications do not affect the relative effect of 
bird species, but will affect overall R0 values, and could 
affect spatio-temporal patterns. Finally, δ is mosquito 
biting rate with units of bites per mosquito per day. We 

(1)µi = ωSi

D
∑

d=1

PMBdSMdδ,

assumed a constant mosquito biting rate of 0.14 per mos-
quito per day (as assumed by [46], taken from [24, 62]).

WNV R0 is calculated using the sum of bird-to-mos-
quito transmission:

Equation  2 gives the expected number of new mos-
quitoes infected by the expected number of birds of 
species i that became infected by the single infected 
mosquito in mosquito-to-bird transmission (given 
by µi in Eq. 1), the sum of which is the R0 of WNV. In 
Eq. 2, ωµi is µi from Eq. 1 weighted by the biting pref-
erence of mosquitoes on each species. The transmis-
sion probability from an infected bird of species i to a 
susceptible mosquito on day j (PBMij) is a function of a 
bird’s titer (Tij). Transmission probability is discounted 
by the bird’s survival probability up to day j (SBij). We 
measured bird titer and survival until day 8, which is 
one day longer than previous measures of host com-
petence [20, 63] and long enough to capture all known 
detectable measures of titer in birds. The inner summa-
tion over j captures a quantity commonly called “host 
competence”, which we call “physiological competence” 
to emphasize that this component is not scaled by mos-
quito biting preference. Classically, host competence 
is defined as the daily sum of host-to-vector infection 
probability over the course of a host’s infectious period 
[20, 63], assuming a single mosquito bite per day on an 
infected bird. Here, when multiplied by ωµi, this quan-
tity gives the number of new mosquitoes that infected 
individuals of species i infect, arising from a single 
originally infected mosquito (in Eq. 2 the entire quan-
tity inside the outer parentheses). The R0 of WNV is 
given by the sum of this quantity over all infected bird 
species multiplied by a constant ratio of mosquitoes to 
birds (nMB) (in the absence of better data we assume a 
ratio of 3 based approximately on sampling conducted 
by [46] in New Haven, CT, USA) and the number of 
bites per mosquito per day (δ).

We focused on estimating the parameters associated 
with the bird community, which include ωSi, ωµi, PBMij, 
Tij and SBij. For mosquito-to-bird transmission prob-
ability (parameters PMBd and SMd) we used estimates 
from the models fit in [6] and single values from the 
literature for mosquito biting rate (δ) and the ratio of 
mosquitoes to birds (nMB). While the mosquito-to-bird 
ratio and mosquito biting rate will in reality be a func-
tion of parameters that vary both spatially and tempo-
rally such as ecoregion, season and temperature [29], 
as well as human population density, we assumed a 

(2)R0 =

I
�

i=1



ωµi

8
�

j=1

�

PBMij

�

Tij

�

· SBij
�

nMBδ



,
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constant mosquito-to-bird ratio here because of a lack 
of sufficient data on spatial and seasonal variation in 
this ratio across Texas and because our primary focus 
is on estimating R0 as a function of the bird community. 
Because we assumed no interaction between mosquito 
species and bird species in the probability of infection, 
and because the remaining parameters are scalars, dif-
ferences in these parameters will affect the overall mag-
nitude of R0 estimates but will not affect qualitative 
patterns in R0 due to variation among bird communi-
ties in space and time.

In Methods, Model components, we further unpack 
Eqs.  1 and 2 (e.g. ωSi) and describe how we estimated 
each of the parameters associated with the bird commu-
nity. The data and models that informed all parameters 
of both Eqs.  1 and 2 are described in greater detail in 
Table 1.

Phylogenetic imputation
The primary difficulty in estimating community compe-
tence for a diverse community of birds is that physiologi-
cal responses to WNV and mosquito biting preferences 
are unknown for most bird species. Obtaining these data 
for every species in a diverse community of birds would 
be infeasible. To address this problem, we used a form of 
phylogenetic analysis that we call “phylogenetic imputa-
tion” in which we fit models using all of the data that are 
currently available for a given response (e.g. a bird spe-
cies’ titer profile) and estimate the response of species 
with missing data using the phylogenetic relationship 
between the missing species and the species for which we 
have data [47].

The effects of a predictor variable on the response of 
multiple species can be modeled using the phylogenetic 
relationships among the species to estimate the correla-
tion among observations. Classic phylogenetic regression 
approaches assume a correlated-residual model using 
phylogenetically independent contrasts (PICs), where 
the residuals evolve as a Brownian motion process [64]; 
in other words, residuals are phylogenetically correlated. 
Many recent approaches, including phylogenetic general-
ized linear mixed models (PGLMM) [65], Pagel’s λ [66] 
and Blomberg’s κ [67], expand upon Felsenstein’s PICs by 
incorporating extra parameters that correct for bias, and 
by partitioning the phylogenetically correlated residual 
variation into phylogenetically uncorrelated residual var-
iation (observation error or tip variation) and phyloge-
netic signal (biological/evolutionary process error) [68].

Here we used a newly implemented method built on 
the lme4 package in R that incorporates phylogenetic cor-
relations by modeling them as random effects and allows 
for random slopes (i.e. phylogenetic signal in response to 
change in the predictor variable), random interactions 

and nested random effect models, and is orders of magni-
tude faster than alternative methods [69]. Like most pre-
vious methods, the evolutionary history for each species 
is modeled as a sequence of normal independent errors. 
Thus, the portion of a species’ response attributable to its 
evolutionary history can be calculated as the sum of the 
evolutionary change that occurred on each of the internal 
branches in the phylogeny leading to that species.

We estimated missing values for bird responses (e.g. 
bird titer) using multiple imputation (where each miss-
ing value is replaced by random samples from a distribu-
tion of plausible values [70]). To impute, we first fitted a 
phylogenetic mixed model to all of the species for which 
we have data. Then, for each species without data, we 
first summed the evolutionary change in the response 
variable that occurred on all branches of the phylogeny 
leading to the most recent common ancestor between 
the species with a missing response and the most simi-
larly related species that has data and was included in the 
mixed model. This gives the effect on the response vari-
able of the species’ shared evolutionary history up to the 
time when these species diverged. To obtain these values 
we drew random normal (multivariate if the mixed model 
includes multiple correlated species-level random effects) 
samples for each branch, with means equal to the con-
ditional modes of each branch multiplied by the branch 
length and variances equal to the conditional variances 
of each branch multiplied by the square of the branch 
lengths. Then, the evolutionary change that has occurred 
since the two species diverged is estimated by draw-
ing random normal (multivariate normal if the mixed 
model includes multiple correlated species-level ran-
dom effects) samples with a mean of zero (the expected 
value for each unmeasured species is equal to that of the 
most closely related measured species because of the 
assumption of Brownian motion) and standard devia-
tion (SD) equal to the estimated SD of the species-level 
random effect(s) multiplied by the evolutionary distance 
(branch length) from the most recent common ancestor 
of the most closely related measured species. Together, 
these estimates give the estimated total effect of a species’ 
evolutionary history on a given response. The remaining 
portion of a species’ response is given by the fixed effects 
(e.g. body size) and other non-species-level random 
effects (e.g. variation among infection experiments).

For our analysis we used a bird consensus phylogeny 
that was calculated using 1000 trees downloaded from 
[50] (Stage2_MayrPar_Ericson_set1_decisive.tre) [51] 
using DendroPy [71] and methods described in [72].

Phylogenetic imputation validation
We validated our phylogenetic imputation method in 
two ways. First, we calculated conditional R2 using the 
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methods outlined in [73, 74] for models with and without 
a species-level phylogenetic random effect. We estimate 
conditional R2 using code from the R package MuMIn 
[75], adapted to accommodate the structure of the phy-
logenetic mixed model objects. Secondly, we use blocked 
leave-one-out cross validation [76] at the level of species 
for models with and without the species-level phyloge-
netic random effect to assess the effects of phylogenetic 
imputation on out-of-sample error. We present addi-
tional details and results for each of these forms of valida-
tion in Additional file 2: Text S2; Table S1. For a vignette 
on the phylogenetic models built on lme4 see [69].

Model components
Bird titer profile and survival
We modeled bird infection profiles and mortality prob-
abilities using data from experimental infections of 47 
bird species collected from 30 publications containing 
113 individual infection experiments; most of these data 
have been presented previously [6]. For the bird titer, bird 
survival and bird-to-mosquito transmission models in 
this paper we grouped data from the two primary WNV 
strains, NY99 and WN02 (in our previous study [6] we 
were unable to detect a clear difference between the 
NY99 and WN02 strains).

To model bird titer profiles we used a log-normal mixed 
effects model; fixed effects included a Ricker function 
of day (using day and log(day) as predictors of log-titer; 
see Additional file  2: Text S3 or [77] for more informa-
tion), infectious dose, bird body size and the interac-
tion between day and bird body size. We used a random 
intercept and slope over both day and log(day), which are 
constrained by the phylogenetic relationship among the 
species. We also included random intercepts for citation 
and infection experiment.

To model bird survival we used a generalized linear 
mixed effects model (GLMM) with a binomial error 
distribution and complementary log-log link, where the 
number of birds dying on a given day was taken as the 
number of “successes” and the number of birds that sur-
vived that day as “failures”. This model estimates a bird’s 
daily log-hazard [78], which can be back-transformed 
to estimate daily mortality probability and cumula-
tive survival probability using the cumulative product 
of the complement of the daily mortality probabilities. 
We modeled bird survival using the main effects of titer, 
day and bird body size as fixed effects; citation, infec-
tion experiment and bird species (phylogenetically con-
strained) were modeled using random intercepts (due to 
a lack of data we were unable to estimate species-level 
variation in sensitivity to titer).

The bird body size data used in both models were 
obtained from the searchable digital edition of Dunning 

[49]. Body size data were averaged if data for a given spe-
cies were available for both sexes or multiple subspecies. 
Approximately 7% of the species in the Texas eBird data-
set did not have mean body sizes reported in [49] but did 
have minimum and maximum values reported. The body 
size for these species was taken as the center of the range. 
Approximately 0.3% of the species in the Texas eBird 
dataset were not represented at all in [49]. For these spe-
cies, the body sizes of all congeners were averaged.

Bird community
We obtained bird abundances data from the Cornell 
Laboratory of Ornithology citizen science database eBird 
[52, 60]. We used all complete checklists [52, 79] submit-
ted between January 2000 and December 2017. Complete 
checklists are defined as a report of all birds (number of 
individuals of all species) that are seen on a given out-
ing. Checklists were aggregated spatially at the level of 
Texas counties for each month between January 2000 and 
December 2017, which resulted in a total of 30,188 bird 
communities containing a total of 679 unique species. 
To match scientific names, which occasionally differed 
between eBird and the consensus phylogeny, we used an 
automated lookup procedure to search both the IUCN 
[80] and Catalogue of Life [81] databases. All unmatched 
names following the automated lookup were matched by 
hand using manual searches (< 1% of species).

We focused on results for a reduced eBird dataset 
that included 2569 communities and a total of 645 bird 
species, with a median occurrence (proportion of com-
munities in which bird species i was sampled) of 13% 
(95% of species between 0.04% and 82%; a total of 167 
species were recorded in less than 1% of the communi-
ties). We present results for the complete Texas eBird 
dataset, which included all 30,188 available commu-
nities and 679 species in Additional file 2: Figures S4, 
S5; Text S5. We subset our data for the main analysis 
because many of the Texas bird communities were 
under-sampled (e.g. 13,254 communities were sam-
pled with 5 or fewer lists) and therefore these data are 
unlikely to be a good representation of the true bird 
community. The 2569 bird communities were cho-
sen because they were all sampled with a minimum 
effort of 80 complete checklists. We chose 80 lists 
in an attempt to maximize the number of communi-
ties for our analysis while minimizing the retention of 
under-sampled communities. To optimize the trade-
off between number of communities and data quality, 
we resampled 5–120 complete lists from the 46 most 
sampled communities (communities with greater than 
1300 lists) 100 times. We calculated the proportion of 
species missing in the subsampled communities as well 
as the root mean squared error (RMSE) in the relative 
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proportions of all species between the two commu-
nities. Using the rate of change in RMSE and species 
retention (Additional file 2: Figures S1, S2), we deter-
mined that with fewer than 80 complete lists, the gain 
in total number of communities was not worth the 
increased error rate and loss of species representation, 
while at greater than 80 complete lists the loss in com-
munities was too large for the small decrease in error 
and species loss. For full simulation results see Addi-
tional file 2: Text S1; Figures S1, S2).

Bird detectability
We scaled raw bird counts by the detectability of each 
bird species to correct for incomplete sampling of bird 
communities and to control for variation in the qual-
ity of eBird records; alternatively or additionally, eBird 
lists can be weighted by user skill [79, 82]. We searched 
for data on the maximum detection distances of birds 
using Google Scholar with the following search criteria: 
“X” maximum detection distance, “X” maximum detec-
tion radius, “X” effective detection distance and “X” 
effective detection radius, where “X” took each of: land-
bird, land bird, waterbird, water bird, waterfowl, sea-
bird, sea bird, and marsh bird. In all cases the first 60 
hits were assessed for relevant information. Because of 
overlapping results, a total of 1440 titles, abstracts and/
or entire papers were read for relevant data. In total, we 
took data from 12 sources which contained maximum 
detection distances for 469 bird species. However, we 
failed to find detection distances for waterfowl and 
shore birds; maximum detection distances (roughly 
intermediate to values between woodland species and 
seabirds) were assigned to 21 waterfowl and shore birds 
based on detection probabilities in the literature and 
our knowledge of the natural history of these species 
(personal birding experience [83]).

In order to fill in missing information for detection 
distance, we used the results of our literature search 
to fit a phylogenetic mixed effects model. Maximum 
detection distances for species in the Texas eBird data 
were estimated using a GLMM with a log-normal error 
distribution. Body size was used as a fixed effect and 
species was included as a phylogenetic random effect. 
The eBird counts for each species were then adjusted 
by multiplying counts by the ratio of the maximum 
detection distance in the community to the detection 
distance of each species. Using the square of maximum 
detection distance to reflect the relative spatial area 
sampled for each species may also be an appropriate 
method for adjusting raw eBird counts. We chose lin-
ear scaling here because 50% of lists were transects and 
because squared distance generated unrealistic outliers.

Mosquito biting preference
Finally, bird species proportions were adjusted using the 
biting preferences of mosquitoes, which scales true bird 
proportions to the proportions that mosquitoes “see”. 
Because mosquitoes (Culex sp. and others) prefer some 
hosts to others [20, 45, 84], this step is required to appro-
priately translate each bird’s physiological response (a 
bird’s mosquito infecting potential) into realized infec-
tions of mosquitoes [20]. A mosquito’s biting preference 
on bird species i can be calculated as the rate of mos-
quito feeding on species i relative to its abundance in 
the community [20]: βi = fi

/

ai , where fi is the fraction 
of total blood meals from species i, and ai is the propor-
tion of species i in the community. Experimentally, fi is 
determined by sampling mosquitoes and determining the 
species origin of blood recovered from the mosquitoes; 
bird surveys are used to determine ai [20, 45, 46]. A value 
for βi = 1 indicates that a bird species is bitten exactly 
in proportion to its representation in the community. 
A value of βi > 1 or βi < 1 indicates a bird species that 
is preferred or avoided by mosquitoes, respectively. At 
one extreme, a bird with high infectious potential (high 
titer and low mortality) may contribute very little to the 
spread of WNV if it is avoided by mosquitoes. At the 
other extreme, a bird with low physiological competence 
(low titer and/or high mortality) may contribute substan-
tially to the spread of WNV if it is among the most pre-
ferred species in a community. For example, American 
robins (Turdus migratorius) have been found to infect the 
largest, or close to the largest, proportion of mosquitoes 
of any bird species in some bird communities in eastern 
USA because of their high abundance and mosquito pref-
erence [20, 45, 46, 85, 86], in spite of their relatively low 
titer [6].

In previous studies, when the blood of bird species i 
was recorded in a mosquito, but bird species i was unob-
served in the community, the bird was either assigned a 
proportion corresponding to the rarest bird measured 
[45], or dropped from the analysis [20]. If bird spe-
cies i was observed but its blood was not detected in a 
mosquito, it was assumed that a single mosquito was 
observed with the blood of bird species i [20, 45]. While 
convenient, the assignment of arbitrary values to miss-
ing data leads to biting preferences spanning three orders 
of magnitude [20, 45], which seems biologically implau-
sible. Alternatively, a Bayesian statistical model can be 
used to estimate mosquito biting preference (which is not 
directly observed), when bird species i or its blood is not 
observed. Here we use a multinomial model in Stan [87], 
interfaced with R using rstan [88]. We model bird pro-
portions using data from [45] and a Dirichlet prior, the 
conjugate prior to the multinomial distribution [89]. The 
Dirichlet prior was set proportional to eBird observations 
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for the same location and dates as the sampling originally 
conducted in [45]; we used all complete checklists in a 
circle with radius 08’ around the focal point of 41°42′N, 
87°44′W given as the center of the surveys conducted in 
[45] for the months of May and October in 2006–2008; 
this area is shown in Additional file 2: Figure S3.

The fraction of total blood meals in mosquitoes was 
modeled using a Gamma error distribution with data 
from [45] and a Gamma prior (shape = 0.25, scale = 
0.25). This prior distribution has a mean equal to one, 
median less than one and moderate dispersion, which 
assumes that birds are preferred in proportion to their 
abundance on average; the majority of bird species are 
preferred a bit less than proportional to their relative 
abundance, while a few bird species are preferred much 
more than proportional to their relative abundance. 
This Dirichlet-multinomial model estimates mosquito 
biting preferences for all of the species recorded on 
eBird between May and October in 2006–2008 in Cook 
County, IL, USA.

Estimates of mosquito blood meals from the Dirichlet-
multinomial Stan model were then used to impute biting 
preference on bird species in the Texas dataset by fitting 
a GLMM with Poisson-distributed error (which includes 
a species-level phylogenetic random effect) to the bit-
ing preferences estimated by the Dirichlet-multinomial 
model. This step assumes that a mosquito’s biting prefer-
ence on species i is the same in Illinois as in Texas; both 
states share Cx. tarsalis, while Cx. pipiens is unique to 
Illinois and Cx. quinquefasciatus is unique to Texas [90], 
making this an unavoidable oversimplification. Biting 
preference estimates were scaled to a mean of one, and 
were then used to weight the observed proportions of 
each bird species. The weighted proportions of each bird 
species were obtained using:

where ωi is the adjusted proportion of species i, αi is 
the unweighted proportion of each species determined 
directly from eBird data, βi is mosquito biting prefer-
ence on species i, and δi is the ratio of the maximum bird 
detectability in the community to the detectability of spe-
cies i. The scaling in this equation is equivalent to using a 
weighted Manly’s α index [91].

Spatio‑temporal patterns in WNV R0
To determine the spatio-temporal patterns in WNV R0 
we fit a generalized additive model (GAM) using the 
mgcv package in R [92]. We use this as a proof of con-
cept example to show how the imputed physiologi-
cal responses of birds and mosquito biting preferences 
can be used to predict larger scale patterns. This model 

(3)ωι =
βiαiδi

∑I
i=1 βiαiδi

,

included thin plate splines for the log of human popula-
tion density, temperature and year. We stress that in the 
absence of data on mosquito communities on the scale of 
the bird communities, the R0 estimates from this model 
are driven by variation in bird communities and tempera-
ture only and cannot be taken at face value as accurate 
estimates of actual WNV transmission potential.

We first attempted to fit a model using the proportion 
of each ecoregion in each county, but could not overcome 
issues of concurvity (analogous to co-linearity in a GAM 
model [93]) in this model. Instead, we fitted a simplified 
model using a Markov random field to model the effects 
of ecoregion under the simplified assumption that each 
county had only a single ecoregion, which we chose as 
the most abundant ecoregion in each county. We fitted 
a random effect of county to control for repeated meas-
ures within counties and to account for spatial variation 
within ecoregion. Ideally, we would also model fine-scale 
spatial variation using a thin plate spline over latitude 
and longitude coordinate pairs; however, models that 
included this predictor suffered greatly from concurvity 
problems. We used the inverse of the variance in R0 esti-
mates as weights.

For the 11 major different ecoregions in Texas, popula-
tion density and county spatial shape data were obtained 
from [94]. This model provides estimates of both seasonal 
and long-term trends in WNV R0 as the structure of 
bird communities have changed in the past two decades 
(due to disturbances such as habitat change [95], habitat 
destruction [96], climate change [97] and the effect of the 
WNV epidemic itself [1]) as well as spatial estimates of 
WNV R0 by county.

Propagation of uncertainty
Multi-faceted ecological models will underestimate 
uncertainty (e.g. too narrow confidence intervals on esti-
mates of outcomes of interest) if the point estimates from 
each sub-model are used while neglecting their uncer-
tainty. Point estimates may also differ between models 
with or without uncertainty because non-linear transfor-
mations of distributions will change the expected value, a 
phenomenon known as Jensen’s inequality [98]. We focus 
on results from a model with all uncertainty propagated, 
but briefly discuss the impacts of ignoring uncertainty 
on both our quantitative and qualitative conclusions (for 
more detailed results see Additional file  2: Figure S6). 
Table 2 gives a list of the sources of uncertainty and how 
each source was propagated. We set up our sub-models 
in the R code (see Additional file 1) so that each source 
of uncertainty can be set individually to be either prop-
agated or ignored, which can be used to obtain a first 
approximation (assuming independence of errors) for 
the relative effects of uncertainty in each sub-model on 



Page 10 of 22Kain and Bolker ﻿Parasites Vectors          (2019) 12:395 

Ta
bl

e 
2 

D
et

ai
ls

 a
bo

ut
 e

ac
h 

so
ur

ce
 o

f u
nc

er
ta

in
ty

Ab
br

ev
ia

tio
n:

 S
D

, s
ta

nd
ar

d 
de

vi
at

io
n;

 v
co

v,
 v

ar
ia

nc
e-

co
va

ria
nc

e

So
ur

ce
 o

f u
nc

er
ta

in
ty

D
es

cr
ip

tio
n

M
et

ho
d 

of
 p

ro
pa

ga
tio

n

Fi
xe

d 
eff

ec
ts

U
nc

er
ta

in
ty

 in
 th

e 
fix

ed
 e

ffe
ct

s 
fo

r e
ac

h 
su

b-
m

od
el

10
00

 m
ul

tiv
ar

ia
te

 (o
r u

ni
va

ria
te

 d
ep

en
di

ng
 o

n 
th

e 
m

od
el

 d
efi

ni
tio

n)
 n

or
m

al
 s

am
-

pl
es

 u
si

ng
 th

e 
m

ea
ns

 a
nd

 v
co

v 
m

at
rix

 o
f t

he
 fi

xe
d 

eff
ec

ts

Ph
yl

og
en

et
ic

 ra
nd

om
 e

ffe
ct

U
nc

er
ta

in
ty

 in
 th

e 
am

ou
nt

 o
f e

vo
lu

tio
na

ry
 c

ha
ng

e 
in

 th
e 

re
sp

on
se

 v
ar

ia
bl

e 
(e

.g
. 

bi
rd

 ti
te

r) 
th

at
 h

as
 o

cc
ur

re
d 

ov
er

 e
ac

h 
br

an
ch

 o
f t

he
 p

hy
lo

ge
ny

10
00

 m
ul

tiv
ar

ia
te

 (o
r u

ni
va

ria
te

 fo
r m

od
el

s 
w

ith
 a

 s
in

gl
e 

sp
ec

ie
s-

le
ve

l r
an

do
m

 
eff

ec
t)

 n
or

m
al

 s
am

pl
es

 fo
r e

ac
h 

br
an

ch
, w

ith
 m

ea
ns

 e
qu

al
 to

 th
e 

co
nd

iti
on

al
 

m
od

es
 o

f t
he

 s
pe

ci
es

-le
ve

l r
an

do
m

 e
ffe

ct
 fo

r e
ac

h 
br

an
ch

 m
ul

tip
lie

d 
by

 th
e 

br
an

ch
 le

ng
th

s 
an

d 
va

ria
nc

e 
eq

ua
l t

o 
th

e 
va

ria
nc

e 
of

 th
e 

co
nd

iti
on

al
 m

od
es

 o
f 

th
e 

ra
nd

om
 e

ffe
ct

s 
fo

r e
ac

h 
br

an
ch

 m
ul

tip
lie

d 
by

 th
e 

sq
ua

re
d 

br
an

ch
 le

ng
th

s

Ph
yl

og
en

et
ic

 ti
p 

va
ria

tio
n

Ev
ol

ut
io

na
ry

 c
ha

ng
e 

th
at

 h
as

 o
cc

ur
re

d 
af

te
r t

he
 d

iv
er

ge
nc

e 
of

 th
e 

sp
ec

ie
s 

w
ho

se
 

re
sp

on
se

 is
 b

ei
ng

 im
pu

te
d 

fro
m

 it
s 

m
os

t c
lo

se
ly

 re
la

te
d 

sp
ec

ie
s 

th
at

 h
as

 a
n 

em
pi

ric
al

ly
 m

ea
su

re
d 

(a
nd

 e
st

im
at

ed
) r

es
po

ns
e

10
00

 m
ul

tiv
ar

ia
te

 (o
r u

ni
va

ria
te

 fo
r m

od
el

s 
w

ith
 a

 s
in

gl
e 

sp
ec

ie
s-

le
ve

l r
an

do
m

 
eff

ec
t)

 n
or

m
al

 s
am

pl
es

 w
ith

 m
ea

n 
0 

(b
ec

au
se

 o
f t

he
 a

ss
um

pt
io

n 
of

 B
ro

w
ni

an
 

m
ot

io
n)

, a
nd

 S
D

 e
qu

al
 to

 th
e 

SD
 o

f t
he

 s
pe

ci
es

-le
ve

l r
an

do
m

 e
ffe

ct
 m

ul
tip

lie
d 

by
 th

e 
le

ng
th

 o
f t

he
 fi

na
l (

m
os

t r
ec

en
t i

n 
tim

e)
 b

ra
nc

h 
le

ad
in

g 
to

 th
e 

sp
ec

ie
s 

in
 

qu
es

tio
n

O
th

er
 ra

nd
om

 e
ffe

ct
s

U
nc

er
ta

in
ty

 d
ue

 to
 v

ar
ia

tio
n 

am
on

g 
st

ud
ie

s 
an

d 
in

fe
ct

io
n 

ex
pe

rim
en

ts
10

00
 u

ni
va

ria
te

 n
or

m
al

 s
am

pl
es

 fo
r e

ac
h 

ra
nd

om
 e

ffe
ct

 w
ith

 m
ea

n 
eq

ua
l t

o 
0 

an
d 

SD
 e

qu
al

 to
 th

e 
es

tim
at

ed
 S

D

St
an

 m
od

el
 o

ve
ra

ll 
un

ce
rt

ai
nt

y
Su

m
m

ar
y 

of
 th

e 
en

tir
e 

un
ce

rt
ai

nt
y 

as
so

ci
at

ed
 w

ith
 th

e 
th

re
e 

St
an

 m
od

el
s 

us
ed

 in
 

th
e 

tr
an

sm
is

si
on

 s
te

ps
 b

et
w

ee
n 

m
os

qu
ito

es
 a

nd
 b

ird
s 

(b
ird

-t
o-

m
os

qu
ito

 tr
an

s-
m

is
si

on
 p

ro
ba

bi
lit

y,
 m

os
qu

ito
-t

o-
bi

rd
 tr

an
sm

is
si

on
 p

ro
ba

bi
lit

y,
 a

nd
 m

os
qu

ito
 

bi
tin

g 
pr

ef
er

en
ce

)

10
00

 s
am

pl
es

 fr
om

 th
e 

po
st

er
io

r d
is

tr
ib

ut
io

ns
 fo

r e
ac

h 
of

 th
e 

St
an

 m
od

el
s



Page 11 of 22Kain and Bolker ﻿Parasites Vectors          (2019) 12:395 

uncertainty in R0 and on spatio-temporal patterns in R0. 
We briefly discuss which sources of uncertainty have the 
largest impact on our conclusions in Additional file  2: 
Single sources of uncertainty: Reduced eBird Dataset.

Results
Community R0
WNV transmission is controlled primarily by tem-
perature variation across time and space. In Texas, we 
estimated WNV R0 to be highest in the spring and fall 
when temperatures maximize the product of mosquito 
transmission and survival probabilities (across all ecore-
gions in April: median R0 = 2.16, median temperature 
across all Texas counties = 19 °C; May: R0 = 2.31, 23 °C; 
October: R0 = 2.27, 19 °C) (Fig. 1). Within these favora-
ble months, we estimated R0 to be highest in the “Piney 
Woods” ecoregion (median R0 = 2.29) and “Oak Woods 
& Prairies” (median R0 = 2.28) ecoregions of Texas, 
and the lowest in the northern “High Plains” ecoregion 
(median R0 = 1.46). Despite these large differences at the 
larger scale of ecoregions, large uncertainty in the R0 of 
individual communities makes it difficult to be certain 

about the size of the true variation in space and time. For 
example, despite median estimates of R0 > 1 for 96% of 
communities in the most favorable months, the 95% CI 
for all of these communities includes R0 = 1 (the median 
across communities of the lower bound of the 95% CI of 
R0 is 0.60). In the least favorable months (e.g. December 
and January), 100% of community median R0 estimates 
were less than 1, while 67% of the CI for these communi-
ties spanned one (the median of the upper bound of the 
95% CI is 2.0).

We decomposed the importance of spatial and tempo-
ral variation in both temperature and bird community 
composition by comparing the mean absolute deviation 
(MAD) in predictions for R0 between a full model and 
models with either the bird community or temperature 
aggregated across space or time (Table  3). Temperature 
variation across both space and time is more predictive 
of R0 than bird community composition, though ignoring 
variation in the bird community across space does lead 
to R0 estimates that differ from the full model by 0.17 on 
average (Table 3). Allowing for temporal variation in tem-
perature and bird community composition, the majority 
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Fig. 1  WNV R0 estimates between months and among Texas counties. Blue boxplots show R0 estimates across Texas counties within months 
for a “Full” model, which used the eBird community and NOAA temperature data for each community. Red boxplots show R0 estimates from a 
model where each community retained their specific eBird community, but whose temperature was replaced with the average temperature 
across all of Texas for that month (also see Table 3, Spatially averaged temperature). Variation in R0 within months attributable to variation in the 
bird communities (red boxplots) is considerably smaller than the variation explained by spatial variation in temperature. Increases or decreases in 
medians between the models within months is due to the effects of averaging temperature prior to predicting R0 using the non-linear functions 
for mosquito-to-bird transmission and mosquito survival across temperature, a manifestation of Jensen’s inequality. For example, in November the 
mean temperature across Texas is 13.6 °C, while the SD among counties is 3.30 °C. We estimate average mosquito-to-bird transmission per bite over 
the first 30 days of mosquito infection to be 2.5% at 13.6 °C, 8.5% at 16.9 °C (+ 1SD) and 25% at 20.2 °C (+ 2 SD)
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of the variation in R0 within single months is due to spa-
tial variation in temperature; variation in bird community 
composition is the next most important term (Fig. 1).

The spatio-temporal GAM model explained 99% of the 
variation in estimated WNV R0; results for the spatio-
temporal model are presented visually in Fig.  2. Most 
of the variation in WNV R0 is explained by temperature 
in the fitted GAM (Fig.  2a). Human population density 
(people/sq.mile) was associated with decreasing R0, but 
with small effect and large uncertainty (Fig. 2b). Ignoring 
the effects of fluctuations in mosquito populations, WNV 
R0 was estimated to vary little across years (Fig. 2c). Vari-
ation due to bird communities among ecoregions after 
controlling for temperature explained a small fraction 
of the variation in R0 among regions (Fig. 2d). Our fitted 
GAM predicts that bird communities in the “High Plains” 
and “Oak Woods & Prairies” ecoregions are the least 
favorable for WNV transmission, while bird communities 
in the “Llano Uplift” are the most favorable (Fig. 2d).

To evaluate the fit of our focal model relative to the 
model with latitude and longitude coordinate pairs (aver-
age estimated concurvities of 0.19 and 0.54, respectively), 
we used blocked leave-one-out validation [76] at the level 
of counties. Using this method, RMSE for all estimates 
for our focal model and the model with latitude and lon-
gitude coordinate pairs were 0.07 and 0.08, respectively. 
This suggests that not including the thin plate spline 
across coordinate pairs results in little loss in terms of 
predictive power while also minimizing the possibility of 
over-fitting by reducing concurvity.

Species‑specific contributions to R0
Across the most sampled bird communities, no sin-
gle bird species’ removal accounted for a median fold 
decrease in R0 larger than 0.92 or increase larger than 
1.04. Mourning doves (Zenaida macroura, recorded 
in all bird communities) accounted for the largest dilu-
tion effect (median: 1.04-fold increase in R0, 1.01–1.11 
in 95% of communities), while northern cardinals (Car-
dinalis cardinalis, recorded in 98.7% of the bird com-
munities) accounted for the largest amplification effect 
(median: 0.92-fold decrease in R0, 0.83–0.99 in 95% of 
communities).

Only two species were estimated to have a median 
effect greater than a 1.01-fold increase in R0 [in order 
of median effect: mourning dove; white-winged dove 
(Zenaida asiatica)], and only five species had a median 
effect greater than a 0.99-fold decrease in R0 [in order 
of median effect: northern cardinal; transvolcanic jay 
(Aphelocoma ultramarina); blue jay (Cyanocitta cristata); 
house finch (Carpodacus mexicanus); green jay (Cyano-
corax yncas)] (Fig. 3). Of the 15 most widespread species 
(species that appear in at least 95% of communities), the 
median estimate for five species was of an amplification 
effect. Eight of the fifteen species act as either “diluters” 
or “amplifiers” in at least 95% of communities, albeit 
with varying magnitudes. Of the 15 most abundant spe-
cies (most individuals recorded; recorded in 34–99% of 
communities), the median effect on R0 for five species 
was below a ratio of one. Nine of these 15 species had an 
effect in 95% of communities on one side of a ratio of one.

Using a linear model with log of median bird relative 
abundance as a predictor for species physiological com-
petence, physiological competence was predicted to 
increase with increasing relative abundance (estimate 
= 0.05, SE = 0.02, t = 3.00, P < 0.05). The estimate here 
refers to the increase in the number of infected mosqui-
toes with each unit increase of a bird’s relative abundance 
on the log scale (assuming a single mosquito bite per day 
over the course of a bird’s infectious period, which is gen-
erally assumed in measures of host competence [63]). We 
also found evidence for a negative relationship between 
bird species richness and community R0 using a linear 
model with log of species richness and temperature as 
predictors for median R0 and variation in R0 as weights 
(estimate: − 0.15, SE = 0.01, t = − 10.01, P < 0.05).

Propagation of uncertainty
With no uncertainty propagated, median WNV R0 esti-
mates were on average 1.03 times higher throughout the 
year and 1.06 times higher in the four most favorable 
months for transmission than in a model with all uncer-
tainty propagated. Ignoring uncertainty had a much 

Table 3  Capability of simplified models to estimate WNV R0 
in Texas. Mean absolute error compares R0 estimates from a 
simplified model to the R0 estimates from a full model for all 
2569 of the bird communities in the reduced eBird dataset

a  Temporally averaged bird community: each counties’ bird community is 
replaced with the average bird community in that county across all months
b  Spatially averaged bird community: each counties’ bird community in each 
month is replaced with the average bird community across all of Texas in that 
month
c  Spatially averaged temperature: each counties’ temperature in each month is 
replaced with the average temperature across all of Texas in that month
d  Temporally averaged temperature: each counties’ temperature is replaced 
with the average temperature in that county across all months
e  Mean model: each counties’ bird community and temperature is replaced with 
the average bird community and temperature across all counties and all months

Model Mean absolute 
error in R0 
estimates

Temporally averaged bird communitya 0.07

Spatially averaged bird communityb 0.15

Spatially averaged temperaturec 0.36

Temporally averaged temperatured 0.40

Mean modele 0.63
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larger effect on variation among communities: CV in 
WNV R0 estimates were on average 1.32 times higher 
throughout the year and 1.56 times higher in the four 
most favorable months for transmission. This increase 
in magnitude and variation of the R0 estimates when no 
uncertainty was propagated is caused by the nonlinear 
averaging of variation in mosquito-to-bird transmis-
sion, mosquito survival, bird-to-mosquito transmission 
and bird survival. For example, translating the full dis-
tribution for bird’s titer profile (uncertainty) instead of 
a point estimate (no uncertainty), non-linearly, into the 
probability that a bird transmits infection to a suscepti-
ble mosquito given a bite homogenizes birds’ responses, 
decreasing variation among bird communities. This is a 
manifestation of Jensen’s inequality [98].

Species-specific contributions to R0 also depend 
on whether uncertainty is propagated. While the 
most influential bird species (northern cardinals and 

mourning doves) were robust to choices about uncer-
tainty propagation, the ranks and identities of some of 
the top ten most important amplifier and diluter spe-
cies changed.

Complete eBird dataset
We present results using the complete eBird data set 
in Additional file  2: Figures  S4, S5; Text S5, but suggest 
caution when drawing conclusions from these results 
because many of the estimates were obtained from 
poorly sampled bird communities. Using the complete 
eBird data resulted in greater variation in estimates for all 
outcomes: variation in R0 among communities increased 
(Additional file 2: Figures S4, S5), variation explained in 
the spatio-temporal GAM model decreased, and the esti-
mated impacts of individual bird species on R0 were more 
extreme.

a b

c d

Fig. 2  Spatio-temporal GAM model parameter estimates. Y-axes in panels a–c and the gradient in panel d show the additive effect of centered 
covariates on R0. The gradient in panel d shows variation in R0 among ecoregions explained by variation in bird communities. Dashed lines show 
95% CI
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Discussion
Data limitations
Despite our ability to estimate R0 in individual bird com-
munities, better data, such as mosquito populations on 
the same scale as the bird communities, are needed to 
make reliable quantitative estimates of WNV R0 across 
space and time. Given the size of our estimated effect 
of temperature on WNV transmission and the fact that 
different mosquito species incubate WNV and feed at 
different rates across temperatures [6, 14], variation in 
mosquito density and species composition among ecore-
gions and across seasons are likely the most important 
missing data needed to predict WNV R0 reliably. Our 
WNV R0 predictions for Texas counties relied on esti-
mates of the mosquito-to-bird ratio and mosquito biting 
rate based on sparse data from a different geographical 

region (New Haven, CT, USA) and are assumed to be 
spatially and temporally homogeneous.

Though these simplifications result in an incomplete 
mechanistic model for WNV transmission, our model 
improves on previous models through its extensive use 
of empirical data, phylogenetic imputation to incorpo-
rate all birds within a community and treatment of both 
temperature-dependent mosquito incubation and sur-
vival. Many studies consider spatially (and/or temporally) 
variable mosquito densities, often in differential equa-
tion frameworks [12, 24, 25, 99–101]; however, these and 
other studies commonly ignore the effects of tempera-
ture on mosquito transmission probability. Other models 
consider variation in mosquito populations and temper-
ature-dependent mosquito transmission probability, but 
use only a single class for “birds” and, like our study, a 

Fig. 3  Keystone species. Bird species whose median estimates for their impact on R0 when they are removed from each community they occupy 
are greater than a 1.01 (dilution effect, the two species above the plot break in this figure), or less than a 0.99 (amplification effect, the four species 
below the plot break in this figure) fold change in R0. Intervals show median effects in 95% of the communities that each bird occupies
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single type of mosquito (e.g. generically Culex sp.) [102, 
103] (but see [104, 105] for two notable exceptions).

Importantly, all of these models use a tiny fraction of 
the available data; parameters are often informed by a 
single study and occasionally neglect uncertainty (this 
is most common in differential equation models, e.g. 
[24, 25, 99–101]). While little data and a simplified life-
cycle (e.g. one bird species and temperature-independent 
mosquito-to-bird transmission) may allow models to 
examine, for example, the effects of different interven-
tion strategies on R0 (e.g. [25, 100]), or the impact of sea-
sonality in mosquito density (e.g. [102]) together these 
choices can increase (potentially dramatically) error in 
estimates for R0. Though we do our best to reduce error 
and over-confident estimates by using as much empirical 
data as possible over all aspects of the life-cycle of WNV, 
because we assume a constant mosquito-to-bird ratio 
(which assumes that the relative ratio of mosquito abun-
dance to bird abundance is constant), mosquito biting 
rate and mosquito species composition, our estimates for 
WNV R0 are likely biased upwards in spring and winter 
months and underestimate the true variability in WNV 
R0 across space and time.

The first limitation arises because we assume a con-
stant mosquito-to-bird ratio across months (the value 
we used is based on data collected in June and July 
[45]); we likely overestimated R0 in months with low 
mosquito density and possibly underestimated R0 in 
months with large mosquito populations. This assump-
tion will have the largest influence in spring months 
when we estimated R0 transmission to be high because 
of a favorable temperature. In reality, small mosquito 
populations in these months probably result in lower 
WNV transmission. In the coldest winter months (e.g. 
December through February), our assumption of a con-
stant mosquito-to-bird ratio is unlikely to change our 
estimate of WNV epidemic potential (R0 greater or less 
than one) in most counties because we already estimate 
most counties to have a low R0 because of unfavorable 
temperatures. However, in the warmest communities 
in winter months we estimated R0 to be greater than 
one (Fig.  1), which is unrealistic. Even in the absence 
of any Texas-specific Culex mosquito population data, 
data on mosquito populations across seasons from any-
where in the mid-west USA could potentially be used 
to reduce the number of implausible estimates (though 
it may be difficult to find good data on mosquito-to-
bird ratios). As a first step, in Additional file  2: Figure 
S7 we show R0 estimates across months assuming the 
mosquito-to-bird ratio follows either a sinusoidal func-
tion or Gaussian function, with maxima in July and 
August, respectively. These results show, as expected, 
that strong seasonal variation in mosquito-to-bird ratio 

(with no uncertainty) constrains R0 estimates to resem-
ble the assumed seasonal pattern in the mosquito-to-
bird ratio.

Secondly, because we assume a constant mosquito-to-
bird ratio and mosquito biting rate, our model undoubt-
edly underestimates the true variation in WNV R0 among 
Texas communities. For example, in October for all years 
between 2000–2017 we estimated that 95% of communi-
ties have an R0 between 1.40 and 2.51, with a SD among 
communities of 0.37. If we assume that the mosquito-to-
bird ratio varies randomly across all Texas communities 
with a SD of 0.5, the R0 range spans 1.03 to 3.02 and the 
SD among R0 estimates increases to 0.55. Both mosquito 
population size and species composition are likely to vary 
predictably rather than randomly, such as systematic 
changes along a north to south or coastal to inland gra-
dient (or correlated temperature gradients). Correlated 
spatial variation would cause further bias in our model 
estimates of R0. For example, if the mosquito-to-bird 
ratio is higher in coastal regions than in inland regions 
(mosquito density may be higher in coastal areas but it is 
unclear if, or how much, higher this ratio is), even if our 
assumed ratio of three mosquitoes per bird is an accurate 
representation of the mosquito-to-bird ratio on average, 
our R0 estimates will be too low in coastal regions and 
too high in inland regions. If mosquito species also vary 
in a spatially predictable way, any correlations between 
mosquito species and temperature would spatially bias 
our R0 estimates because of variation in WNV incubation 
rate among mosquito species [6].

Because of these possibilities, our model should not be 
taken as a complete, management-ready tool; the R0 val-
ues presented here should be interpreted with caution. 
With our model as is, more accurate R0 estimates could 
be obtained with higher-resolution mosquito data, which 
may be available for some locations outside of Texas. For 
example, the NEON (National Ecological Observation 
Network [106]) database provides mosquito sampling 
data for many locations across the USA; however, data for 
Texas was only available for two locations, and estimat-
ing mosquito-to-bird ratio from mosquito trapping data 
would require further simplifying assumptions [107]. In 
Europe, mosquito data are abundant in at least Italy and 
Germany (West Nile Disease National Surveillance Plan 
[108]). With these data and some additional data on the 
responses of European birds [38], our model could be 
extended to predict WNV transmission in Europe where 
human and equine cases of WNV are increasing [5, 8–
12]. Alternatively, in the absence of mosquito data for a 
particular region, information on the ecological drivers of 
mosquito populations [109, 110] might be combined with 
data on habitat composition to estimate spatio-temporal, 
multi-species mosquito distributions.
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A more fruitful approach may be to combine our data-
rich analyses of the bird component of the life-cycle of 
WNV with the treatment given to the mosquito branch 
of the life-cycle in recent models such as those of Tran 
et  al. [104], who consider variable host-vector contact 
rates across land cover types and seasons, and/or Marini 
et  al. [12], who estimated WNV infection in an avian 
population in northern Italy with a model that includes 
temporally and spatially variable mosquito populations 
and temperature, as well as the effects of temperature on 
mosquito birth rate and bird-to-mosquito transmission.

Finally, limited spatial and temporal resolution in the 
eBird data was another constraint on our analysis. While 
eBird use is rapidly expanding, it may be worthwhile in 
the short term to incorporate bird abundance data from 
additional data sources such as the Breeding Bird Sur-
vey (BBS) or Christmas Bird Count (CBC), despite their 
more restricted seasonal coverage, or to use joint species 
distribution models to infer local bird community struc-
ture from habitat variables.

Community R0
Though we neglect spatial variation in mosquito-to-bird 
ratio, mosquito biting rate and mosquito species, the 
single values that we used for these parameters result in 
estimates of WNV R0 that are similar to those of previous 
modeling efforts from other regions. For example, most 
of Hartley et  al.’s [111] R0 estimates for California were 
between 1.0 and 1.75, while R0 estimates for New York 
City were 2.0 and 2.8 assuming mosquito-to-bird ratios 
of 2 and 4, respectively [112]. Finally, Wonham et  al. 
[24] estimated that a mosquito-to-bird ratio of greater 
than 4.6 would have been required for the epidemic that 
occurred in New York, USA in 2000 (implying R0 = 1 for 
M/B = 4.6). Using our method, an R0 = 1 is obtained for 
M/B = 2.9 in the median county in July, though a ratio for 
M/B of only 2.0 is needed in the median county in May.

Bird species‑specific contributions to R0
At the level of individual bird species, some of our con-
clusions support the results of previous work, while oth-
ers contradict previous findings. For example, Wonham 
et al. [24] assumed a per capita mosquito biting rate on 
American crows of 0.09 per day (CI: 0.03–0.16), which is 
similar to the biting rate we estimated for crows in our 
bird communities; our baseline biting rate of 0.14 per day 
and a median mosquito biting preference on American 
crows that is ≈ 1.8 times lower than on the average bird 
gives a biting rate of 0.08. Like previous syntheses (e.g. 
[1]), our model shows that species in the family Corvi-
dae (e.g. jays, grackles and crows) are highly competent 
species for WNV. However, our model suggests that no 
single species ever accounts for more than approximately 

30% of WNV R0, which contrasts with the results of 
[20] and [85] who found that more than 50% of infec-
tious mosquitoes were infected by American robins, and 
[86] who found that 96% of mosquitoes were infected by 
either American robins or house sparrows (Passer domes-
ticus). While these studies were conducted over a much 
smaller and almost entirely urban area with low bird 
diversity (90% of most of the bird communities sampled 
were composed of less than six species), the high propor-
tion of mosquitoes infected by American robins which 
were present at a relative abundance between approxi-
mately 5–20% suggests that either: (i) we are missing an 
aspect of the interaction between WNV, mosquitoes and 
American robins; or (ii) our biological model is adequate 
and American robins are simply more important in other 
regions of the country.

To explore these two possibilities, we predicted the 
proportion of all newly infected mosquitoes attributable 
to each bird species in the community from [20] and [85] 
that had the highest proportion of American robins (7.5% 
of the bird community: Foggy Bottom neighborhood of 
Washington D.C, USA). For this community our median 
estimate for the proportion of all mosquitoes infected 
by American robins was 18%; however, uncertainty in 
mosquito biting preferences, bird species physiologi-
cal competence and bird species detectability resulted 
in 95% confidence intervals spanning 3% to 79%. Three 
conclusions arise from the facts that the composition 
of mosquito blood meals observed in the Foggy Bottom 
neighborhood of Washington DC, USA by Kilpatrick 
et  al. [20] is contained within our CI, and that Ameri-
can robins do not show up as one of the most important 
hosts in our communities. First, our model estimates 
are consistent with findings from a very different region 
of the country (albeit with very large uncertainty aris-
ing from propagating the uncertainty across the entire 
life-cycle of WNV). Secondly, regional differences in 
bird communities probably cause the differences in the 
estimated importance of American robins between our 
study and previous studies [85, 86]. Finally, regional and 
seasonal differences in mosquito feeding preferences [85, 
113] probably also play an important role, reinforcing the 
need for more data on mosquitoes.

While estimated species-specific seroprevalence rates 
vary across studies, seroprevalence rates of northern car-
dinals are typically among the highest of all birds meas-
ured (Tammany Parish, LA [114]; Harris County, TX 
[115]; Illinois state-wide [116]; Chicago, IL [58]; Atlanta, 
GA [117]). High seroprevalence in northern cardinals 
suggests they may play a critical role in WNV amplifica-
tion [114, 115], as we find here (Fig. 3). However, ampli-
fication within the bird community may or may not lead 
to higher human infection risk, and researchers disagree 
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about the effect of northern cardinals on human infec-
tion risk [115, 117].

Previous studies have also found high seroprevalence 
for one of our most effective “diluter” species, the doves 
(family Columbidae). Rock pigeons (Columba livia) had 
one of the highest antibody prevalence rates in Geor-
gia, USA between 2000 and 2004 [118], while mourn-
ing doves had the highest antibody prevalence rate in 
Chicago in 2005 and 2006 [58]. Our model shows that 
these species, which are strongly associated with urban 
landscapes and which we estimate to be among the least 
competent species for WNV, could be an important sink 
protecting human populations from disease. While we 
found only a small effect of decreasing R0 with increas-
ing human population density (Fig.  2b), these species 
could potentially drive the result of Nolan et al. [16] that 
WNV per capita risk to humans decreased with increas-
ing human population density.

The dilution effect hypothesis
Studies testing the dilution effect hypothesis for WNV 
have obtained the full range of possible results: human 
cases declined with increasing bird diversity across 742 
counties in 38 US states [28]; the proportion of mosqui-
toes infected with WNV declined with increasing diver-
sity of non-passerine birds in Louisiana, USA [33]; Loss 
et al. [58] failed to detect a clear effect of species richness 
on WNV transmission in Chicago, IL, USA; Levine et al. 
[59] detected an amplification effect (overall seropreva-
lence increased with species diversity in Atlanta, GA, 
USA); in southern France [119] suggest that high bird 
diversity is a likely explanation of low numbers of horse 
infections, while [120] suggest that low number of human 
cases is due to the abundance of horses.

Based on the estimated competence of all 645 species 
found in the reduced eBird dataset and their median 
abundance in 2569 bird communities, host competence 
(the total number of mosquitoes that would be infected 
by an infected bird if it was bitten once each day of its 
infectious period [20, 63]) is positively correlated with 
relative abundance. Additionally, communities with 
higher species richness had a lower estimated R0, which 
is as expected if the most abundant birds are the most 
competent. These results support both a necessary con-
dition (correlation between abundance and competence) 
and a primary expectation (correlation between richness 
and R0) of the dilution effect. However, we do not know 
what bird traits (or unobserved underlying ecological 
covariates) drive these patterns. To put it another way, we 
expect that R0 is proximally determined by the composi-
tion of the community, which is a function of many envi-
ronmental covariates, rather than by species richness per 
se [56].

Understanding spillover
Though we do not model human infections directly, we 
do find variation in WNV R0 among Texas bird commu-
nities that could shed light on patterns of human infec-
tion. According to [16] and [19], per capita infection risk 
is highest in northern Texas counties, with maximum risk 
in Castro, King, and Crosby counties. Two of these coun-
ties reside either entirely (Castro) or partially (Crosby) 
within the “High Plains” ecoregion of Texas, which we 
estimated to have the smallest R0 of all 11 ecoregions 
on average throughout the year. Unfortunately, we can-
not validate these estimates in the absence of widespread 
spatial sampling of infected mosquitoes or birds. How-
ever, this apparent failure of our predictions (we expect 
human infection risk to be positively correlated with the 
R0 of WNV in local bird communities, but have no a pri-
ori expectation for the strength of this correlation) might 
be explained by variations in the degree of WNV spillo-
ver from birds to humans.

Spillover into human populations varies across micro-
habitats, seasons and mosquito communities [16, 28, 33, 
84, 85, 121]. In Atlanta, GA, USA, for example, human 
infection rates are low despite similar mosquito infec-
tion rates and bird seroprevalence to other cities [117]. 
Levine et  al. [117] attributed fewer human infections in 
Atlanta to high rates of infection in northern cardinals 
and blue jays, which they describe as “supersuppressor” 
species because they attract mosquito bites but fail to 
amplify transmission due to low competence. Our results 
(Fig. 3) and Komar et al. [114] suggested in contrast that 
northern cardinals and blue jays are important amplifier 
species (taking into consideration all experimental infec-
tions northern cardinals and blue jays are better defined 
as having moderate competence; their presence increases 
R0 within the bird community). Yet, it is still possible that 
the presence of these species could decrease the number 
of human cases by drawing mosquito bites, and hence 
infections, away from humans. Kilpatrick et al. [85] docu-
mented a related phenomenon, providing correlational 
evidence to suggest that higher numbers of human cases 
of WNV could be attributable to an increased number 
of human bites by Culex mosquitoes following seasonal 
emigration of American robins. Similarly, mosquito feed-
ing on mammals increased in northern California follow-
ing the fledging of ardeids (heron species) [113].

Our results, combined with the variation in previous 
results [16, 28, 33, 84, 114, 117, 121], bring into sharp 
focus how little we really know about the details of 
human infection risk across space and time in this sys-
tem. To predict human infection cases for WNV, and for 
zoonotic diseases with heterogeneous host populations 
more generally, we envision a fine-scale spatial model 
that would use a Who Acquires Infection From Whom 
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(WAIFW) matrix approach [122] and explicitly include 
humans as an additional species in the overall commu-
nity. This framework would calculate the force of infec-
tion between each species pair, and could be used to 
determine the expected number of human cases during 
an epidemic. Interspecific contact rates could be param-
eterized using mosquito biting preferences, natural 
habitat type and land use (urban vs rural) on a very fine 
spatial scale. While eBird data is currently lacking to esti-
mate the interface of bird communities with humans at 
a fine spatial scale for most locations, some counties in 
Texas (and other states) have thousands of complete lists 
submitted in spring and late summer months that could 
serve as model locations for analysis.

It is important to note, however, that recent progress 
has been made predicting human infection risk using 
alternative approaches to the data-driven heterogene-
ous transmission WAIFW approach we advocate. Using 
an ensemble forecasting framework informed by surveil-
lance data of infected mosquitoes and humans, DeFelice 
et  al. [123] produced good estimates for human cases 
of WNV in Long Island, New York despite using a very 
simple epidemiological model and assuming a constant 
mosquito population over outbreaks lasting approxi-
mately 20  weeks. Moon et  al. [124] used an individual-
based framework to predict human cases from California 
to New York in 2015 reasonably accurately despite rely-
ing solely on American robins as a measure of competent 
bird density. These results, while few, suggest that pursu-
ing many different approaches may be the best method to 
improve our ability to estimate human infection.

Propagation of uncertainty
Appropriate uncertainty and point estimates for R0 are 
only obtained when uncertainty in every sub-model 
is considered in calculations of R0. With the currently 
available data, we found large uncertainty in most of 
the models we use in our analysis, which obscures our 
ability to estimate R0 with precision in any individual 
community. While it is poor practice in general to use 
median estimates from models instead of all uncer-
tainty, we examined the qualitative and quantitative 
effects of ignoring uncertainty in order to emphasize 
the importance of propagating uncertainty (and of 
reporting the procedures used). Ignoring uncertainty 
in our analyses would have led us to different quan-
titative and qualitative conclusions. Ignoring varia-
tion in sub-models increased variation in R0 estimates 
among communities for two related reasons. First, large 
uncertainty in birds’ physiological competence and 
mosquito biting preferences makes it more difficult to 
differentiate among birds, obscuring differences among 

communities. Secondly, birds are further homogenized 
due to the effects of Jensen’s inequality, which occurs 
when we transform the distribution of titer estimates 
into the probability that a bird transmits infection to 
a susceptible mosquito given a bite, which is bounded 
between zero and one. Jensen’s inequality also affects 
the estimated effects of temperature because of the 
nonlinear relationship between temperature and mos-
quito-to-bird transmission and mosquito survival, but 
has a larger effect when averaging temperature across 
either space or time (see Fig. 1).

In the absence of uncertainty, most bird species have 
an average titer that results in a bird-to-mosquito 
transmission probability beneath the inflection point of 
the logistic relationship between titer and transmission 
probability. Uncertainty in bird titer results in a non-
negligible proportion of the posterior distribution for 
bird titer that is near or above 108, which corresponds 
to a bird-to-mosquito transmission probability near 
one. This decreases variation in physiological compe-
tence among birds, which further narrows the varia-
tion in estimates among communities. This aspect of 
Jensen’s inequality will increase R0 estimates because 
of an increase in bird-to-mosquito transmission; how-
ever, increased titer will lead to lower bird survival, 
counteracting most, but not all, of this increase in R0 
(60% of median estimates for each community were 
larger when uncertainty was not propagated). Because 
we were unable to estimate variation among species 
in mortality probability as a function of titer (that is, 
species variation in sensitivity to titer), estimated vari-
ation among birds is likely to be lower than true varia-
tion, further homogenizing birds and estimates among 
communities.

WNV transmission in Europe
With additional data on the responses of European 
birds to WNV (e.g. [125–127]) and mosquito biting 
preferences and code modification, our model could 
be used to predict WNV transmission in many coun-
tries in Europe, with best results in those countries 
with abundant mosquito surveillance data (e.g. Ger-
many, Italy [108]). Modeling studies on WNV spread 
in Europe have considered heterogeneities in mosquito 
transmission due to species [105] and temperature [29], 
as well as the effects of land cover and type on WNV 
transmission [119] and human infection risk [12]. How-
ever, like their North American counterparts, none of 
these studies consider full bird communities; our model 
can provide a method for incorporating heterogeneities 
in the bird community into spatio-temporal estimates 
of WNV transmission potential in Europe.
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Conclusions
Despite numerous data limitations at the scale we chose 
for our analyses, WNV remains a promising system for 
continued study on the mechanisms of vector-borne dis-
ease spillover on finer spatial scales. Using handpicked 
locations with sufficient bird community data, mos-
quito sampling and temperature variation, our modeling 
framework can be used as is to predict WNV R0 incor-
porating all known heterogeneities in transmission. With 
slight modifications, our model could be used to mecha-
nistically estimate human infection probability as a func-
tion of bird community composition and other ecological 
predictors. We emphasize that a critical aspect of multi-
faceted ecological analyses, such as modeling human 
infection risk to WNV, is transparency in model assump-
tions, choices and shortcomings; we hope that others 
will use our structure as a template for future analyses in 
order to increase model transparency.
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Additional file 1. Code documentation. Code is available at: https​://githu​
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