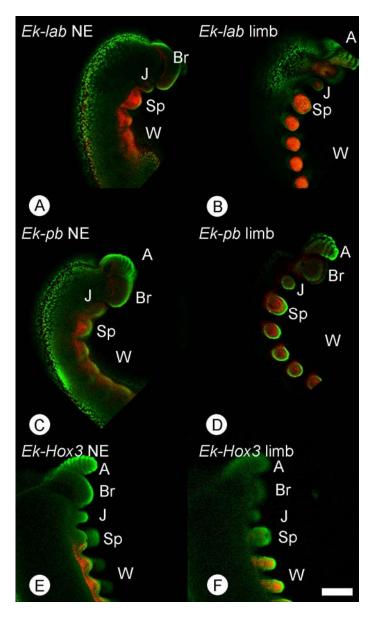
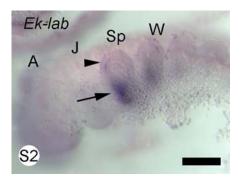
Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem

Bo Joakim Eriksson^{1,4,*}, Noel N. Tait², Graham E. Budd³, Ralf Janssen³, Michael Akam¹ 1. University Museum of Zoology and Department of Zoology, Downing Street, Cambridge, CB2 3EJ, UK

2. Department of Biological Sciences, Macquarie University, Sydney 2109 NSW, Australia

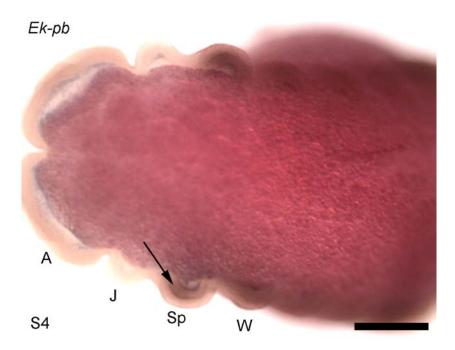

3. Dept Earth Sciences, Paleobiology, Uppsala University, Villavägen 16, Uppsala, SE-752 36, Sweden.

4. Current Address: School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS.


* Corresponding: <u>j.eriksson@qmul.ac.uk</u> peripatus@live.se

Development Genes and evolution, supplementary data

Supplementary figures


S. 1 Optical sections from CLSM showing embryos of *Euperipatoides kanangrensis* at stage V stained for: *lab*, *pb* and *Hox3*. Lateral view, anterior is up. A, Section through the neuroectoderm showing *lab* expression in the mesoderm beneath as well as the basal and apical ectoderm of segments from the slime papilla (Sp) and continuing posteriorly. B, Same embryo as in A with a section through the limbs showing expression of *lab* in the mesoderm as well as basal and apical ectoderm of segments from the slime papilla and continuing posteriorly. C, Section through the neuroectoderm showing expression of *pb* in the mesoderm and basal ectoderm but lacking in the apical ectoderm of segments from the slime papilla and continuing posteriorly. D, Same embryo as in C with a section through the limbs showing expression of *pb* in the mesoderm and basal ectoderm but lacking in the apical ectoderm the slime papilla and continuing posteriorly. D, Same embryo as in C with a section through the neuroectoderm showing expression of *pb* in the mesoderm and basal ectoderm but lacking in the apical ectoderm the slime papilla and continuing posteriorly. F, Same embryo as in C with a section through the neuroectoderm showing expression of *Hox3* in the mesoderm and basal ectoderm of the posterior half of the slime papilla segment and continuing posteriorly. F, Same embryo as in C with a section through the limbs showing expression of *Hox3* in the interior starting with the first walking (W) leg and continuing posteriorly. A = antenna, Br = brain rudiment, J = jaw, scale bar = 500 µm.

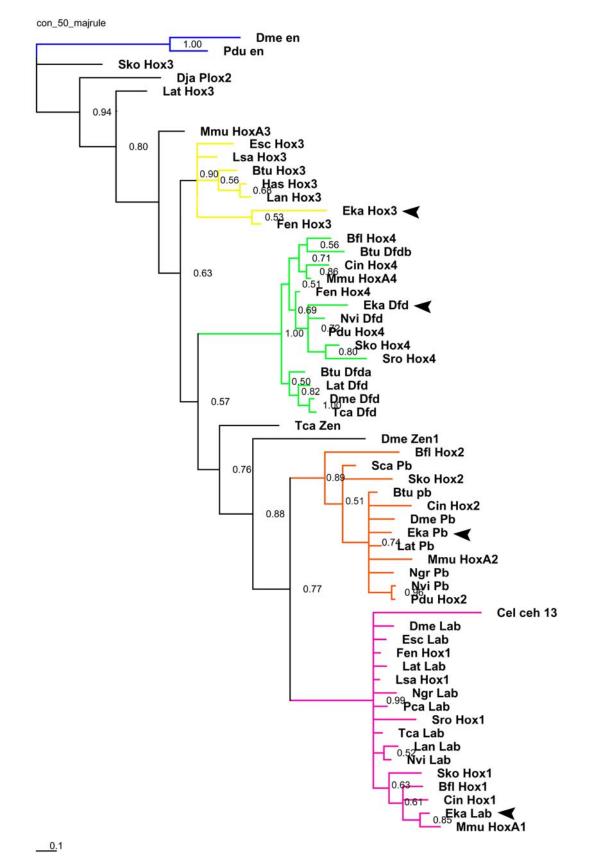
S. 2 The anterior of a whole mount of *Euperipatoides kanangrensis* embryo at stage III stained for the presence of *lab* mRNA. Lateral view, anterior is to the left. Arrow points at the neuroectoderm of the slime papilla segment (Sp) and the arrowhead indicates the expression in the limb. A = antenna, W = walking leg, scale bar = $200 \mu m$.

S. 3 Whole mount of *Euperipatoides kanangrensis* embryo at stage V stained for the presence of *lab* mRNA. Lateral view, anterior is to the left. The mRNA of *lab* can be seen from the slime papilla (Sp) segment and posteriorly to the proctodeum (P). A = antenna, J = jaw, scale bar = 500 μ m.

S. 4 Whole mount of *Euperipatoides kanangrensis* embryo at stage III stained for the presence of *pb* mRNA. Dorsal view, anterior is to the left. The expression has its anterior border in the slime papilla segment (sp) and the arrow indicates its presence in the mesoderm of the limb bud. A = antenna, J = jaw, scale bar = $200 \,\mu$ m.

Chelicerates	Oc	Ch	Pp	L1	L2	L3	L4	Opl	Op2	Op3
labial									1	
pb										
Hox3									_	
Dfd	0		T.	N	16.1	14.2	Maria	1.1	1.0	1.0
Myriapods*	Oc	Ant	Int	Mn	Mx1	Mx2	Mxpd	L1	L2	L3
labial								<u> </u>	<u> </u>	
pb										
Hox3										
Dfd		.6	4					2		
Crustaceans	Oc	Ant1	Ant2	Mn	Mx1	Mx2	T1	T2	T3	T4
labial										
pb		Ĩ.								
Hox3										
Dfd										
Insects	Oc	Ant	Int	Mn	Mx	Lab	T1	T2	T3	A1
labial										
pb										
bicoid*/zen*	1	Anterior b	lastoderm					-		-
Dfd	1	Terry	C.	T 1	1.2	1.2	T.4	1.5	IC	1.7
Onychophora	Ant/Oc	Jaw	Sp	L1	L2	L3	L4	L5	L6	L7
labial pb										
Hox3										
Dfd										

S. 5 Scheme of the expression of the anterior *Hox* genes *lab* (purple), *pb* (orange), *Hox3* (yellow) and *Dfd* (green) in relation to segment borders in different arthropod groups and onychophorans. The anterior expression borders of the four anterior *Hox* genes are conserved between onychophorans and arthropods suggesting that the head segments can be aligned from anterior to posterior, see main text. The star at Myriapods indicates that a more recent investigation in myriapods show a slightly different expression pattern, however, the anterior expression border is the same (Janssen and Damen 2006). The star at bicoid/zen indicates that these genes have gained different functions in insects. For some of the original data on the expression of *Hox* genes and other genes relevant for the question of head segmentation in arthropods see: Abzhanov A, Kaufman T C (1999); Damen et al. (1998); Haas et al. (2001); Hughes and Kaufman (2002); Jager et al. (2006); Kimm and Prpic (2006); Posnien et al. (2009); Rogers and Kaufman (1996); Rogers et al. (2002); Schmidt-Ott and Technau (1992); Schmidt-Ott et al. (1994); Telford and Thomas (1998).


Suplementary material no. 6

The orthology assignment of the anterior Hox genes was based on phylogenetic analysis. The phylogenetic analyses were carried out using amino acid sequences. We compiled a Hox gene alignment including anterior Hox genes of representatives of bilaterians. The species names and their abbreviations used in phylogenetic analysis are provided in Table S 1. Sequences were aligned using the program ClustalX v.2.0.10. First the homeobox region was aligned, and then using the homeobox as anchor, the flanking regions were aligned with subsequent trimming carried out manually. Bayesian likelihood analyses were conducted using MrBayes version 3.1.1 with four simultaneous Markov chains per run and two independent runs per analysis. Chains were run for one million generations with a sampling frequency of 1000 generations and burnin of 1000. The clear classification of the *E. kanangrensis Hox* genes into

their orthology groups is apparent from phylogenetic analyses (S 6). Although our phylogenetic analysis clearly assigns the *E. kanangrensis Hox* genes to their paralog class with high support values, the internal grouping remains unclear.

Abbreviation	Species name	Common name	phylum or class
Bfl	Branchiostoma floridae	amphioxus	Cephalochordata
Btu	Bugula turrita	bryozoan	Bryozoa
Cel	Caenorhabditis elegans	nematode	Nematoda
Cin	Ciona intestinalis	tunicate	Tunicata
Dja	Dugesia japonica	flatworm	Platyhelminthes
Dme	Drosophila melanogaster	fruit fly	Insecta
Esc	Euprymna scolopes	squid	Cephalopoda
Eka	Euperipatoides kanangrensis	velvet worm	Onychophora
Fen	Flaccisagitta enflata	arrow worm	Chaetognatha
Lan	Lingula anatina	brachiopod	Brachiopoda
Lat	Lithobius atkinsoni	centiped	Myriapoda
Lgi	Lottia gigantea	limpet	Gastropoda
Lsa	Lineus sanguineus	ribbon worms	Nemertea
Mmu	Mus musculus	house mouse	Vertebrata
Ngr	Nymphon gracile	sea spider	Pycnogonida
Nvi	Nereis virens	segmented worm	Polychaeta
Pca	Priapulus caudatus	Priapulid	Priapulida
Pdu	Platynereis dumerilii	segmented worms	Polychaeta
Sca	Sacculina carcini	crustacean	Cirripedia
Sko	Saccoglossus kowalevskii]	hemichordate	Hemichordata
Sro	Symsagittifera roscoffensis	flatworm	Acoelomorpha
Tca	Tribolium castaneum	beetle	Insecta

Table S. 1 List of the species used in phylogenetic analysis

Figure S 6 Phylogenetic reconstruction of Hox paralog group 1 (purple), paralog group 2 (orange), and paralog group 3 (yellow), and paralog group 4 (green) relationships. *Engrailed (en)* is used as outgroup (blue). Arrow heads point *E. kanangrensis Hox* sequences.

Supplementary references

- Abzhanov A, Kaufman T C (1999) Homeotic genes and the arthropod head: Expression patterns of the *labial, proboscipedia*, and *Deformed* genes in crustaceans and insects. Proc Natl Acad Sci USA 96:10224-10229
- Haas S M, Brown S J, Beeman R W (2001a) Homeotic evidence for the appendicular origin of the labrum in *Tribolium castaneum*. Dev Genes Evol 211:96-102
- Hughes C L, Kaufman T C (2002) Exploring the myriapod body plan: expression patterns of the ten *Hox* genes in a centipede. Development 129:1225-1228
- Jager M, Murienne J, Clabaut C, Deutsch J, Le Guyader H, Manuel M (2006) Homology of arthropod anterior appendages revealed by *Hox* gene expression in a sea spider. Nature 441:506-508
- Rogers B T, Kaufman T C (1996) Structure of the insect head as revealed by EN protein pattern in developing embryos. Development 122:3419-3432
- Rogers B T, Peterson M D, Kaufman T C (2002) The development and evolution of insect mouthparts as revealed by the expression patterns of gnathocephalic genes. Evol Dev 4:96-110
- Schmidt-Ott U, Technau G M (1992) Expression of *en* and *wg* in the embryonic head and brain of *Drosophila* indicates a refolded band of seven segment remnants. Development 116:111-125
- Schmidt-Ott U, Gonzáles-Gaitán M, Jäckle H, Technau G M (1994) Number, identity, and sequence of the *Drosophila* head segments as revealed by neural elements and their deletion patterns in mutants. Proc Natl Acad Sci USA 91:8363-8367