
Supplement D: Understanding the dependency of eigenvector centralization index (C) on the 

transmission probability (β) in our simulations. 

 

Within networks, the eigenvector centrality of a node is a strong predictor of the probability 

that the individual becomes infected in a given simulation, and of the average outbreak size 

(R∞) when the infection starts in that individual: 

 

 

 

Networks with high C have a greater proportion of nodes with both very high and very low 

centrality scores, as illustrated by Fig. C on the following page. 

 

At low values of β, the vast majority of simulations result in small outbreaks.  For instance, 

the median number of individuals infected in simulations when β = 0.1 is nearly always 1 or 

2.  However, in networks with high C, rare, but larger outbreaks are possible when the 
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The probability of becoming infected (A) and the average size of the outbreak when the infection starts in a 
given node (B) is strongly dependent on eigenvector centrality.  
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infection begins in a highly central node. The result is a positive effect of C on R∞ at low 

values of β.  At high values of β, the majority of simulations result in the infection spreading 

throughout most (and often the entire) network.  However, nodes with very low centrality 

scores (i.e. very isolated nodes) are able to evade infections with a reasonably high 

probability, and when the initial infection begins in very isolated nodes the infection is less 

likely to spread.  The result is a negative effect of C on R∞ at higher values of β. 

 

To summarize, networks with high C exhibit wider variation in centrality scores across their 

individual nodes, including a greater proportion of super-central and super-isolated nodes 

than networks with low C.  Thus, C has a positive effect on R∞ when large outbreaks are rare 

(i.e. low β), because super-central nodes contribute to rare, larger outbreaks. Conversely, C 

has a negative effect on R∞ when large outbreaks are common (i.e. high β), because super-

isolated nodes frequently avoid infection and allow for occasional rapid extinction.   

  

 



We point out that these results fit well with the conclusions of Lloyd-Smith et al. (2005), who 

conclude that the probability of stochastic extinction rises with increasing heterogeneity in 

social ties when the average number of secondary infections for the population, R0, is greater 

than 1. The key insight of Lloyd-Smith et al. is that in reality, there is variation in R0 across 

the population and this heterogeneity can have a dramatic impact on outbreak dynamics. In 

agreement with Lloyd-Smith et al., we also find that at higher values of R0 (which 

corresponds to higher values of β in our models), increased heterogeneity has a negative 

impact on the average success of an infectious disease. However, we add to this that when R0 

is low, increased heterogeneity can actually increase the average success of an infectious 

disease because highly central individuals are able to facilitate occasional larger outbreaks in 

spite of a pathogen having a low β. Lloyd-Smith et al. may not have observed this effect 

because they set a relatively high threshold for a spreading event to be considered an 

“outbreak”, and at lower transmission probabilities this threshold would almost never be 

reached. In contrast, we did not set a threshold for counting spreading events as outbreaks. 

 

• Lloyd-Smith JO, Schreiber SJ, Kopp PE et al. (2005) Superspreading and the effect of 

individual variation on disease emergence. Nature 438(17): 355-359. 

 

 

 


