Electronic supplementary material

Climbing strategy in herbs does not necessarily lead to lower investments into stem biomass

Adam Klimeš ${ }^{1,3^{*}}$, Lada Klimešová ${ }^{2}$, Alena Bartušková3 ${ }^{3}$, Jitka Klimešová ${ }^{1,3}$

1 - Department of Botany, Faculty of Science, Charles University, Praha, Czech Republic

2 - Department of Botany, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic

3 - Department of Functional Ecology, Institute of Botany, Czech Academy of Sciences, Třeboň, Czech Republic
*corresponding author; email: adamklimes3@gmail.com

Table S1: Collected species of herbaceous climbers, their localities and characteristics. $T=$ twining; $S=$ spines or hooks; $E=$ tendrils. Mean annual precipitation and temperature: Straznice $-627 \mathrm{~mm}, 9.3^{\circ} \mathrm{C}$, Klet $-848 \mathrm{~mm}, 7.2^{\circ} \mathrm{C}$, Trebon - 713 mm , $8.0^{\circ} \mathrm{C}$, Edgewater $-1071 \mathrm{~mm}, 13.3^{\circ} \mathrm{C}$

Species	Collection site	GPS coordinates	Date of collection	Number of collected shoots	Climbing mechanism	Perennial/ annual
Bryonia alba L.			18 Sep 2014	4	E	perennial
Fallopia dumetorum (L.) Holub	Strážnice	$\begin{aligned} & 48^{\circ} 53^{\prime} 57.9^{\prime N}, \\ & 17^{\circ} 18^{\prime} 56.0^{\circ "} \end{aligned}$	18 Sep 2014	4	T	annual
Lathyrus pratensis L.	Klet ${ }^{\prime}$	$\begin{aligned} & 48^{\circ} 51^{\prime} 54.9^{\prime \prime N}, \\ & 14^{\circ} 17^{\prime} 01.7^{\prime \prime} \mathrm{E} \\ & \hline \end{aligned}$	21 Jun 2014	3	E	perennial
Calystegia sepium (L.) R. Br.			19 Jun 2011	12	T	perennial
Echinocystis lobata (Michx.) Torr. \& A.Gray			22 Sep 2011	7	E	annual
Galium aparine L .			28 Jun 2011	12	S	annual
Humulus lupulus L .		4900'16.1"N,	27 Sep 2013	3	T	perennial
Vicia cracca L.		$14^{\circ} 46^{\prime} 16.5$ " E	18 Sep 2011	11	E	perennial
Vicia grandiflora Scop.			21 Jun 2014	3	T	annual
Vicia hirsuta (L.) Gray			25 Sep 2011	9	E	annual
Vicia tetrasperma (L.) Schreb.			28 Jun 2011	10	E	annual
Fallopia convolvulus (L.) Á. Löve			4 Sep 2012	4	T	annual
Mikania scandens (L.) Willd.			15 Oct 2012	4	T	perennial
Persicaria perfoliata (L.) H. Gross	Edgewater	$\begin{aligned} & 38^{\circ} 53^{\prime} 15.0^{\prime \prime N}, \\ & 76^{\circ} 33^{\prime} 14.0^{\prime \prime W} \end{aligned}$	7 Sep 2012	4	S	annual
Persicaria sagittata (L.) H. Gross			17 Oct 2012	3	s	annual
Strophostyles helvula (L.) Elliott			17 Sep 2012	4	T	annual

Table S2: List of grassland herbs. Mean annual precipitation and temperature: Straznice - $627 \mathrm{~mm}, 9.3^{\circ} \mathrm{C}$.

Grassland herbs

Achillea collina (Becker ex Rchb.f.) Heimerl Asperula cynanchica L.
Asperula tinctoria L.
Astragalus danicus Retz.
Campanula glomerata L.
Campanula persicifolia L.
Centaurea jacea L.
Centaurea scabiosa L.
Centaurium erythraea Rafn
Chamaecytisus virescens (Kováts ex Neilr.) Dostál
Cirsium pannonicum (L.f.) Link
Clematis recta L.
Dorycnium pentaphyllum Scop.
Euphorbia cyparissias L.
Euphorbia esula L.
Filipendula vulgaris Moench
Galium boreale L.
Galium verum L.
Geranium sanguineum L.
Hypochoeris argentina Cabrera
Inula ensifolia L.
Inula hirta L.
Inula salicina L.
Knautia kitaibelii (Schult.) Borbás
Lathyrus niger (L.) Bernh.

Leontodon hispidus L.
Leucanthemum vulgare (Vaill.) Lam.
Linum catharticum L.
Melampyrum cristatum Hablitz ex Steud.
Peucedanum cervaria (L.) Cusson ex Lapeyr.
Polygala major Jacq.
Potentilla alba L.
Potentilla erecta (L.) Raeusch.
Prunella grandiflora (L.) Scholler
Pulmonaria angustifolia L.
Ranunculus acris L.
Salvia pratensis L.
Scorzonera hispanica L.
Senecio umbrosus Waldst. \& Kit.
Serratula tinctoria L.
Stachys officinalis (L.) Trevis.
Symphytum tuberosum L.
Tanacetum corymbosum (L.) Sch.Bip.
Teucrium chamaedrys L.
Thesium linophyllon L.
Trifolium montanum L.
Trifolium ochroleucon Huds.
Trifolium pratense L.
Veronica austriaca L.
Vincetoxicum hirundinaria Medik.

Table S3: List of megaherbs from Kamchatka Peninsula and the island of Sakhalin. Data on these species were used in the analysis and taken from Morozov and Belaya (1988).

Megaherbs

Aconitum fischeri Rchb.
Aconitum maximum Pall. ex DC. Angelica genuflexa Nutt.
Angelica sachalinensis Maxim.
Angelica ursina (Rupr.) Maxim.
Anthriscus sylvestris (L.) Hoffm.
Aralia cordata Thunb.
Aruncus dioicus (Walter) Fernald
Parasenecio hastatus (L.) H. Koyama
Parasenecio auriculatus (DC.) J. R. Grant
Cardiocrinum cordatum (Thunb.) Makino
Actaea simplex (DC.) Wormsk. ex Prantl
Cirsium kamtschaticum Ledeb. ex DC. Cirsium weyrichii Maxim.
Filipendula camschatica f. glabra Koidz.
Filipendula camschatica f. typica Koidz.
Heracleum lanatum Michx.
Ligularia fischeri (Ledeb.) Turcz.
Pleurospermum uralense Hoffm.
Polygonum weyrichii F. Schmidt
Jacobaea cannabifolia (Less.) E.Wiebe Urtica platyphylla Wedd.
Veratrum grandiflorum (Maxim. ex Miq.) O. Loes. Veratrum oxysepalum Turcz.

Table S4: Means and standard deviations (SD) of length and biomass measures for climbers and self-supporting herbs. In brackets are species numbers for each growth form. Length of Megaherbs was available only for 6 species.

	Annual climbers(10)		Perennial climbers(6)		Megaherbs (24)		Grassland herbs (50)	
Length (cm)	302.052	196.801	318.047	217.609	246.667	44.572	39.353	18.608
Biomass of leaves (g)	5.536	7.163	7.312	7.629	52.504	110.014	5.045	8.216
Biomass of stems (g)	9.990	9.222	8.488	10.054	82.029	109.753	4.019	4.950
Biomass of reproductive organs (g)	12.032	20.233	1.335	2.685	-	-	0.801	0.941

Supplementary Figure 1: Relationship of leaf and reproductive biomass (log) and stem biomass (log) for temperate woody climbers and trees. Relationships fitted using linear model are visualized for mean and max values per species showing nearly identical slopes. Data are from Ichihashi and Tateno (2015).

Supplementary Figure 2: Stem, leaf and reproductive biomass of herbaceous climbers. Empty symbols denote leaf biomass; filled symbols denote leaf plus reproductive biomass. The same species with and without reproductive biomass is connected by black line. Grey dotted line marks slope 1.

Supplementary figure 3: Relationship between stem biomass (log) and remaining aboveground biomass (log) of climbers and self-supporting plants. Lines for herbaceous climbers, megaherbs and grassland herbs are modelled using a phylogenetic generalized least squares model. For megaherbs, data on reproductive biomass is not available, thus only stem biomass is included (identical to Fig. 1). In case of temperate woody plants, we visualized fitted lines from linear regression. For tropical woody plants datapoints are not available. Lines for climbers are dash-and dotted. The grey dotted line marks slope 1.

Supplementary information 1

To compare allocation of herbaceous climbers and self-supporting herbs with their woody counterparts we used published equations about tropical woody climbers and trees. These are:

1) $A G B_{\text {climbers }}=10^{0.07+2.17^{*} \log (D)}$
2) $A G B_{\text {trees }}=0.603 * e^{-1.754+2.665 * \ln (D)}$
3) $L M_{\text {climbers }}=10^{-0.57+0.81^{*} \log (B A)}$
4) $L M_{\text {trees }}=10^{-1.26+0.84^{*} \log (B A)}$
where $A G B$ stands for aboveground biomass, D for stem diameter, $L M$ for leaf biomass and $B A$ for basal area $\left(B A=\pi^{*}(D / 2)^{2}\right)$, log being the decimal logarithm and In being the natural logarithm with base e. Equations 1, 3 and 4 are from Gerwing and Fabias (2000); equation 2 is from Higuchi et al. (1998).

From these equations we estimated relationship between leaf and stem biomass (rest of aboveground biomass - reproductive organs included) separately for trees and woody climbers. This was done by simulation of stem diameter values in reported range of 1 to 16 cm . We simulated 1501 of such values and computed leaf and stem biomass from each of them using abovementioned equations. Intercept and slope were estimated using linear model with this computed stem biomass (as response) and leaf biomass (as predictor). Computed leaf and stem biomass values represented a line (explained variability of the linear model: $R_{\text {climbers }}^{2}=1, R_{\text {trees }}^{2}=0.9996$).

Resulting relationships (Fig. 2):
5) $\operatorname{Ln}\left(S M_{\text {climbers }}\right)=-0.497+1.370 * \operatorname{Ln}\left(L M_{\text {climbers }}\right)$
6) $\operatorname{Ln}\left(S M_{\text {trees }}\right)=-1.991+1.659 * \operatorname{Ln}\left(L M_{\text {climbers }}\right)$
where SM stands for stem biomass, LM for leaf biomass (plus reproductive organs) and Ln for natural logarithm with base e.

