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SUPPLEMENTARY METHODS

Mapping agricultural management: A global dataset of crop-specific nitrogen,
phosphate, and potash fertilizer application rates and consumption

To develop our crop-specific dataset of nitrogenous, phosphate, and potash fertilizer
application for 138 crops and pasture, we used a spatial disaggregation method building
on the work of Potter et al.! to fuse both national and, where available, sub-national
data from a variety of sources (Table S2).

Data collection

We collected national and sub-national data on fertilizer application rates for crops and
crop groupings. A major source of data was the fifth edition of “Fertilizer Use by Crop”
(hereafter referred to as the FUBCS dataset), a joint publication from the International
Fertilizer Industry Association (IFA), the International Fertilizer Development Center
(IFDC), the International Potash Institute (IPI), the Phosphate and Potash Institute (PPI),
and the Food and Agriculture Organization of the United Nations (FAO)% The publication
contains national-level application rate data by crop for 42 countries, compiled from the
following data sources: FAO questionnaires given to member countries; IFA
guestionnaires given to industry companies, research institutes, and fertilizer
associations; IFDC questionnaires sent to experts attending courses, seminars, and
professional meetings; and IPI and PPl communications with experts. Most of the
application rate data from the FUBC5 dataset are for the years 1999 or 2000, but data
for some countries are as old as 1994 and as recent as 2001.

To expand spatial and sub-national data coverage, we also collected data from national
statistical bureaus, FAO reports, and national-level fertilizer industry associations (see
later sections for more description on how these datasets were compiled and
harmonized). Following Monfreda et al.?, we established a 7-year data collection
window centered on the year 2000 (1997-2003). We calculated averages for countries
when data for multiple years was available within this window. When countries did not
have data available within our desired timeframe (as was the case for some countries in
the FUBCS5 dataset), we used data from the year closest to our data collection window.
For some countries, the only fertilizer information available was FAO nutrient
consumption data*, which we collected for all countries available. Data sources are
listed in Table S2. Sub-national data was all provided at the state/province-level, except
for the US AAPFCO data®, which we aggregated from the county-level to the state-level
for consistency. The countries for which we compiled sub-national data represent 45%,
50%, and 55% of total global N, P,0s, and K,O consumption, respectively (FAO nutrient
consumption from 1997-2003, 10).

We next identified “data gaps” for each crop category: countries where we had crop
areas but no fertilizer application rate data in our database. As fertilizer use is highly
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correlated to income-level®, we chose to use an income-based extrapolation technique
to fill these data gaps. Countries were grouped into four economic aggregates based on
the World Bank ’ income classifications: low income, lower middle income, upper
middle income, and high income (both OECD and non-OECD countries). For each crop,
we calculated area-weighted average fertilizer application rates for each economic
aggregate. We then identified the economic group of each country missing application
rate data and filled gaps using the average application rates. The poorer data quality of
extrapolated rates was noted accordingly in a data quality map corresponding to each
crop.

For some crops, we lacked observational data on application rates from any country
within a particular economic group. In these cases we calculated the area-weighted
average application rate across the entire globe and utilized this rate to extrapolate to
areas missing data. While clearly not ideal, having an application rate value for each
crop, even if it is of low quality, allows us to scale the application rates to match total
FAO nutrient consumption in a country. This allows us to gain a first-order
approximation of the true application rate.

We collected fertilizer data (from either a crop-specific or crop-group-specific
application rate) for 138 crops and pasture. No tabular fertilizer information in any
country was available for some minor crops for which we did have harvested area data
(the M3 crop area dataset contains data for 175 crops)®. We disregarded these crops in
our dataset and assumed negligible fertilizer consumption.

Mapping of application rate information

As with previous studies, our approach matches spatial data on agricultural land use
with tabular application rate data for particular crops or crop groups. Potter et al.*
linked cropland or crop-group maps from the M3 croplands dataset ® and the M3
pasture dataset® to each national-level application rate data entry in the FUBC5 dataset.
We used and revised the Potter et al. linkages, especially focusing on which Monfreda et
al. (2) datasets were used for crop groupings. For example, in Morocco, Potter et al.
distributed FUBCS5 application rate data for the category “oil crops, other” onto the
Monfreda et al. crop map for “oilseeds, other”. Since the only oil crop with its own
application rate data listed in the IFA/FAO/IFDC report is sunflower, we chose instead to
distribute the fertilizer application rates for the “oil crops, other” category onto all the
Monfreda et al. oil crop maps except sunflower (this includes not only the “oilseeds,
other” category, but also soybeans, sesame seed, safflower seed, etc.). The same
method was applied to identify constituent crops for all crop groups.

In most cases, national and sub-national fertilizer application rates from our data (Table
S2) were first directly applied to the appropriate crop maps. We modified the raw
application rates at this step in three cases: 1) if a data source indicated that only a
percentage of a particular cropland area was fertilized, 2) if the fertilized pasture area in
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a country was less than the pasture area for that country from the M3 pasture dataset,
and 3) if we had data for seasonal varieties of barley and wheat. Below are the
adjustments made for these three special cases:

1. Consistent with the Potter et al." methodology, when only a percentage of a
cropland area was fertilized we adjusted application rates downward by the
same percentage. For example, the FUBC5 dataset indicates that 85% of
Mexico’s avocadoes are fertilized at an average rate of 120 kg N/ha, so we
applied an application rate of 102 kg N/ha to all of Mexico’s avocado area.

2. Similar to case 1), in many cases only a percentage of pastureland in a country
was fertilized. While this percentage was not explicit in the FUBC5 dataset, we
calculated this number by comparing the FUBCS5 fertilized pasture area with the
total M3 pasture areas within each country®. For areas where the M3 pasture
areas were greater than FUBC5 pasture areas, we reduced application rates by
the proportion of FUBC5 pasture area to M3 pasture area (i.e. if FUBCS listed half
the pasture area contained in the M3 dataset, we reduced the FUBC5 pasture
application rates by half).

3. For seasonal varieties of wheat and barley, we calculated average “wheat” and
“barley” application rates, weighting the FUBC5 seasonal crop application rates
by the FUBC5 seasonal areas.

Harmonize with FAO consumption dataset

To harmonize our dataset with 1997-2003 FAO national nutrient consumption data (10),
we first calculated initial estimates for global consumption of N, P,0s, and K,0 by
multiplying our crop application rate maps by M3 crop areas. We differentiated
between “trusted crops” — crops for which we have sub-national or national-level
application rate information — and “untrusted crops” — crops for which application rates
were derived through the aforementioned extrapolation procedure. In most cases we
trusted the application rates from our trusted crops, and thus we only scaled untrusted
crop application rates up or down to match average FAO total national nutrient
consumption (note that the same scalar was applied to all untrusted crops). Two special
cases led us to have less trust in our “trusted crop” consumption and we altered our
scaling procedure:

1. When the scaling correction for untrusted crops required more than a doubling
of those application rates within a country, we chose to scale the application
rates of all crops to meet FAO consumption levels. In a few small countries, we
also capped the scalar for all crops at a doubling of application rates. In these
cases our data were not reconciling either due to underreporting of cropland
area, crops missing from our dataset, or errors with either the application rate
data or the FAO consumption data.

2. When the total fertilizer consumption summed over trusted crops alone already
exceeded or nearly exceeded (>95%) the FAO consumption within a country, we
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adjusted the scaling procedure by scaling the application rates of all crops to
match the FAO consumption. Again, this is another case where our multiple
datasets were not reconciling due to one of the above possible complications.

No FAO consumption data was available for Gibraltar, Liechtenstein, Western Sahara,
and 37 small island countries and territories. For these locations, consumption was
recorded as “not a number”. Application rate data remained un-scaled and was noted
accordingly in the data quality map.

Enhance sub-national resolution

Sub-national consumption and aggregate application rate data, when available, was
used to add spatial resolution to our national application rate data. Consumption data
came in three main forms: 1) total nutrient consumption in each sub-national unit, 2)
fertilizer consumption by type (i.e. “nitrogenous” or “compound”) in each sub-national
unit, and 3) average nutrient application rates (across all crops) in each sub-national unit.
We multiplied average application rates by the number of potentially fertilized hectares
(as defined by the sum of the crop proxy and pasture maps) to obtain nutrient
consumption in each sub-national unit. Then, for all countries except the US, we
harmonized the sum of the sub-national consumption data for each nutrient (including
compound fertilizers when available) by scaling it to match the FAO national
consumption data. In the US, sub-national consumption data was already listed in units
of N, P,Os, and K,0, but it could not be compared to FAO consumption because the data
did not have national coverage. Due to this complication, we used the US sub-national
consumption data directly without calibration to FAO.

Next, we added up consumption according to our application rate and area maps in
each sub-national unit. Application rates for all crops, except those for which we had
sub-national application rate data, were scaled so that the sum of all consumption in the
sub-national unit matched the sub-national consumption data. Scalars were allowed to
vary +25%, since we observed that variation from the median rate commonly varied
+25% in countries where we had sub-national data. Sub-national application rates were
not scaled using the sub-national consumption data.

The sub-national scaling cap of +25% can slightly affect consistency with the FAO
consumption dataset. Thus, for countries where we calculated and used sub-national
consumption scalars, we once again scale all application rates — except those originally
from sub-national data sources — to match FAO consumption data.

Record data quality
The quality of application rate data varies substantially across the globe due to the

availability of input data. For example, an application rate may come directly from
unaltered sub-national data, it could be a national-level application rate scaled by sub-
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national consumption data, an extrapolated rate from similar-income countries
normalized to FAO consumption, etc. Thus, we recorded data quality in a data type map
for each nutrient and crop combination that details the quality of the input data and the
manipulations made (if any) to record or estimate fertilizer application rate at every
location where that crop is cultivated. Data type is indicated in each map through a
unique numerical code.

Calculating climate bins and yield gaps

To calculate attainable yields (AYs) and yield gaps for our 17 major crops (wheat, rice,
maize, soybean, barley, sorghum, millet, cotton, rapeseed, groundnut, sunflower,
sugarcane, potato, cassava, oil palm, rye, and sugar beet), we build on recently
developed climate analog techniques™°. Crop and climate data used in these analyses
are all at the 5 arc-minute by 5 arc-minute resolution.

We calculate unique climate bins for each crop by establishing 100 zones of similar
annual precipitation and growing degree-day (GDD) characteristics, where each of the
100 zones contains equal harvested area (see section “Comparison to previous yield gap
analyses” for a discussion about using annual precipitation as the moisture variable). We
use interpolated mean daily temperatures from the WorldClim dataset™ and crop-
specific base temperatures from Licker et al. ° to derive growing degree-days using
methods described by Licker et al.’. Mean annual precipitation (P) is directly derived
from the WorldClim dataset.

Using these two variables, we discard grid cells that are climate outliers by defining a
compact contour in precipitation-GDD space containing 95% of a crop’s harvested area
(crop area and yield data is from Monfreda et al.)*. This contour is derived in several
steps. First, we define a 2-dimensional histogram of harvested area in a precipitation-
GDD space with 300x300 bins. A smoothed distribution is then constructed by
convolution of the 2-D histogram with a Gaussian distribution G, defined in Eqn. S1,
where the smoothing lengths Lp and Lgpp are chosen as 1/10" of the span of the crop-
specific domain of precipitation and GDD values, respectively. N equals the
normalization constant.

<_P_2_GDD2>
G(GDD,P) = Ne\ ¢ L¢pp (Egn. S1)

A contour is defined which includes 95% of the smoothed area distribution. If this step
results in multiple contours, the smoothing convolution is recomputed with the
smoothing lengths Lp and Lgpp 10% larger. This convolution is recalculated with
progressively larger smoothing lengths until a single contour is found that contains 95%
of the crop’s harvested area. This contour represents a climatic envelope in which we
feel comfortable calculating attainable yields from our dataset. Attainable yields and
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intensification potential are only calculated for the grid cells characterized by climates
within this climate envelope.

Once a contour is identified, we identify 10 zones along the GDD axis that each contain
10% of the remaining harvested area. Within each GDD zone, we divide the area into 10
equal-harvested-area precipitation bins. Continuing this method in each GDD zone
results in 100 crop-specific equal-area bins with similar GDD and annual precipitation
characteristics (Fig. S8).

Within each of the 100 bins, we analyze the yield distributions to determine AYs. We
first temporarily discard the smallest-area grid cells (for a total of 5% of the bin area), in
order to remove potential outliers from the yield dataset. An “attainable yield” is then
defined as the area-weighted 95t percentile observed yield within a climate bin.
Intensification potential (Fig. 1, Fig. 2) and average yields (online supplement) are
defined as closing yield gaps in the worst performing regions up to different levels (50%,
75%, 90%, and 100%) of AYs.

Analyzing drivers of yield gaps

To analyze drivers of yield gaps, we used a nonlinear least-squares algorithm to fit input-
response models to yield distributions within each climate bin for every crop.

Explanatory variables

Nitrogen, phosphate, and potash fertilizer application rates used as inputs for the
models are directly from the fertilizer dataset developed in this study.

We calculate the maximum proportion of crop growing area irrigated in each grid cell in
order to establish the spatial extent of irrigation technology and infrastructure for each
crop (this variable is listed as IRR in the equations below and mapped for major cereals
in Fig. 3b). We utilize the MIRCA2000 dataset*? for this calculation, which contains
monthly rainfed and irrigated areas for our crops of interest. We restrict our search for
maximum irrigated proportion to months for which the reported crop growing area is at
least 75% of the maximum in order to exclude anomalous growing conditions (e.g. a
small area of a particular crop may be cultivated beyond of the normal growing season
and be 100% irrigated, but this would not reflect the extent of irrigation capacity within
the main growing season when only 50% of the area is irrigated).

Model functional form
While debate exists about the ideal functional form for input-yield models, there is

general agreement in limited substitutability between inputs and a yield plateau at high
inputs. To calculate our empirically derived crop yield models, we use a nonlinear least-
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squares algorithm (trust region reflective) to fit input-response models to yield
distributions within each climate bin. We utilize a standard functional form
(Mitscherlich-Baule, Egn. S2) for yield response to nutrient (nitrogen, phosphate, and
potash) application rates'***. We follow the von Liebig “law of the minimum”*? to assess
the combined effects of inputs. Thus, grid cell crop-specific yield (Ynodsc) is modeled as
in Egn. S2 for 100% rainfed grid cells, where Y4 is the maximum vyield possible within
the climate bin; byp and by describe the y-intercepts for each nutrient-yield response
curve (the potash y-intercept is unique from the other nutrients as described in the
parameters section below); cy, cp, and cx are response coefficients that describe the
percent of Y, achieved at a given nutrient level; Ng¢, Pso, and Ksc are kg/ha of N, P,0s,
and K,O fertilizer applied to the grid cell.

Ymax(1 — bype "NNGO), Yoo (1 = bype~ePPa0)),

Egn. S2
Ymax(l — bKe(_CKKGC)) > (Eq )

Yimodce = mln(

When grid cells contain a mixture of rainfed and irrigated areas, rainfed yields may be
limited by nutrient application (as in Egn. S2) or a climate-specific rainfed yield
maximum (Ymaxre). When grid cell nutrient application rates exceed those required to
achieve the rainfed yield maximum, we assume nutrients in excess of those required to
achieve the rainfed yield maximum are applied preferentially to irrigated areas. For
example, nitrogen requirements for the rainfed yield maximum (Neq4rf) are calculated as
in Egn. S3 and nitrogen application rates for irrigated lands are calculated as in Eqn. S4.
Similar calculations are done for phosphate and potash.

NreqRF — —In (1—(YmaxRF/Ymax))/CN (Eqn. 53)

bnp

Ngc—(Nreqrr(1-IRR))
IRR

NIRR = (Eqn.s4)

Irrigated modeled yield is determined using the nutrient response curves and the
nutrient application rates for irrigated area (Eqn. S5). Grid-cell modeled yield is then a
simple weighted average of the maximum rainfed yield and the modeled yield on
irrigated land (Eqgn. S6).

Ymax(l — bNPe(—CNNIRR)), Ymax(l _ pre(_CPP’RR)),

Egn. S5
Ymax(l — bKe(_CKKIRR)) > (Eq )

Yimodairr = rn1n<

Ymoace = ((1 = IRR)Yyaxrr) + (IRR Yioairr)  (EGN. S6)

Parameters
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We define Yax as the o8t percentile yield within a climate bin and bys (which defines
the y-intercept for the nitrogen and phosphorus curves) is calculated using the 2"
percentile yield within a climate bin. We do not use the maximum and minimum within
each bin due to observed outliers within the dataset. The decision to define the y-
intercept and yield maxima using climate bin yield information keeps the models
grounded in the empirical data, reduces the dimensionality of the nonlinear fitting
routine, and provides an a priori default model when the input-yield relationships lack
explanatory power within some climate bins for some crops.

The parameters by, Ymaxrr, Cn, Cp, and ck are defined by the nonlinear regression. We
allow by to float in order to reflect the higher soil availability of potash relative to
nitrogen and phosphorus. The parameter describing the rainfed maximum yield (Ymaxgr)
is not fixed, since this value is climate-specific. Nitrogen, phosphate, and potash
response coefficients (cy, cp, and ck) are constrained to be within 5x of the global
response coefficient for a particular crop.

When inclusion of a particular input in the combined equation doesn’t contribute to
minimizing error in the residuals, that input is removed as an explanatory variable and
we do not calculate a bin-specific response to that input. For example, although there
may be a small amount of irrigation within a high-precipitation bin, irrigation may not
influence yields within this climate and thus we throw out Y,,.xrF as an explanatory
variable (in this case yields are modeled solely as a function of nutrients as in Egn. S2).

Model evaluation
Sensitivity to soil quality and slope

Soil quality and slope can impact yields at the field scale®®. While currently available
global soils data has many limitations'®*’, we analyzed whether our yield models and
yield gap estimates were sensitive to the influence of soil organic carbon (SOC) from the
ISRIC-WISE database'® (aggregated among within-grid-cell soil types according to
method C in Batjes et al.®) and the workability soil quality indicator (as a proxy for soil
texture) from the FAO-IIASA Harmonized World Soil Database™®. Workability categories
are defined as 1) no or slight constraints, 2) moderate constraints, 3) severe constraints,
4) very severe constraints, 5) mainly non-soil, and 6) permafrost area. We also examined
sensitivity to slope constraints as quantified by FAO-IIASA™. Slope categories are
defined as 1) no constraints, 2) very few constraints, 3) few constraints, 4) partly with
constraints, 5) frequent severe constraints, and 6) very frequent severe constraints, and
7) unsuitable for agriculture.

We first examined raw correlation between climate-normalized global yield gaps and

the additional variables (e.g. Fig. S2abc). SOC displayed surprisingly little correlation to
percent of attainable yield achieved. R-squared statistics for the correlations were <
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0.01 for all crops except for the weak positive correlations of oil palm, maize, and
soybean (r’ = 0.04, 0.02, and 0.03, respectively). Workability correlations were generally
weak and directionally inconsistent, with the strongest relationships for soybean (a
negative relationship with r? = 0.08) and sugarbeet (a positive relationship with r* =
0.06). Slope correlations were generally stronger than the other variables examined,
although they remained directionally inconsistent between crops. Maize and soybean
had the strongest negative relationships (r* = 0.13 and 0.09, respectively) between
percent of attainable yield achieved and slope, while oil palm had the strongest positive
association (r’ = 0.07).

The yield gap correlations above may be misleading when SOC, workability, or slope are
also correlated with management practices. Thus, we constructed added variable plots
(e.g. Fig. S2def) to assess the unique explanatory power of the additional variables when
controlling for both climate and management. Each additional variable was regressed
onto the modeled yields, and the residuals from these regressions were used as
explanatory variables to explain the residuals from the yield model described by Eqns.
S2-S6. The added variable plots show little unique yield variability explained by SOC,
workability, and slope. No r-squared statistics > 0.01 were observed for the SOC added
variable plots. All added variable plots for workability showed r-squared statistics < 0.02,
with the exception of the negative relationship for sunflower (r* = 0.03). All added
variable plots for slope showed r-squared statistics < 0.02, with the exception of the
negative relationships for barley, sunflower, maize, and soybean (r2 =0.03, 0.03, 0.05,
and 0.04, respectively). Added variable plot results suggest that slope may be the most
important of the additional variables considered, and we highlight slope as a potentially
important topic for future work. However, given the inconsistency in the impact (and
direction) of slope on yield for different crops, as well as its relatively weak explanatory
power when accounting for management practices, we chose not to incorporate slope
into our analysis.

Given the agronomic knowledge about the importance of SOC, workability, and slope at
the field scale, it is surprising we did not see greater sensitivity to these variables. One
possible reason for lack of sensitivity is the quality of the global soils data, which is
known to need improvement™®’. Another possible explanation is the landscape scale of
this analysis. Variability of growing conditions can impact yields within a single field, and
the aggregation that occurs with landscape-level yield and soil/slope statistics may
remove much of the yield signal. Moreover, farm management practices also heavily
influence soil characteristics, and this variability is not captured in the global soils data.
An updated soils dataset utilizing the state-of-the-art data’’ could enable better
guantification of the role of soils in determining both observed and attainable yields.

Cross-validation

Model prediction error was assessed using 5-fold cross-validation. For maize, wheat,
and rice, we divided unique census-unit yield observations within each climate bin into
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five 20% (by area) samples. For each sample, yields were predicted using model
coefficients calibrated using the four other samples. This technique allows us to test
how well the model performs on independent validation samples.

Cross-validation modeled yields (predicted yields for all five samples using the cross-
validation technique) were compared with full-sample modeled yields (model output
generated when all the data is used to calibrate the coefficients). Across all three crops,
cross-validation modeled yields had ~0.1 t/ha higher root mean squared error (RMSE)
than the full-sample modeled yields (full-sample modeled yield RMSE was 1.38, 0.83,
0.94 t/ha for maize, wheat, and rice, respectively, compared to cross-validation
modeled yield RMSE of 1.47, 0.91, and 1.05 t/ha). Cross-validation modeled yield r-
squared statistics were 0.76, 0.68, and 0.68 for maize, wheat, and rice, respectively,
compared to full-sample modeled yield r-squared statistics of 0.79, 0.74, and 0.74.
These results suggest that the modeling approach is robust and is not overly dependent
upon the data utilized to calibrate the model.

Analyzing yield-limiting factors and input tradeoffs

Utilizing the crop- and climate-specific input-yield models, we are able to assess input
requirements for achieving a given yield. We apply these tools to assess input
requirements for current yields (to determine possible decreases in input use) and input
requirements for various scenarios of closing yield gaps (to determine possible increases
in input use).

Assessing possible input reductions

Possible input reductions are calculated by estimating necessary input application given
yield limitation by other inputs. First, yields are modeled using the suite of input-yield
models for maize, wheat, and rice. For each crop, we then assessed the nitrogen,
phosphate, potash, and irrigation levels necessary to achieve current modeled yields. On
each grid cell, one of the aforementioned inputs will be limiting, and the others will be
more or less in balance with that limiting nutrient. We calculate “required” nutrients as
the amount of other inputs needed when all inputs are in balance. This approach
explicitly examines nutrient imbalances, but implicitly also examines inefficiencies in use
of particular inputs. For example, we may quantify possible nitrogen reductions in a
given area; this overuse of nitrogen may be a function of imbalanced nutrient supply
and/or a function of widespread inefficiencies in nitrogen application and uptake.

Input increases to close yield gaps
To assess input increases to close yield gaps, we first identify grid cells where we

guantify yield gaps at a given level (i.e. 50% of attainable yields or 75% of attainable
yields) using our empirical crop yield data. In climate bins where we do not have an
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irrigation response parameterized (i.e. including a value for Y ,ur did not aid in
minimizing regression residuals), we can simply assess input requirements to close yield
gaps using Eqn. S3. In climate bins with an irrigation response, closing yield gaps may be
achieved through a combination of nutrient and irrigation changes to the cropland
within these grid cells (e.g. Fig. S5). We explicitly explore the complexities of this
multidimensional yield response surface by considering only changes to nutrient
application (1), only changes to irrigated area (2), or joint changes to nutrient
application and irrigated area (3).

1. To assess whether yield gaps could be closed with nutrient-only intervention, we
first fixed irrigation levels to those observed in the MIRCA2000 dataset. We then
calculated areas where yield gaps could be closed with increasing nutrients
utilizing the models of yield response to nutrients given a certain level of
irrigation (Eqns. S3-S6). Given the asymptotic nature of the yield response to
nutrients, some grid cells are modeled as able to close the yield gap but utilize
unrealistic nutrient application rates. To account for this issue, we calculate the
95t percentile of globally observed N, P,0s, and K,0 application rates for the
crop of interest. We only categorize grid cells as able to close yield gaps with
nutrients only when projected nutrient requirements are within these 95t
percentile application rate limits.

2. To assess whether solely increasing irrigated area could close yield gaps, we
again utilize our models of yield response to nutrients and irrigation (Egns. S3-
S6). Fixing nutrient application, we solve for the irrigation levels needed to close
yield gaps. Grid cells are classified as able to close yield gaps with irrigation only
when irrigated proportion needed to achieve the desired yield level is <1.

3. To project input changes under joint irrigation and nutrient intervention, we
calculate the nitrogen by irrigated area (Nxl) response surface for each climate
bin as in Fig. S5. Given limitation by other inputs, we first determine the
“effective” nitrogen fertilization rate. Using the effective nitrogen fertilization
rate and the current irrigated area proportion, we determine the current
placement of the grid cell on the NxI yield response surface. We calculate the
contour on the NxI surface corresponding to our desired yield level (50% or 75%
of attainable yields) and normalize the nitrogen axis to a 0-1 scale using the 95t
percentile of crop-specific nitrogen application. We then determine the
minimum-distance change in nitrogen and irrigation to meet this contour.
Phosphate and potash requirements for the desired yield are then calculated
with the new irrigated area proportion.

For the above analyses, a special case arose when we lacked a climate bin-specific
response for a particular nutrient input. Such a situation arises when the inclusion of
that nutrient in the combined model did not contribute to minimizing error in the
residuals, and thus was dropped as an explanatory variable. In these cases, we estimate
the input-yield curve using the bin-specific yield maximum (Y,«) and the average
response coefficient of interest (cy, cp, Or ck) across all the bins in which we had
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parameterized that response coefficient. Likewise, the y-intercept for the potash curve
(defined by bk as the proportion of Y, achievable with no additional potash inputs) is
estimated using the average by across all bins where the response is parameterized.

Yield-limiting factors

We categorically assess yield-limiting factors (Figs. 3, S3-S4) by comparing current input
use against projected required inputs needed to close yield gaps (when both nutrients
and irrigated area are allowed to change). Grid cells are categorized having achieved the
target yield when either the observed yields * or the modeled yields exceed the target
yield.

SUPPLEMENTARY DISCUSSION
Comparison to previous yield gap analyses

Climate bins used in this analysis are defined by empirical growing degree-day and
annual precipitation data. Previous yield gap analyses used a modeled water stress or
aridity index (actual / potential evapotranspiration) as a moisture variable®°. To
remove model dependence, we examined several crop-relevant empirical moisture
variables in preliminary analyses: an empirical aridity index (precipitation /
Thornthwaite potential evapotranspiration), annual precipitation, or precipitation
during the growing season. The different moisture variables had little effect on the
magnitude or spatial patterns of yield gaps. Given the lack of sensitivity, we chose to
utilize annual precipitation in our analysis in order to utilize the simplest possible metric.

In addition, we utilized a climate contour technique to identify climate outliers, equal-
area binning, and a more restrictive definition of similar climates than climate bins used
in previous analyses™°. These methodological details prevent us from attempting to
calculate AYs in anomalous climates and ensure an adequate sample size of grid cells
within each climate bin. The more restrictive definition of similar climate generally
results in slightly more conservative estimates of potential production, but allows us to
capture a greater amount of yield variation due to climate for many crops (Table S3).

Limitations of the analyses

The fertilizer dataset, yield gap estimates, and yield models presented here are not
without limitations, which we discuss below.

Our crop-specific, sub-national fertilizer application rates provide a more detailed and

comprehensive picture of global nutrient use than previously assembled data™?*??, yet
we still encountered considerable data limitations in many lower- and middle-income
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countries. Furthermore, data from multiple sources did not always reconcile and we
were forced to make a number of judgments on how best to integrate the data sources.
In some case, our ability to reconcile the different datasets differed by nutrient, with
more anomalies arising for phosphate and potash than nitrogen. For example, in the US,
our initial estimates of nitrogen consumption (using the crop-specific application rates)
aligned quite well with FAO nitrogen consumption, and we only needed to scale
application rates for “untrusted” crops. For phosphate and potash in the US, our
consumption estimates from the crop-specific data did not closely align with the FAO
consumption data and we were forced to scale all the crop application rates downward
a considerable amount. Improved underlying data is needed to reconcile these
disagreements.

Attainable yield and yield gap estimates are quantified using census-derived observed
yield data from Monfreda et al.®, and AYs are identified from locations elsewhere on the
globe with similar annual climate characteristics. As such, AYs are conservative
estimates of landscape-scale achievable yields circa the year 2000 and not estimates of
physiologically achievable potential yields (for a thorough discussion of yield potential
guantification, see Lobell et a/.)zz. However, as noted in the main text, our AY
calculations are likely more realistic than biophysical potential yields for defining
intensification potential on regional and global scales. Yet a drawback of this technique
is that we may underestimate AYs if no high-performing regions fall within a climate
analog. For example, in certain climates we may not observe any truly high-performing
areas, and thus we may be underestimating yields attainable under more intensive
management regimes (e.g. we observe relatively small yield gaps in the Sahel for
sorghum and millet due to a lack of high-performing grid cells elsewhere within those
climate bins, although we speculate that it is unlikely these areas have truly small yield
gaps). Yield gap and attainable yield quantification could be improved in further studies
by attempting to include the effects of intra- and inter-annual climate variability. We
also note that observed yields can be affected by farmer choice in multi-cropping
systems. Further efforts should be made to analyze the magnitude of this effect on AY
and yield gap calculations.

The yield models developed in this study describe observed patterns of agricultural
productivity® for most major crops (Table S1), but are dependent upon input data of
varying quality and scale. The models usefully characterize global patterns of input-use
efficiency, but obscure fine-scale details about input-yield relationships and impacts of
precision techniques. Yield models generally perform well for input-dependent crops
grown in areas where data is likely more reliable, but do not perform as well for some
tropical crops due to factors including a lack of high-performing climate analogs, poor
data quality, or missing information about important management practices for these
crops. Despite these limitations, we believe conclusions from the models can diagnose
broad-scale trends across landscapes and regions. Moreover, the models provide a
useful framework for further large-scale, quantitative analysis of agricultural
management and crop production.
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We lacked data to assess management practices other than fertilizers and irrigation in
the analysis, although many of these practices may positively co-vary with our
explanatory variables. Among the important practices to consider as high-quality data
becomes available are the following: crop-specific manure application rates (particularly
important in tropical settings)?, distribution of advanced seed, drainage and water
management, plant population, prevalence of agro-ecological techniques for improving
soil health and nutrient recycling, common crop rotations and impacts on growing
season length, advanced precision management techniques, and crop protection
through chemical or agro-ecological means. Estimates of yield-limiting factors, nutrient
imbalances, and inputs to close yield gaps could change as additional management
practices, particularly organic nutrient inputs, are considered.

This analysis uses a cross-sectional approach with spatial data circa the year 2000 to
assess opportunities for intensification, but detailed analysis of temporal yield,
attainable yield, and harvest efficiency data are also needed to understand
intensification pathways. Beyond yields, the harvest efficiency of cropland has changed
over time *; additional work must assess the opportunities and environmental tradeoffs

for increasing cropping intensity and decreasing pre- and post-harvest crop losses.
24-43

WWW.NATURE.COM/NATURE | 14



doi:10.1038/nature11420 RT3 (W SUPPLEMENTARY INFORMATION

SUPPLEMENTARY FIGURES AND LEGENDS

Figure S1: Global (a) nitrogen, (b) phosphate, and (c) potash consumption from fertilizer
application as mapped using our crop-specific and, where available, sub-national
dataset.
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Figure S2. Wheat sensitivity analysis for (a,d) soil organic carbon, (b,e) soil workability
category, and (c,f) slope category. Plots (a,b,c) show the raw correlation between yield
gap (defined as the percent of attainable yield achieved) and the additional variables,
while the added variable plots (d,e,f) show variation explained by these variables when
controlling for management and climate. For (b,c), width of the boxplot is proportional
to the area contained within each category, illustrating that most wheat area is grown in
areas without substantial workability or slope constraints.
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Figure S3: Management factors limiting yield gap closure to 75% of attainable yields for
(a) barley, (b) sugar beet, and (c) oil palm. Median management models for these crops
had the largest explanatory power (Table S1) across our 17 crops.
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Figure S4: Management factors limiting yield gap closure to 50% of attainable yields for

(a) maize, (b) wheat, and (c) rice.
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Figure S5: Example modeled yield surface response to increasing irrigated area
proportion in a grid cell and nitrogen fertilizer application rate (kg/ha). Response is

shown for maize climate bin 32 (GDD base 8°C = 1974 to 2321, precipitation =573 to
648 mm/yr).
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Figure S6: Model results indicate decreases in (a) nitrogen and (b) phosphate application
rates are possible without affecting yields for maize, wheat, and rice.
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Figure S7. Projected changes in (a) phosphate application rates and (b) potash
application rates necessary to close maize, wheat, and rice yield gaps to 75% of
attainable yields, and (c,d) projected net changes when eliminating input imbalances
and inefficiencies.
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Figure S8: Crop-specific climate bin maps for (a) maize, (b) wheat, and (c) rice.
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SUPPLEMENTARY TABLES
median within- median global rmse
crop bin rmse (t/ha)  within-bin r’ (t/ha) global i
wheat 0.80 0.51 0.83 0.74
rice 0.93 0.33 0.94 0.74
maize 1.27 0.47 1.38 0.79
soybean 0.39 0.29 0.38 0.69
barley 0.56 0.66 0.59 0.83
sorghum 0.49 0.08 0.56 0.81
millet 0.37 0.07 0.30 0.56
cotton 0.45 0.25 0.48 0.80
rapeseed 0.33 0.14 0.34 0.79
groundnut 0.43 0.16 0.45 0.82
sunflower 0.34 0.33 0.32 0.66
sugarcane 14.04 0.33 16.47 0.43
potato 4.88 0.49 5.57 0.67
cassava 4.53 0.21 3.58 0.39
oil palm 2.09 0.85 2.21 0.91
rye 0.80 0.22 0.90 0.57
sugar beet 7.43 0.68 8.05 0.81

Table S1. Root mean squared error (RMSE) and r-squared statistics for the median
(defined by r-squared) within-climate bin management model and the combined suite of
100 climate bin-specific models. R-squared statistics for within-bin models measure
within-bin yield variance explained by the management model, whereas the global r-
squared statistics measure the global yield variance explained by the suite of models.
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data source spatial coverage data type years

FAO" 194 countries national-level consumption 1997-2003

IFA/IFDC/IPI/PPI/FAO2 88 countries and national-level application rates by crop 1994-2001

Taiwan

Australian Bureau of Australia sub-national consumption 2000-2002

Statistics™" *°

FAO™® Brazil sub-national application rates by crop; 2002
average sub-national application rates

FAO” Bulgaria national-level application rates by crop 1998

Statistics Canada”® Canada sub-national consumption 2000

National Bureau of Statistics  China sub-national consumption 1997-2002

of China”

FAO> Cuba national-level application rates by crop 1997-2002

UNIFA® France average sub-national application rates 1997-2003

Statistisches Bundesamt, Germany sub-national consumption 2005-2006

BMELV>

FAO® India sub-national application rates by crop 2003-2004

India Department of India sub-national consumption 2001-2002

Agriculture and Cooperation,

Agricultural Census Division®*

FAO® Iran sub-national consumption 2005

ISTAT>® Italy sub-national consumption 2002

FAO” Korea, DPR national-level application rates by crop 1998-2000

Statistics New Zealand™® New Zealand sub-national consumption 2007

National Fertilizer Pakistan sub-national consumption 1997-2003

Development Centre®

FAO™ Poland sub-national application rates by crop; 2003
average sub-national application rates

Ministerio de Agricultura, Spain sub-national consumption 2005

Pescay Alimantacion™

Turkish Statistical Institute™ Turkey sub-national consumption 1999-2001

AAPFCO® USA sub-national consumption for select 2001-2002
states

USDA ERS™® USA sub-national application rates by crop for  1997-2003

select states

Table S2. Fertilizer data sources, data type, and spatial and temporal coverage.
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A global potential r’ - Licker et al. & Johnston  r* - Mueller et al.
crop production et al. climate bins climate bins
wheat -8% 0.36 0.41
rice -4% 0.58 0.59
maize -3% 0.58 0.60
soybean -2% 0.54 0.56
barley -11% 0.37 0.49
sorghum 1% 0.67 0.67
millet -5% 0.45 0.43
cotton -6% 0.57 0.60
rapeseed -5% 0.58 0.64
groundnut 2% 0.70 0.69
sunflower -7% 0.39 0.41
sugarcane -4% 0.20 0.20
potato -15% 0.17 0.25
cassava -1% 0.19 0.18
oil palm 0% 0.57 0.48
rye -8% 0.24 0.33
sugar beet -9% 0.26 0.42

Table S3. Due to methodological differences, estimates of potential production
increases are slightly more conservative than those in previous analyses. Differences
between the climate bins used in this analysis (“Mueller”) and the climate bins used by
Licker et al. ° and Johnston et al. *° (“Licker”) are analyzed by comparing the differences
in global potential production with AYs (using 95t percentile yields within a climate bin,
[Mueller potential production - Licker potential production] / Licker potential
production) and the amount of global yield variation explained by the climate bins
(calculated using an r-squared where the “modeled” yields are the area-weighted
average yields within a climate bin). These calculations only include grid cells shared
between both analyses, meaning that the grid cells cannot be defined as climate outliers
according to the Mueller climate contour method and they must be in a Licker climate
bin containing at least five grid cells.
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