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1 CMIP5 model data

The Coupled Model Intercomparison Project Phase 5 (CMIP5) coordinates a large num-

ber of modelling experiments designed for the assessment of climate change1. The anthro-

pogenic climate forcing (ACF) accounted for in CMIP5 includes changes in atmospheric

concentration of long-lived — greenhouse — gases, short-lived gases and aerosols, as well

as changes in land-use. In this study, we analyze transient fully-forced simulations of the

historical period (1960–2005) and of the 21st century (2006–2099) following the Repre-

sentative Concentration Pathway 8.5 (RCP8.5). RCP8.5 represents the most pessimistic

socioeconomic/climate policy scenario currently assessed in CMIP52. It prevails no miti-

gation efforts in the use of fossil fuels and an underlying radiative forcing of around 8.5 W

m−2 in 2100 with respect to preindustral conditions. In the same period, the multi-model

projections show an increase in global temperature of ∼ 4.5 ± 1.5◦C.

We use a single pair of runs (historical and RCP8.5) from 36 GCMs participating in

CMIP5 (Table S1). The model data analyzed include monthly precipitation and sea-

level pressure (pSL) fields. Vertically integrated moisture fluxes were also computed (see

Methods’ section in main text) for a subset of models for which three-dimensional fields

of wind and specific humidity were available at the time of this study (all GCMs assessed

excepting bcc-csm1-1, bcc-csm1-1-m, EC-EARTH, FGOALS-s2 and HadGEM2-AO).

2 Precipitation data sets: uncertainties and histori-

cal rainfall trends in Amazonia

Four data sets of land precipitation were used in this study: the Global Precipitation

Climatology Center Full Re-Analysis Version 6 (GPCC; ref. 3), the NOAA/CPC Monthly

Global Precipitation Reconstruction over Land (PREC/L, ref. 4), the Climate Research

Unit Time-Series (TS) Version 3.21 Precipitation (CRU, ref. 5) and the University of
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Delaware Terrestrial Precipitation Version 3.02 (UDEL, ref. 6). All of them are widely

used global products based on long-term gauge observations, available in grids of 0.5◦ or

coarser resolution, at monthly time steps and, for the versions used, updated up to 2010 or

2012. In the GPCC case, we extended the data set until 2012 with the GPCC Monitoring

Product Version 4. A preliminary evaluation of both GPCC products indicated almost

no precipitation biases between them across Amazonia during the overlapping period

(2007–2010).

The four products differ in the input database, and in the filtering and gridding tech-

nique applied. GPCC is probably the most reliable long-term (prior to 1980) and gridded

precipitation data set based on surface observations, because of the large number of sta-

tions analyzed, the strict quality controls and the evaluation/update frequency. However,

given the scarcity of historical precipitation observations across Amazonia, we favoured a

multi-product approach to account for the observational uncertainties. There are, indeed,

important differences between the products within the domain of study (Fig. S1). Beside

some biases in western Amazonia, there is a general agreement in the climatological mean

rainfall values. Yet, clear differences are observed in the month-to-month covariability,

with typical error values (RMSE) above 2 mm d−1 in many regions within the Amazon

basin. Using GPCC as a reference, the strongest errors are found in the CRU data set,

notably in western areas of the basin that show RMSE values up to 4 mm d−1.

The Amazonian precipitation (PA) uncertainties can be seen more clearly when the slow

variations and trends are compared across the products (Fig. S2). There is a general

agreement in the basin-wide mean PA interannual variability, but differences are manifest

in decadal variations (Fig. S2a). All the products indicate a relative wet period during

the 1970s and a positive trend since the mid-1990s. CRU shows a particular dry period

in the 1980s and a strong wet trend since then.

The linear trends indicate a similar seasonal pattern between the four data sets, but the

amplitudes are largely product-dependent. As shown in Fig. 2b (replotted in Fig. S2b),

the trends of PA computed between 1960 and 2010 show positive values during the wet
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season (December-February) and a drying signal in late dry season (July to November).

The end-of-dry-season PA decline and a concomitant dry-season lengthening is systematic

over different periods, but the amplitude of this trend is particularly large since the 1970s

(Fig. S2c) and 1980s (Fig. S2d). In contrast, the wet trend in January-June is a more

recent behaviour.

The 1980–2010 PA trends reveal important discrepancies between the data sets. In, e.g.,

February or May, the trends show a range between the products exceeding 3 mm d−1

per century (Fig. S2d). A particularly large rainfall increase is derived from CRU in

the first part of the year. Given these differences, we also look at the evolution of the

River Amazon discharge (RD) observed since the late 1960s at Óbidos7. We note that the

Amazon basin domain used in this study is larger than the catchment area and associated

streamflow measured at Óbidos, which does not include the Rio Tapajs and Rio Xingu

catchments, nor other regions on the eastern margin of Brazilian Amazonia. However,

most precipitation across the domain of study drains through the sub-basins flowing past

the Óbidos station. The annual RD at this station shows, indeed, a fairly good correlation

with the basin-wide mean PA time-series obtained with the products (Fig. 2a).

Considering the lag of around one season that the runoff from the various Amazon sub-

basins takes to reach Óbidos8 (see inset in Fig. S2c), the seasonal pattern of the Amazon

RD trends matches fairly well the general picture shown by the precipitation data. Co-

herent with the end-of-dry-season precipitation decline, negative RD trends are observed

at the end of the year in both periods 1970–2010 (Figs. S2c) and 1980–2010 (Figs.

S2d). As previously reported9, the most recent period indicates a pronounced positive

RD trend during most of the year, also in agreement with the positive PA trend observed

in January-June.

These results indicate that despite some clear discrepancies between the precipitation

products in Amazonia, robust historical variations in the Amazonian hydrology can be

inferred from them. As discussed in the main text, the seasonality of the long-term

(1960–2010) PA trends show a general agreement with the modelled trends during the
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same period and across the 21st century (Fig. 2 in main text). However, given the large

variability in tropical South America and the observational uncertainties in this region, to

distinguish transient — human-induced — changes in the South American Monsoon from

its natural variations is clearly not a simple task. A proper detection and attribution of

the current hydrological trends in Amazonia remain, hence, a challenge.

3 Amazonian precipitation and large-scale circula-

tion relationship

The main result presented in this study is based on PA projections that combine simulated

(GCM) and observational data. The approach we follow relies on the major influence the

circulation changes have on the precipitation variability. Among other factors, we consider

that the GCM PA projections depend on mesoscale rainfall (Amazonia) sensitivities to

changes in large-scale motion — a feature we try to constrain using observational data

(see Fig. 1b in main text).

The covariability between pSL over different regions of the globe and PA evidences those

model-specific sensitivities. The interannual correlation between pSL and PA (basin-

wide mean), computed with an observational data set and with two CMIP5 GCMs, is

illustrated in Fig. S3. In January, the first case indicates positive and negative values over

the East and West Pacific Ocean, respectively (Fig. S3a). The atmospheric signature of

El Niño–Southern Oscillation (ENSO) can be recognized on this pattern, reflecting the

major influence that ENSO exerts on the tropical South American precipitation during

the wet season (see ref. 10 and references therein). The corresponding correlation map

derived with CanESM2 indicates a similar behavior (ENSO-like) in January, but the

modeled link between PA and this global phenomena is strongest than the one obtained

with the observational products. In contrast, the MPI-ESM-MR correlation map does

not show such a relation nor a clear pattern across the Pacific Ocean. The signals of
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covariability between PA and pSL are weaker in July compared to those in January, and

there is no clear consistency between the GCMs assessed and the observations. The

moderate negative correlation between PA and pSL over the tropical Atlantic is likely the

most systematic signal across GCMs, the observations and seasons.

The GCM-based correlation maps shown in Fig. S3 illustrate how different the modeled

relationship between PA and the large-scale circulation could be. These two models were

chosen as examples because the associated empirical PA models (described next) show

the largest (CanESM2) and weaker (MPI-ESM-MR) capacity to reproduce the simulated

PA (Fig. S7). We note that this capacity does not necessarily indicate that the PA regime

simulated by a given GCM is closer to the real word, but just a stronger influence of the

large-scale pSL on PA.

Amazonian precipitation models computation and eval-

uation

The methodology followed both to derive the constrained PA projections and to evaluate

this approach is summarized in Fig. S4. We make use of regression models of PA cali-

brated with four observational data sets of precipitation (described in Section 1) and one

of pSL (based on HadSLP2; see methods’ section in main text), which is used to derive

a number of explanatory variables. To obtain the diagnostic ensemble of PA projections,

these models are then forced with the pSL simulated by the CMIP5 GCMs from 1960 to

2099.

As we note in the main text, a number of different processes that could influence the

present-day and long-term PA variability are not considered here. Hence, we do not have

an a priori confidence that the simple empirical precipitation models calibrated with

historical data are capable of predicting the 21st century evolution of PA. To evaluate

this, we computed another set of models based on the historical PA and pSL data simulated
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by each CMIP5 GCM (Fig. S4). The future PA changes simulated by the CMIP5 GCMs

are considered as different ‘realities’ against which we can test our simple models. An

important assumption should be noted here: this evaluation considers that if the method

works for these different GCMs, then it should also work for the real word.

A first step in the method includes the statistical decomposition of PA. The spatio-

temporal rainfall variability across the Amazon basin is represented by the leading 10

modes resulting from a standard Empirical Orthogonal Function (EOF) analysis. The

first concern of using EOF is whether the leading modes of precipitation describing the

historical variability (1960–2012) are able to well represent the future patterns of change

in response to ACF. To evaluate this, we first projected for each GCM the rainfall fields

simulated from 1960 and 2099 onto the corresponding EOFs computed from 1960 to 2012.

The resultant long-term (1960–2099) Principal Components (PCs) associated with the

10 leading modes are then used to reconstruct the PA fields for the whole period. Fig.

S5 illustrates the PA changes between the ends of the 20th and 21st centuries (∆PA)

simulated by the GCMs and those obtained with the EOF-projected (reconstructed)

fields. On average across the GCMs, the spatial and seasonal patterns of change are

well-captured by the reconstructions. The basin-wide mean annual PA from 1960 to 2099

that resulted from them is also plotted separately for each GCM in Fig. S6 (red lines),

indicating almost no difference with the simulated time-series (black lines).

Given that the modes characterizing the historical precipitation variability in Amazonia

also serve to describe the future projections, we use the PC time-series as predictands in

the regression computations. This approach is more efficient than performing multiple

analyses on the precipitation data of single grid-cells, and ensures a spatial consistency

on the reconstructed precipitation fields.

Excepting the analysis based on the UDEL precipitation product (which is updated

until 2010), all the observations and GCM-based regression models were calibrated with

the 53-years period spanning from 1960 to 2012. As is briefly described in the main

methods section, the analyses were performed for each month separately, but including
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neighbouring months each time. Hence, the model calibration accounts for interannual

and part of the seasonal variability. A stepwise multilinear regression was adopted to

select a subset of potential predictors of large-scale circulation, which correspond to

normalized anomalies of pSL averaged in a global grid of 20◦ latitude-longitude. An

automatic procedure adds and removes terms (single grid-cell pSL anomalies) in the model

until a criterion of statistical significance is satisfied (a p-value threshold of 0.05). The

final model obtained avoids overfitting maintaining high predictive performance, but

depends on an initial set of predictors. We therefore randomly select a set of initial

conditions to perform an ensemble of 50 different models. The mean response from each

ensemble was finally used both for the method evaluation and to derive the constrained

PA projections. Preliminary tests indicate no significant differences in the ensemble mean

response including a larger number of realizations.

Considering the relative simplicity of the empirical models constructed, they show a fairly

good capacity to reproduce the observed and simulated PA. The statistical predictions

explain most of the interannual variability (Fig. S7a) and trends (Fig. S7b) of PA during

the historical (calibrating) period. The fraction of PA variance explained by the models

derived with observations is similar — higher in some cases — than that shown by the

GCM-based models (Fig. S7a). This is somewhat surprising considering that, unlike the

GCMs that are internally consistent, the precipitation and pSL data sets adopted are

independent and, as described above, prone to a number of uncertainties.

Of further interest regarding the purpose of this study is the empirical models’ skill

to predict the future evolution of PA. The sign of the annual ∆PA simulated by the

GCMs is in most cases predicted by the corresponding (GCM-based) empirical model

(Fig. S7c). The statistically predicted time-series of annual basin-wide mean PA are

also illustrated for each GCM in Fig. S6. The simulated PA (black curves in Fig. S6)

are plotted along with the ones resulted from the corresponding regression model (grey).

The interannual variations and long-term PA changes are well-predicted in most GCMs,

with some remarkable cases such as ACCESS1-3, bcc-csm1-1-m, FGOALS-g2, GFDL-
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CM3, GFDL-ESM2G or the three IPSL model versions. For some GCMs, however, the

predicted change of PA at the end of the 21st century does not match the simulated one.

This is particularly the case for the CMCC GCMs and for FIO-ESM. The seasonal details

of the ensemble-mean GCM projections are also well-reproduced by empirical models, as

is shown for the basin-wide averages in Fig. 2f (main text). The regional patterns of

the predicted ∆PA are generally well-predicted, although the rainfall reduction in the

northeast part of the basin is slightly underestimated in SON (Fig. S5c).
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Table S 1: List of climate models participating in CMIP5 used in this study

Institution
Model acronym
(ref. number)

Commonwealth Scientific and Industrial Research
Organization (CSIRO) and Bureau of Meteorology (BOM),
Australia.

ACCESS1-0 (1),
ACCESS1-3 (2)

Beijing Climate Center (BCC), China Meteorological
Administration, China.

bcc-csm1-1 (3),
bcc-csm1-1-m (4)

College of Global Change and Earth System Science, Beijing
Normal University (BNU), China.

BNU-ESM (5)

Canadian Centre for Climate Modelling and Analysis
(CCCMA), Canada.

CanESM2 (6)

National Center for Atmospheric Research (NCAR), USA. CCSM4 (7)
Community Earth System Model Contributors
(NSF-DOE-NCAR), USA.

CESM1-BGC (8),
CESM1-CAM5 (9)

Centro Euro-Mediterraneo per I Cambiamenti Climatici
(CMCC), Italia.

CMCC-CESM (10),
CMCC-CM (11),
CMCC-CMS (12)

Centre National de Recherches Météorologiques / Centre
Européen de Recherche et Formation Avancée en Calcul
Scientifique (CNRM-CERFACS), France.

CNRM-CM5-2 (13)

Commonwealth Scientific and Industrial Research
Organization in collaboration with Queensland Climate
Change Centre of Excellence (CSIRO-QCCCE), Australia.

CSIRO-Mk3-6-0 (14)

EC-EARTH consortium. EC-EARTH (15)
LASG, Institute of Atmospheric Physics, Chinese Academy
of Sciences and CESS, Tsinghua University, China.

FGOALS-g2 (16)

LASG, Institute of Atmospheric Physics, Chinese Academy
of Sciences, China.

FGOALS-s2 (17)

The First Institute of Oceanography (FIO), SOA, China. FIO-ESM (18)

NOAA Geophysical Fluid Dynamics Laboratory (GFDL),
USA.

GFDL-CM3 (19),
GFDL-ESM2G (20),
GFDL-ESM2M (21)

NASA Goddard Institute for Space Studies (GISS), USA.
GISS-E2-H (22),
GISS-E2-R (23)

Met Office Hadley Centre (MOHC), UK.
HadGEM2-AO (24),
HadGEM2-ES (25)

Institute for Numerical Mathematics (INM), Russia. Inmcm4 (26)

Institut Pierre-Simon Laplace (IPSL), France.
IPSL-CM5A-LR (27),
IPSL-CM5A-MR (28),
IPSL-CM5B-LR (29)

Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute (The University of
Tokyo), and National Institute for Environmental Studies
(MIROC), Japan.

MIROC5 (30),
MIROC-ESM (31)

Max-Planck-Institut fr Meteorologie (MPI-M), Germany.
MPI-ESM-LR (32),
MPI-ESM-MR (33)

Meteorological Research Institute (MRI), Japan. MRI-CGCM3 (34)

Norwegian Climate Centre (NCC), Norway.
NorESM1-M (35),
NorESM1-ME (36)
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Figure S1: Precipitation data sets comparison. a, Climatological mean (1960–2010)
annual precipitation from GPCC. b, Annual mean precipitation bias computed for the
various products of precipitation assessed with respect to GPCC. c, Root-mean-square
error (RMSE) computed between the monthly time-series (1960–2010) of the various
precipitation products and GPCC.
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Figure S2: Amazon basin precipitation and River discharge trends. a, Annual
mean precipitation in Amazonia (PA, basin-wide mean) obtained with the four products
used in this study (see legend). Grey envelope indicates the yearly rainfall range between
the products. Thin-red curve shows the annual River Amazon discharge observed at
Óbidos (OBI-RD). Thicks lines indicate the individual time-series of PA (black) and
OBI-RD (red) smoothed with a 5-year running mean filter. c–d, Linear trends of PA

and of OBI-RD deduced from the various data sets for different periods: 1960–2010 (b),
1970–2010 (c) and 1980–2010 (d). Inset in panel c illustrates the seasonal cycle delay of
OBI-RD (red) with respect to PA (black).
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Figure S3: Amazonian precipitation and global sea-level pressure covariabil-
ity. Correlation coefficient computed at interannual time-scales (1960–2010) between
precipitation in Amazonia (basin-wide mean) and sea-level pressure (pSL) at different
locations of the globe. Maps show the analysis for January (a–c) and July (d–f) com-
puted with an observational data set (GPCC for precipitation and HadSLP2 for pSL) (a,
d), with CanESM2 (b, e), and with MPI-ESM-MR (c, f). Plus marks indicate the grid
(20◦ latitude-longitude) used for pSL in the present analysis and used further to set the
explanatory variables in the regression models computation.

Observations 

P, pSL 
(1960-2012)

GCMs 
pSL 

(1960-2099)

PA (pSL) 
(Obs-based models)

PA (pSL) 
(GCM-based models)

GCMs 
P, pSL 

(1960-2012)

Predicted PA 
(constr. projections)

Predicted PA 
(evaluation)

large-scale 
forcing

Figure S4: Method summary. Flowchart of the procedure followed both to derive
the constrained Amazonian precipitation (PA) projections and to evaluate this approach.
Precipitation (P) and sea-level pressure (pSL) input data (boxes) from observational prod-
ucts and GCMs are used to calibrate (solid arrows) or to force (dashed arrows) regression
PA models.
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Figure S5: Long-term precipitation changes. Seasonal and ensemble mean precip-
itation difference between the ends of 20th (1960–1999) and 21st (2060–2099) centuries
simulated with the CMIP5 GCMs (a), reconstructed with the leading 10 EOFs (b) and
statistically predicted with GCM-based regression models (c).
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Figure S6: Simulated, reconstructed and predicted precipitation in Amazonia.
Annual precipitation, averaged across the Amazon basin, simulated by 36 CMIP5 GCMs
(black line), reconstructed with the leading 10 principal components (red) and statistically
predicted (grey) from 1960 to 2099. All time series are smoothed with an 11-yr running
mean filter. Grey area indicates the period used to calibrate the empirical precipitation
models.
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Figure S7: Empirical models evaluation. a, Simulated (GCM) annual precipitation
in Amazonia (PA, basin-wide mean) vs. predicted PA (GCM-based regression model)
coefficient of determination (R2) computed from 1960 to 2010 (light-gray boxes). Black
and red boxes (error bars) indicate, respectively, the mean R2 (range) obtained with the
GCM-based and with the observation-based models. b, Scatter plot between the basin-
wide mean annual PA trends (1960–2010) predicted and simulated. Numbers indicate
the various GCMs assessed (see panel a). Black and red circles show the average trends
resulted from the GCMs and the observations, respectively. c, As in (b) but for pre-
cipitation change between the ends of the 21st (2060–2099) and the 20th (1960–1999)
centuries.
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