
© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

SUPPLEMENTARY INFORMATION
DOI: 10.1038/NCLIMATE3108

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange 1

Supplementary Information1

Critical Slowing Down Indicates Tropical Forest Fragility2

Jan Verbesselt1, Nikolaus Umlauf2, Marina Hirota3,4, Milena Holmgren5 , Egbert H. Van Nes5,3

Martin Herold1, Achim Zeileis2 and Marten Scheffer4
4

5

6

November 16, 20157

1Laboratory of Geo-Information Science and Remote Sensing, Wageningen University, 6708 PB, Wageningen, The Netherlands8
2Department of Statistics, Faculty of Economics and Statistics, Universität Innsbruck, Universitätsstr. 15, 6020 Innsbruck, Austria9
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1 Data sets and sampling strategy13

1.1 Optical and microwave satellite data14

Optical MODIS Normalized Difference Vegetation Index (NDVI) is derived from the bidirec-15

tional reflectance distribution function (BRDF) adjusted reflectance measurements (MCD43C416

version 5, 2000–2011, 5.6km). The reflectance product MCD43C4 provides reflectance data ad-17

justed using a BRDF to model the values as if they were taken from nadir view to account for18

potential artefacts introduced by varying sun-sensor geometry1. Both Terra and Aqua MODIS19

sensor data are used in the generation of this product, providing the highest probability for qual-20

ity input data and designating it as an MCD, meaning Combined, product. Fill values and mea-21

surements with a low BRDF inversion quality (50% of more fill values) are excluded from the22

analysis. The effect of excluding measurements with low BRDF inversion quality (e.g., 50% of23

more fill values) on the results has been studied (results not shown) and did not influence the24

effect of MAP and TAC (see Section 4). The 8-day BRDF corrected NDVI values are aggregated25

to monthly mean NDVI values to facilitate comparison with other data sets and reduce noise due26

to BRDF and cloud effects2, 3.27

The MODIS NDVI data, despite the corrections and temporal compositing, still contains28

residual invalid measurements (e.g., cloud effects). The quality flags are used to remove all29

invalid observations and also derive the percentage of invalid measurements per pixel through30

the whole time span as a summary of cloud and atmospheric effects. We include the maximum31

number of consecutive and percentage of invalid measurements in our modeling approach to32
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account for the influence of clouds and atmospheric effects (Section 3).33

Vegetation Optical Depth data (VOD) from the Advanced Microwave Scanning Radiome-34

ter - Earth Observing System (AMSR-E, July 2002–2011, 0.25 degree spatial resolution) are35

used 4. VOD represents water content in aboveground woody and leaf biomass and is sensitive36

to long-term climate changes. Unlike NDVI, the microwave VOD are least affected by atmo-37

spheric and weather conditions4, 5. Also, satellite microwave observations have shown that forest38

in western Amazonia experienced a strong water deficit during the dry season of 2005 and the39

slow recovery (> 4 year) of forest canopy structure6. The presence of open water affects the40

microwave emissions and may lead to underestimates of VOD values 7. Because of this, regions41

with extensive lakes, reservoirs, rivers and flooded vegetation were masked out 4, 8.42

In summary, the NDVI, operating in the optical regime, is sensitive to chlorophyll abun-43

dance and photosynthetically active biomass of the leaves, whereas the microwave-based VOD is44

an indicator of the vegetation water content in total above ground biomass, i.e., including wood45

and leaf components4. Previous studies indicate that the fluctuations in VOD typically correlated46

to precipitation variations, and that the mutually independent VOD and NDVI do not necessar-47

ily respond in identical manners9. Considering both products together provides a more robust48

assessment of long-term vegetation dynamics at the global scale.49

1.2 Precipitation and temperature data50

Mean annual precipitation (MAP) and mean annual temperature (MAT) from 1962–2011 is de-51

rived from the Climatic Research Unit (CRU) monthly rainfall and minimum temperature data52

set (http://badc.nerc.ac.uk/browse/badc/cru). Decelerating growth rates in tropical forest trees53

have been reported to be linked with increasing annual mean daily minimum temperatures and54

decreasing mean annual precipitation10, 11. The latest and currently longest global precipitation55

product is used, i.e., CRU TS 3.2012 (0.5◦ by 0.5◦).56

We also used precipitation data from the Tropical Rainfall Measuring Mission (TRMM;57

3B42-v6; monthly, 0.25◦) for the period of 1998–2011 to derive MAP at a higher spatial resolution58

when compared to the CRU data set. The satellite observations of rainfall from TRMM has been59

able to capture patterns of rainfall magnitude and seasonality undetected by CRU due to lack of60

operating ground stations, particularly over the past decade13, 14 (Figure S1).61

2

Figure S1: Mean Annual Precipitation (MAP, mm/year) derived from monthly TRMM (2000–
2011) and CRU (1962–2011) data sets.

1.3 Soil fertility data62

In addition, as a potential explanation of spatial patterns of slowing down of vegetation activ-63

ity in the pan-tropics, the Total Exchangeable Bases (TEB) of the top soil, as provided by the64

harmonised world soil database15, is included in the model (see Figure S3 and Section 3).65

1.4 Sampling strategy for selecting intact and undisturbed evergreen trop-66

ical forests67

The centroid of each MODIS raster cell is used to sample NDVI time series, percentage tree68

cover and MAP, soil TEB for the intact and undisturbed evergreen forests in the tropics (35◦ S and69

15◦ N). The sampled data is then used to assess the continent specific relationship between NDVI70

based measures of critical slowing down and environmental variables (e.g., MAP). Figure S171

illustrates the mean annual precipitation derived from monthly TRMM (2000–2011) and CRU72

(1962–2011) data in the pan-tropics.73

We concentrated the analysis on forested areas with tree cover higher than 60%16 based on74

the MODIS percentage tree cover product and selected intact and undisturbed evergreen trop-75

ical forests of Africa, South America and South East Asia. We selected intact forest using76

the intact forests reported by the World Intact Forest Landscape (IFL) map (http://www.77

intactforests.org/,17).78
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We selected only evergreen tropical forest and excluded the human impacted, bare or79

flooded areas reported by the Global Land Cover 2000 product (GLC2000,18). The percent-80

age tree cover for the year 2010 is derived from MODIS vegetation continuous fields product81

(MOD44B, version 5, spatial resolution 250m). The world’s IFL map is a spatial database (scale82

1:1,000,000) that shows the extent of the intact forest landscapes (IFL) for year 2000. Intact83

forests are selected when more than 90% of the MODIS pixels are intact as indicated by the IFL84

raster layer. Undisturbed evergreen forests are identified using the GLC2000 when less than 10%85

of the pixels had experienced intensive human impacts (codes: 16–18, and 22) or were bare or86

flooded (codes: 15 and 19–21)19.87

2 Indicators of slowing down88

We employ the temporal autocorrelation (TAC) of the NDVI time series as the main indicator of89

slowing down. As TAC varies substantially over space and time, the TAC is determined individu-90

ally for each pixel so that the resulting estimates cannot be confounded with spatial correlations.91

Moreover, we account for the possibility that the TAC itself varies over time while adjusting long-92

term trends and seasonal periodic patterns. Specifically, each pixel is first detrended (including93

seasonal adjustment) and subsequently the TAC of the detrended NDVI is computed using two94

different methods.95

2.1 Detrending96

In order to obtain an accurate estimate of TAC, time series need to be stationary without long-97

term trends or seasonal periodic patterns20, 21 (just called “trends” in the following). Otherwise, if98

trends are not accounted for, the TAC estimate may be biased. Fortunately, deterministic trends99

can be removed efficiently without the need for specifying the TAC pattern (see Fuller, 1996,100

pp. 476–480)22.101

To select a detrending method that is most appropriate for time series with potentially102

time-varying seasonal amplitude (i.e., size of the seasonal effect) and phase (i.e., start of the103

season) we conducted an extensive simulation study (paper in preparation). In the simulation104

study, we assessed how well various methods from the literature can detrend artificial time se-105

ries with typical characteristics of NDVI and VOD time series data23, 24. More precisely, we106

considered artificial time series with all combinations of several long-term trend patterns (none,107

linear, smoothly varying), seasonal patterns (none, cyclical, time-varying amplitude and phase),108

and TAC patterns (none, constant, linear, smoothly varying). The considered detrending methods109

are: linear filtering (Holt-Winters with additive or multiplicative season)25, 26, Kalman filtering110

4

using state space models (with potentially time-varying trend and seasonal pattern)27, linear re-111

gression (linear trend with harmonic seasonal pattern), additive regression (smooth long-term112

trend with either smooth cyclical or time-varying seasonal pattern)28–30, and LOESS smoothing113

(with smooth long-term trend and either stable or smoothly varying seasonal pattern)31.114

The result of the simulation study illustrates that many of the various detrending methods115

lead to qualitatively similar results and can reliably recover both the trend and the TAC. How-116

ever, not surprisingly, if amplitude/phase are indeed time-varying in the simulation, methods that117

allow for such flexibility perform clearly better. To make sure that our results are robust against118

many conceivable trend patterns, we employ three particularly well-performing models in the119

following: season-trend decomposition by LOESS smoothing (STL)31, decomposition based on120

additive models including time-varying harmonic seasonal effects (STA)30 and extended Kalman121

filtering of state space model (SSM)27 with time-varying parameters to capture smoothly varying122

and dynamically changing trends, respectively. An advantage of the STA and SSM when com-123

pared to the STL approach is that no interpolation of missing data is required. Furthermore, to124

ensure stationarity of the detrended series KPSS tests32 are carried out.125

Figure S2 illustrates the ability of the detrending methods used to model highly complex126

time trends and seasonal patterns. Figure S2 illustrates that all, slowly and smoothy vary periodic127

patterns have been removed prior to computing TAC. What the Figure S2 shows is that here dryer128

regions tend to have higher TAC (i.e. slower recovery times after disturbance). The key point129

here is that the TAC has been estimated from time series from which all potential deterministic130

patterns, i.e. long-term trends and time-varying seasonality have been removed. All potentially131

occurring trend and seasonal variation has been removed using an “ensemble” of detrending132

methods to enable a “true” TAC estimate21, 33.133

5



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange 5

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCLIMATE3108

We selected only evergreen tropical forest and excluded the human impacted, bare or79

flooded areas reported by the Global Land Cover 2000 product (GLC2000,18). The percent-80

age tree cover for the year 2010 is derived from MODIS vegetation continuous fields product81

(MOD44B, version 5, spatial resolution 250m). The world’s IFL map is a spatial database (scale82

1:1,000,000) that shows the extent of the intact forest landscapes (IFL) for year 2000. Intact83

forests are selected when more than 90% of the MODIS pixels are intact as indicated by the IFL84

raster layer. Undisturbed evergreen forests are identified using the GLC2000 when less than 10%85

of the pixels had experienced intensive human impacts (codes: 16–18, and 22) or were bare or86

flooded (codes: 15 and 19–21)19.87

2 Indicators of slowing down88

We employ the temporal autocorrelation (TAC) of the NDVI time series as the main indicator of89

slowing down. As TAC varies substantially over space and time, the TAC is determined individu-90

ally for each pixel so that the resulting estimates cannot be confounded with spatial correlations.91

Moreover, we account for the possibility that the TAC itself varies over time while adjusting long-92

term trends and seasonal periodic patterns. Specifically, each pixel is first detrended (including93

seasonal adjustment) and subsequently the TAC of the detrended NDVI is computed using two94

different methods.95

2.1 Detrending96

In order to obtain an accurate estimate of TAC, time series need to be stationary without long-97

term trends or seasonal periodic patterns20, 21 (just called “trends” in the following). Otherwise, if98

trends are not accounted for, the TAC estimate may be biased. Fortunately, deterministic trends99

can be removed efficiently without the need for specifying the TAC pattern (see Fuller, 1996,100

pp. 476–480)22.101

To select a detrending method that is most appropriate for time series with potentially102

time-varying seasonal amplitude (i.e., size of the seasonal effect) and phase (i.e., start of the103

season) we conducted an extensive simulation study (paper in preparation). In the simulation104

study, we assessed how well various methods from the literature can detrend artificial time se-105

ries with typical characteristics of NDVI and VOD time series data23, 24. More precisely, we106

considered artificial time series with all combinations of several long-term trend patterns (none,107

linear, smoothly varying), seasonal patterns (none, cyclical, time-varying amplitude and phase),108

and TAC patterns (none, constant, linear, smoothly varying). The considered detrending methods109

are: linear filtering (Holt-Winters with additive or multiplicative season)25, 26, Kalman filtering110

4

using state space models (with potentially time-varying trend and seasonal pattern)27, linear re-111

gression (linear trend with harmonic seasonal pattern), additive regression (smooth long-term112

trend with either smooth cyclical or time-varying seasonal pattern)28–30, and LOESS smoothing113

(with smooth long-term trend and either stable or smoothly varying seasonal pattern)31.114

The result of the simulation study illustrates that many of the various detrending methods115

lead to qualitatively similar results and can reliably recover both the trend and the TAC. How-116

ever, not surprisingly, if amplitude/phase are indeed time-varying in the simulation, methods that117

allow for such flexibility perform clearly better. To make sure that our results are robust against118

many conceivable trend patterns, we employ three particularly well-performing models in the119

following: season-trend decomposition by LOESS smoothing (STL)31, decomposition based on120

additive models including time-varying harmonic seasonal effects (STA)30 and extended Kalman121

filtering of state space model (SSM)27 with time-varying parameters to capture smoothly varying122

and dynamically changing trends, respectively. An advantage of the STA and SSM when com-123

pared to the STL approach is that no interpolation of missing data is required. Furthermore, to124

ensure stationarity of the detrended series KPSS tests32 are carried out.125

Figure S2 illustrates the ability of the detrending methods used to model highly complex126

time trends and seasonal patterns. Figure S2 illustrates that all, slowly and smoothy vary periodic127

patterns have been removed prior to computing TAC. What the Figure S2 shows is that here dryer128

regions tend to have higher TAC (i.e. slower recovery times after disturbance). The key point129

here is that the TAC has been estimated from time series from which all potential deterministic130

patterns, i.e. long-term trends and time-varying seasonality have been removed. All potentially131

occurring trend and seasonal variation has been removed using an “ensemble” of detrending132

methods to enable a “true” TAC estimate21, 33.133

5



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

6 NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE3108

Figure S2: Examples of detrending of undisturbed forest NDVI time series using the STA in
South America. The left column represents a time series of a pixel with low MAP and pronounced
seasonality, the right column high MAP and less pronounced seasonality. The top row shows the
raw NDVI time series in gray versus the fitted times series from the STA in black. Both cases
suggest accurate detrending although both time series exhibit time-varying seasonal patterns and
data gaps. The residuals indicate stationarity which is also confirmed by the KPSS test. The
estimated ACF1 at higher lags also suggests no remaining significant seasonal patterns. The
reported TAC estimates derived from the ACF1 method are higher for the drier forest pixel. The
SD results are rather similar. The corresponding interquartile range of the estimated 2 year ACF1
rolling method is 0.15–0.31 (mean 0.18) for the low MAP pixel and 0.09–0.15 (mean 0.09) for
high MAP pixel.

6

2.2 TAC estimation134

After removing long-term trends and seasonal patterns individually for each pixel, TAC and SD135

can simply be estimated by the corresponding full-sample estimators. In case of TAC, we simply136

employ the empirical autocorrelation function at lag 1 (ACF1). Moreover, to account for possible137

time-varying effects in TAC that could affect TAC over the whole observation period, we applied138

a two year rolling window ACF1 approach20.139

Combining the three detrending methods (STL, STA and SSM) with the two TAC esti-140

mators above yields six possible combinations (see Table S1). In all subsequent analyzes we141

always report results of this ensemble of six method combinations in order to demonstrate that142

all conclusions are robust against the methods for detrending and TAC estimation.143

Detrend method TAC method
STL ACF1
STL ACF1 roll
STA ACF1
STA ACF1 roll
SSM ACF1
SSM ACF1 roll

Table S1: Overview of all combinations of the detrending and TAC methods.

3 Models144

To avoid potential bias in TAC and SD estimates (Section 2) when the time series contain a145

large number of missing values by the exclusion of bad quality measurements (Section 1.1),146

strict quality criteria are used to exclude time series with a percentage of missing values (further147

referred to as %NAs) larger than 10%, as well as time series containing more than 2 consecutive148

missing values, i.e., maximum of 2 months, further referred to as NA maxgap. To further reduce149

the influence by clouds and haze, locations with mean annual precipitation (MAP) of more than150

4000 mm are excluded similar to Hirota et al.16. The total number of time series analysed for the151

different satellite data sets and detrending methods is shown in Table S2.152

We assessed the relationship of TAC and SD of intact evergreen forest pixels with environ-153

mental covariates using additive regression models28, 34, 35. Since TAC and SD estimates may vary154

by the detrending and TAC methods used, we estimated an ensemble of the 6 different detrending155

and TAC method combinations (see Table S1) for each of the two data sets (see Table S2).156
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Data set Continent # Obs. STL # Obs. STA # Obs. SSM
South America 41492 40833 40806

MODIS NDVI Africa 21701 21511 21501
Asia/Australia 7630 7324 7318
South America 4897 4897 4897

VOD Africa 889 889 889
Asia/Australia 374 374 374

Table S2: Number of time series observations (# Obs.) analysed for different continents, data
sets (MODIS NDVI 2000–2011, VOD 2002–2011), and detrending methods (STL, STA and
SSM).

The main explanatory variable of interest is MAP derived from TRMM data (see Sec-157

tion 1.2). To asses the influence of other environmental variables like percentage tree cover158

(%Trees), the effect of varying seasonality (Season, estimated as the amplitude of the seasonal159

component using STL decomposition31), TAC and SD of precipitation time series (PreTAC,160

PreSD, derived from the detrended precipitation time series), mean annual temperature (MAT),161

the soil fertility (Soil) or by %NAs (as a proxy for cloud cover), we estimated additive models162

given by163

TAC = γ0 + f1(MAP)+ f2(%Trees)+ f3(Season)+ f4(PreTAC)+

f5(MAT)+ f6(Soil)+ f7(%NAs)+ f8(Long,Lat)+ ε ε ∼ N(0,σ2), (1)

where for models with SD as the response variable PreTAC is exchanged by PreSD. Also164

note that the effect of %NAs is not included using VOD data, since the time series do not contain165

missing values. The parameter γ0 is the usual model intercept, the functions f1, . . . , f7 are smooth166

functions and are modeled by splines. Furthermore, function f8 accounts for spatial effects of167

longitude and latitude pixel coordinates on TAC or SD, i.e., the function models spatial variation168

due to factors like dry season length, fire frequency, topography and potential herbivory effects,169

that have not been measured19.170

4 Results171

When computing the KPSS test on a 5% significance level, all detrending methods generated172

stationary time-series. Table S3 shows the percentage rates of pixels that according to the KPSS173

test are stationary. 98% of all VOD and 93-98% of all MODIS time-series selected for analysis174

(see sampling strategy) are stationary.175

8

Figure S3: Continent-specific maps of detrended TRMM precipitation temporal autocorrelation
(PreTAC), mean annual CRU temperature (MAT), soil fertility (Soil), percentage missing ob-
servations (%NAs), maximum number of consecutive missing observations (NA maxgap) in the
MODIS NDVI time series and seasonal amplitude of the NDVI time series (Season).
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SSM).

The main explanatory variable of interest is MAP derived from TRMM data (see Sec-157

tion 1.2). To asses the influence of other environmental variables like percentage tree cover158

(%Trees), the effect of varying seasonality (Season, estimated as the amplitude of the seasonal159

component using STL decomposition31), TAC and SD of precipitation time series (PreTAC,160

PreSD, derived from the detrended precipitation time series), mean annual temperature (MAT),161

the soil fertility (Soil) or by %NAs (as a proxy for cloud cover), we estimated additive models162

given by163

TAC = γ0 + f1(MAP)+ f2(%Trees)+ f3(Season)+ f4(PreTAC)+

f5(MAT)+ f6(Soil)+ f7(%NAs)+ f8(Long,Lat)+ ε ε ∼ N(0,σ2), (1)

where for models with SD as the response variable PreTAC is exchanged by PreSD. Also164

note that the effect of %NAs is not included using VOD data, since the time series do not contain165

missing values. The parameter γ0 is the usual model intercept, the functions f1, . . . , f7 are smooth166

functions and are modeled by splines. Furthermore, function f8 accounts for spatial effects of167

longitude and latitude pixel coordinates on TAC or SD, i.e., the function models spatial variation168

due to factors like dry season length, fire frequency, topography and potential herbivory effects,169

that have not been measured19.170

4 Results171

When computing the KPSS test on a 5% significance level, all detrending methods generated172

stationary time-series. Table S3 shows the percentage rates of pixels that according to the KPSS173

test are stationary. 98% of all VOD and 93-98% of all MODIS time-series selected for analysis174

(see sampling strategy) are stationary.175

8

Figure S3: Continent-specific maps of detrended TRMM precipitation temporal autocorrelation
(PreTAC), mean annual CRU temperature (MAT), soil fertility (Soil), percentage missing ob-
servations (%NAs), maximum number of consecutive missing observations (NA maxgap) in the
MODIS NDVI time series and seasonal amplitude of the NDVI time series (Season).
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Detrend method KPSS test
VOD SSM 0.989
VOD STL 0.990
VOD STA 0.986
MODIS SSM 0.932
MODIS STL 0.981
MODIS STA 0.935

Table S3: Percentage rates of pixels that according to the KPSS test are stationary at a 5%
significance level. The percentages are calculated for selected MODIS and VOD based time
series following the sampling strategy described above.

4.1 Environmental effects on TAC176

Models are fitted per continent for all combinations of detrending and TAC methods (see Sec-177

tion 2, Table S1 and Section 3) to study the influence of MAP on TAC.178

The MAP effect on TAC is similar across continents and satellite derived MODIS NDVI and179

VOD data sets (Figures S4 and S5). It is shown that for a decreasing MAP the TAC increases while180

accounting for a all other relevant environmental variables (%Trees, Soil, MAT), and potential181

data driven effects like seasonality (Season) and data quality (%NAs) of the NDVI signal and182

TAC derived from precipitation (PreTAC). The MAP and Season are the two most important183

variables and show that for decreasing MAP (i.e., increasing dryness) the TAC increases while184

seasonality increases (e.g., forest types showing more seasonality). This confirms that dryer185

evergreen forest are slowing down while showing more seasonal variability for decreasing tree186

cover percentages (%Trees).187

Across different continents, the temporal autocorrelation of precipitation (PreTAC) has188

no effect on TAC. Furthermore, it is shown that TAC is increasing with increasing MAT (the only189

exception being the NDVI pattern for Africa, Figure S4). This could illustrate earlier reported190

findings that decelerating growth rates in tropical forest trees are linked with increasing mean191

annual temperature10, 11.192

The estimated ensemble mean levels of TAC (the intercept γ0 in Eq. 1) for all data sets and193

continents are shown in Table S4. According to MODIS and VOD data, the estimates suggest194

that the mean level of TAC is the lowest in Africa.195

10

Continent
Data set South America Africa Asia/Australia
MODIS NDVI 0.15 (0.00046) 0.08 (0.00057) 0.18 (0.00109)
VOD 0.19 (0.00151) 0.13 (0.00298) 0.14 (0.00512)

Table S4: Estimated ensemble mean (intercepts γ0 in Eq. 1) and standard error of the derived
TAC of all data sets, detrending and TAC methods.

Figure S4: Estimated effects for all terms of model (Eq. 1) on TAC using NDVI MODIS (2000–
2011), derived from different detrending and TAC methods. The black solid lines represent the
mean curve from an ensemble of six curves (i.e., three detrending methods and two indicators
of temporal autocorrelation). The gray shaded area highlights the range of the six individual
ensemble members. The average R2 and Average Marginal Effect (AME) are reported in the top
range of the plots.
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Table S4: Estimated ensemble mean (intercepts γ0 in Eq. 1) and standard error of the derived
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Figure S4: Estimated effects for all terms of model (Eq. 1) on TAC using NDVI MODIS (2000–
2011), derived from different detrending and TAC methods. The black solid lines represent the
mean curve from an ensemble of six curves (i.e., three detrending methods and two indicators
of temporal autocorrelation). The gray shaded area highlights the range of the six individual
ensemble members. The average R2 and Average Marginal Effect (AME) are reported in the top
range of the plots.
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Figure S5: Estimated effects for all terms of model (Eq. 1) using the VOD (2002-2011), derived
from different detrending and TAC methods. The black solid lines represent the mean curve from
an ensemble of six curves (i.e., three detrending methods and two indicators of temporal auto-
correlation). The gray shaded area highlights the range of the six individual ensemble members.
The average R2 and Average Marginal Effect (AME) are reported in the top range of the plots.

4.2 Environmental effects on SD196

Figures S6 and S7 illustrate that the MAP and other environmental variables except the varying197

seasonality (Season), have a minor effect on SD variation as shown in the y-axis. The mod-198

els explaining SD variability do not show clear patterns for the MAP effect as we obtain when199

modeling TAC.200

12

Figure S6: Estimated effects for all terms of model (1) on SD using NDVI MODIS (2000–2011),
derived from different detrending methods. The black solid lines represent the mean curve from
an ensemble of six curves (i.e., three detrending methods and two indicators of temporal auto-
correlation). The gray shaded area highlights the range of the six individual ensemble members.
The average R2 and Average Marginal Effect (AME) are reported in the top range of the plots.
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Figure S5: Estimated effects for all terms of model (Eq. 1) using the VOD (2002-2011), derived
from different detrending and TAC methods. The black solid lines represent the mean curve from
an ensemble of six curves (i.e., three detrending methods and two indicators of temporal auto-
correlation). The gray shaded area highlights the range of the six individual ensemble members.
The average R2 and Average Marginal Effect (AME) are reported in the top range of the plots.
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Figure S6: Estimated effects for all terms of model (1) on SD using NDVI MODIS (2000–2011),
derived from different detrending methods. The black solid lines represent the mean curve from
an ensemble of six curves (i.e., three detrending methods and two indicators of temporal auto-
correlation). The gray shaded area highlights the range of the six individual ensemble members.
The average R2 and Average Marginal Effect (AME) are reported in the top range of the plots.
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Figure S7: Estimated effects for all terms of model (1) using VOD (2002-2011), derived from
different detrending methods. The black solid lines represent the mean curve from an ensemble
of six curves (i.e., three detrending methods and two indicators of temporal autocorrelation). The
gray shaded area highlights the range of the six individual ensemble members. The average R2

and Average Marginal Effect (AME) are reported in the top range of the plots.
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5 Software201

The analysis is fully processed within the statistical environment R36 version 3.1.0. For satellite202

image manipulation we used the raster37 and bfast23 package (http://bfast.R-Forge.203

R-project.org/). Detrending using the state-space model is based on the sspir38, 39 package,204

all models were fitted by the mgcv40 package.205
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Figure S7: Estimated effects for all terms of model (1) using VOD (2002-2011), derived from
different detrending methods. The black solid lines represent the mean curve from an ensemble
of six curves (i.e., three detrending methods and two indicators of temporal autocorrelation). The
gray shaded area highlights the range of the six individual ensemble members. The average R2

and Average Marginal Effect (AME) are reported in the top range of the plots.
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