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Supplementary Figure 1 

Curation and processing of samples in the MiTranscriptome compendia. 

(a) Pie chart showing the number of studies curated from TCGA, ENCODE, MCTP and other publicly available datasets. (b) Workflow 
for bioinformatics processing of individual RNA-seq libraries. Data sets downloaded as BAM files were first converted to FASTQ format. 
Quality assessment of FASTQ files was performed using FASTQC. Reads mapping to mitochondria, ribosomal RNA, poly-A sequence, 
poly-C sequence or phiX virus (a spiked-in control) were filtered out. Fragment length distribution and orientation were determined by 
mapping a subset of the input reads to a set of large human exons (>500 bp). Reads were aligned using TopHat (v2.0.6) with Bowtie2 
(v2.1.0). Gene fusion calling was performed using TopHat-Fusion (v2.0.6) with Bowtie1 (v0.12.9). Read alignment metrics were 
computed using Picard Tools, and genome track information was generated using BEDTools and UCSC binary utilities. Finally, ab initio 
transcriptome assembly was performed using Cufflinks version 2.0.2. (c) Scatter plot showing the total fragments (x axis) and the 
fraction of aligned fragments (y axis) for each RNA-seq library. Coarse quality control filters were used to remove libraries with fewer 
than 20 million total fragments or 20 million alignments (red point). (d) Dot plot showing for each library the fraction of aligned bases 
corresponding to RefSeq mRNAs (black points), intronic regions (green points) or intergenic regions (blue points) on the y axis. 
Libraries with fewer than 50% of aligned bases corresponding to RefSeq mRNA were filtered out (dotted line). (e) Pie chart showing the 
numbers of primary tumors (red), metastatic tumors (yellow), benign adjacent tissues or tissues from healthy individuals (blue), or cell 
lines (green) for 6,503 RNA-seq libraries that passed coarse quality control filters. 
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Supplementary Figure 2 

Transfrag filtering. 

(a) The dot plot shows the numbers of short transfrags (red), short clipped exons (blue) and long transfrags (black) for each library. (b) 
The dot plot shows the numbers of unannotated intergenic or antisense transfrags (blue), sense intronic transfrags (green) and 
annotated transfrags (black) for each library. (c) Example transcript models illustrating categories of ab initio transcripts and sources of 
background noise. Annotated transfrags (black) overlap reference transcripts on the same strand. Unannotated antisense intronic or 
intergenic transfrags (blue) may be confounded by genomic DNA contamination. Unannotated sense intronic transfrags (green) may be 
confounded by contamination from both genomic DNA and incompletely processed RNA. (d) Decision tree depicting the transfrag 
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filtering steps for a single library. First, transfrags were labeled ‘annotated’ or ‘unannotated’ on the basis of overlap with a reference 
transcriptome catalog. Annotated transfrags and unannotated multiexonic transfrags were considered expressed. Unannotated 
monoexonic transfrags within introns in the sense orientation of an overlapping transcript were discarded as incompletely processed 
RNA artifacts. Unannotated antisense or intergenic monoexonic transfrags were subjected to a bivariate kernel density classification 
method to discriminate recurrent, reliable transcription from genomic DNA contamination artifacts. Transfrags predicted as ‘expressed’ 
were incorporated into meta-assemblies. (e) Scatter plot comparing the sensitivity of the monoexonic transfrag classifier for correctly 
detecting annotated transcripts (y axis) and the fraction of unannotated transfrags predicted to be expressed (x axis). (f) Histogram 
demonstrating the sensitivity for correctly detecting annotated test transcripts held out of the classifier training process. 
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Supplementary Figure 3 

Meta-assembly. 

(a) Schematic of the transcriptome meta-assembly algorithm using a simplified example with three transfrags transcribed from left to 
right. The input to the meta-assembly is a list of weighted transfrags (in this case, the weights correspond to FPKM expression values). 
First, a splice graph is constructed using the transfrag exon boundaries. The splice graph is a directed acyclic graph (DAG) with nodes 
(rounded rectangular boxes) representing contiguously transcribed genomic bases and edges (arrows) corresponding to possible 
alternative splicing and promoter usage. The splice graph is then trimmed to remove poorly expressed starting/ending nodes, and 
adjacent nodes with a degree of one are collapsed. (b) The pruned splice graph from a is subjected to meta-assembly. To encapsulate 
the splicing pattern information present in the original transfrags, the pruned splice graph is converted into a splicing pattern graph. A 
splicing pattern graph is a de Bruijn graph where each node represents a group of k consecutive connected nodes from the splice graph 
(in this example, k = 3), and edges connect adjacent node groups. In real cases, k is automatically chosen to optimize the number of 
nodes in the splicing pattern graph. Finally, the splicing pattern graph is repeatedly traversed using a greedy dynamic programming 
algorithm to determine the set of most highly abundant isoforms from the graph. In this example, isoforms ACDE and ABCE recapitulate 
input transfrags with nearly identical FPKM values, and the invalid isoform combinations ACE and ABCDE are discarded. (c) Genome 
view showing an example of the meta-assembly procedure for breast cohort transfrags in a chromosome 12q13.3 locus containing the 
lncRNA HOTAIR and the protein-coding gene HOXC11 on opposite strands (chr. 12: 54,349,995–54,377,376, hg19). In total, 883 
transfrags were considered background noise and not used for meta-assembly. A dense cluster of 7,471 expressed transfrags from 
1,076 breast RNA-seq libraries was used as input. The aggregated transfrag signal on the positive (+) and negative (–) strands is 
shown below. Meta-assembly produced 17 transcripts from the transfrags, including transcripts that matched GENCODE HOTAIR and 
HOXC11 splicing patterns as well as HOTAIR transcripts with unannotated splice sites. 



Nature Genetics: doi:10.1038/ng.3192 

 

Supplementary Figure 4 

Characterization of unannotated transcripts. 

(a) Dot plots depicting the comparison of the MiTranscriptome with reference transcripts from RefSeq, UCSC or GENCODE. Precision 
(blue), precision for the subset of transcripts overlapping annotated transcripts (light blue) and sensitivity (orange) are plotted for each 
comparison. (b) Dot plots comparing the base-wise, splice-site and splicing pattern precision and sensitivity of MiTranscriptome and 
GENCODE using lncRNAs from RefSeq (left) or Cabili et al. (right). (c) Bar plots comparing the numbers of unannotated transcripts 
versus different classes of annotated transcripts for each of the 18 cohorts. Top, stacked bar plot showing annotated ncRNAs (red), 
pseudogenes (cyan), read-throughs (purple) and protein-coding genes (blue). Bottom, bar plot showing unannotated transcripts (pink). 
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Supplementary Figure 5 
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MiTranscriptome characterization. 

(a) Density histogram depicting the confidence scores for annotated and unannotated lncRNAs. (b) Comparison of the relationship of 
the maximum number of exons per gene to the number of isoforms per gene. LncRNAs tend to have fewer exons than protein-coding 
genes, but they have complex splicing patterns that yield multiple transcript isoforms. (c) Cumulative distribution plot for the base-wise 
conservation fraction of proteins (blue), read-throughs (purple), pseudogenes (cyan), TUCPs (green) and lncRNAs (red). Random 
intergenic (black) and intronic (gray) regions are plotted as controls. The inset plot highlights the top 5th percentile of the distribution. (d) 
Bar plot showing KS test statistics for classes of transcripts versus random intergenic controls. (e) ROC curve for predicting the 
conservation of protein-coding genes versus random intergenic controls. The cutoff (pink point) chosen for calling highly conserved 
transcripts is plotted. (f) Cumulative distribution plot for promoter conservation (legend shared with c). The inset plot highlights the top 
5th percentile of the distribution. (g) Bar plot showing KS tests for promoter conservation versus random intergenic regions. (h) ROC 
curve for predicting ultraconserved noncoding elements versus random intergenic regions. The cutoff (pink point) chosen for nominating 
ultraconserved lncRNAs is plotted. 
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Supplementary Figure 6 

Validation of lncRNA transcripts. 

One hundred lncRNA transcripts were validated by qRT-PCR across the A549, LNCaP and MCF-7 cell lines using an approach with or 
without revers transcriptase. Ct values were first normalized to housekeeping genes (CHMP2A, EMC7, GPI, PSMB2, PSMB4, RAB7A, 
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REEP5, SNRPD3) and then to the median value of all samples using the ∆∆Ct method. Here data are plotted as a logirithmic of fold 
change over the median with s.e.m. Validation was performed on (a) 38 monoexonic transcripts and (b) 62 multiexonic transcripts. The 
boxed transcripts are two representative examples of lncRNAs with lineage/cancer specificity in breast or prostate according to SSEA 
analysis (Supplementary Table 10) whose cell line expression profile (by qRT-PCR) reflects what is expected from tissue analysis. 
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Supplementary Figure 7 

Further validation of lncRNA transcripts. 

(a) Heat-map representation of the correlation between qPCR (fold change over the median) with RNA-seq (FPKM) of 100 selected 
transcripts in the A549, LNCaP and MCF-7 cell lines. (b,c) Representative example of 2 of 20 previously unannotated lncRNA 
transcripts that were analyzed by Sanger sequencing to ensure primer specificity with their associated chromatograms. As seen in the 
UCSC Genome Browser View, a (b) multiexonic lncRNA (Gene ID: G021137) and (c) monoexonic lncRNA (Gene ID: G030545). 
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Supplementary Figure 8 

Classification of transcripts of unknown coding potential. 
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(a) Decision tree showing the categorization of ab initio transcripts. Unannotated transcripts and annotated noncoding RNAs were 
classified as either lncRNA or TUCP. Transcript categories for protein-coding genes, pseudogenes and read-throughs were imputed 
from overlapping reference annotations. (b) ROC curve comparing the false positive rate (x axis) with the true positive rate (y axis) for 
CPAT coding potential predictions of noncoding RNAs versus protein-coding genes. (c) Curve comparing the probability cutoff (x axis) 
with balanced accuracy (y axis). The dotted line shows the cutoff used to call TUCP transcripts. (d) Scatter plot comparing the 
frequency of Pfam domain occurrences in non-transcribed intergenic space versus transcribed regions. Points in red were considered 
valid Pfam domain hits, and points in black were considered artifacts. (e) Three-dimensional scatter plot comparing Fickett score (x 
axis), ORF size (y axis) and Hexamer score (z axis) for all transcripts. Transcripts represented by red points contain valid Pfam 
domains, while blue do not. (f–h) Box plots comparing ORF size (f), Hexamer score (g) and Fickett score (h) for lncRNAs (red), TUCPs 
predicted by Pfam only (yellow), TUCPs predicted by CPAT (green) and TUCPs predicted by both Pfam and CPAT (blue). 
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Supplementary Figure 9 

Enrichment of the MiTranscriptome assembly for disease-associated regions. 

(a) Venn diagram comparing the coverage of disease- or trait-associated genomic regions (i.e., GWAS SNPs) for the MiTranscriptome 
assembly (yellow) in comparison to reference catalogs (blue). (b) Pie charts comparing the distributions of intronic and exonic GWAS 
SNP coverage of the MiTranscriptome assembly (left) and reference catalogs (right). (c) Dot plot displaying the enrichment of GWAS 
SNPs versus random SNPs for different transcript categories. Enrichment odds ratios (transcript-SNP overlaps versus shuffled 
transcript-SNP overlaps) are plotted on the y axis. Points indicate the mean of 100 permutations for tests of enrichment with GWAS 
SNPs (circle) or random SNPs (diamond), and error bars depict ±2 s.d. of the distribution of odds ratios. Both exonic and whole-
transcript enrichment is reported. (d) Dot plot showing the enrichment of GWAS SNPs (circle) versus random SNPs (diamond) for novel 
intergenic lncRNAs and TUCPs. Enrichment odds ratios (transcript-SNP overlaps versus shuffled transcript-SNP overlaps) are plotted 
on the y axis. Points indicate the mean of 100 shuffles for comparisons with GWAS SNPs (circle) or random SNPs (diamond), and error 
bars depict ±2 s.d. of the distribution of odds ratios. Both exonic and whole-transcript enrichment is reported. 
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Supplementary Figure 10 

Discovery of lineage-associated and cancer-associated transcripts. 

(a) Heat map of lineage-specific transcripts nominated by SSEA. Each column represents a sample set from 1 of 25 cancer (dark gray) 
and 13 normal (light gray) lineages, and each row represents an individual transcript. Colored labels above columns reflect the organ 
system cohorts used in assembly. Row side colors correspond to lncRNAs (red), TUCPs (green), pseudogenes (cyan), read-throughs 
(purple) and protein-coding transcripts (blue). All transcripts were statistically significant (FDR < 1 × 10

–7
) and ranked in the top 1% of 
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the most positively or negatively enriched transcripts within at least one sample set. The heat-map color spectrum corresponds to 
percentile ranks, with underexpressed transcripts colored blue and overexpressed transcripts colored red. The column dendrogram 
shows unsupervised hierarchical clustering of the sample sets. (b) Heat map of cancer-specific transcripts (CATs) nominated by SSEA. 
Columns represent 12 cancer types, and colored column labels reflect the organ system cohorts used in assembly. All transcripts were 
statistically significant (FDR < 1 × 10

–3
) and ranked in the top 1% of the most positively or negatively enriched transcripts within at least 

one sample set. The column dendrogram shows unsupervised clustering results. The row side color and heat-map color schemes are 
identical to those in a. 
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Supplementary Figure 11 

Lineage-specific and cancer-specific transcripts. 

(a) Scatter plot grid showing lineage-specific and cancer-specific transcripts nominated by SSEA. A row of scatter plots for each 
transcript category is plotted across 12 cancer types. Each plot shows the cancer versus normal enrichment score (x axis) and the 
cancer lineage enrichment score (y axis). Red points indicate cancer and lineage associated transcripts within the respective cancer 
types, and gray points indicate all other cancer and lineage associated transcripts. (b,c) Box plots comparing the performance of (b) 
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positively enriched cancer and lineage associated transcripts and (c) negatively enriched transcripts for each category across 12 cancer 
types. The average of the lineage and cancer versus normal ES is plotted on the y axis. 
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Supplementary Figure 12 

Examples of cancer- and/or lineage-associated transcripts. 

(a) Genomic view of the chromosome 6q26-q27 locus. The protein-coding genes QKI and PDE10A flank an intergenic region with two 
annotated lncRNAs, AK093114 and AK090788. MiTranscriptome transcripts are shown in a dense view populating this intergenic 
space. The most zoomed view (bottom) depicts MEAT6, a melanoma-associated lncRNA. AK090788 overlaps a portion of MEAT6, but 
the full MEAT6 transcript uses an alternate start site (black arrow). (b) Expression data for MEAT6 (demarcated by an asterisk in a). 
This isoform variant does not use the alternate start site used by MEAT6 and closely resembles AK090788. (c,d) Expression profiles for 
cancer- and lineage-associated transcripts across all MiTranscriptome tissue cohorts are shown for (c) lung adenocarcinoma and (d) 
thyroid cancer. 
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Methods 

RNA-Seq data processing details 
 
Software versions were managed effectively using the Modules Environment 

Management system (http://modules.sourceforge.net). Computational analysis was 

performed in a 64-bit Linux environment (Red Hat Enterprise Linux 6). Pre-compiled 64-

bit Linux binaries were downloaded when available. 

 

Initial sequence quality control metrics were calculated using FASTQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Next, filtering was 

performed to remove reads mapping to mitochondrial DNA, ribosomal RNA, poly-A, 

poly-C, Illumina sequencing adaptors, and the spiked-in phiX174 viral genome. 

Sequences were downloaded from the Illumina iGenomes server (2012, March 9). 

Mapping was performed using bowtie2 (2.0.2). 

 

The fragment size distribution (for paired-end libraries) and fragment layout of each 

library was determined automatically by mapping a subset of the reads to a reference 

consisting of the 15,868 unique Ensembl v69 exons larger than 500bp that had no other 

overlapping features on either strand. These exons represent contiguous genomic regions 

where both paired-end reads from a single fragment could confidently be aligned. An 

alignment index was prepared from this reference using the bowtie-build utility. 

 

Reads were mapped using TopHat2 (2.0.6 and 2.0.8) using default parameters1. 

Reference genome annotation files were downloaded from the Illumina iGenomes FTP 
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server (ftp://ussd-ftp.illumina.com/Homo_sapiens). A human genome reference was 

constructed from UCSC version Feb 2009 (GRCh37/hg19) chromosomes 1-22, X, Y, and 

mitochondrial DNA. References from alternate haplotype alleles were omitted. 

Alignment index files for Bowtie versions 0.12.8 and 2.0.2 were built from this reference 

using the bowtie-build and bowtie2-build programs, respectively. The Ensembl version 

69 transcriptome reference gene set was downloaded from the Ensembl FTP server 

(ftp://ftp.ensembl.org/pub/release-69/gtf/homo_sapiens). Chromosome names were 

converted from GRCh37 format to UCSC format (e.g. “1” converted to “chr1”). Genes 

found on alternate haplotype alleles were omitted. The cuffcompare utility 

(http://cufflinks.cbcb.umd.edu) was used as specified in the Cufflinks user’s manual to 

assign promoter and transcription start site attributes to the gene features in the Ensembl 

reference. Alignment index files for Bowtie versions 0.12.8 and 2.0.2 were prepared from 

this reference using the --transcriptome-index option in TopHat version 2.0.6 

(http://tophat.cbcb.umd.edu). 

 

Sequence alignment metrics were computed using the Picard tools 

CollectMultipleMetrics and CollectRnaSeqMetrics (http://picard.sourceforge.net). The 

Picard CollectRnaSeqMetrics diagnostic utility required gene annotation and ribosomal 

interval files as input. The “refFlat” table provided by the Illumina iGenomes download 

package (2012, March 9) was used as the gene annotation reference. Ribosomal DNA 

intervals were curated from the RepeatMasker table downloaded from the UCSC table 

browser2. This table of repeat elements was originally provided for hg19 by UCSC on 

4/27/2009. Tracks for visualization on genome browsers were generated using the 
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BEDTools ‘genomecov’ utility and the UCSC bedGraphToBigWig utility3,4. 

 

Ab initio assembly was performed using Cufflinks (2.0.2) with multi-read correction 

enabled5. Gene features with the ribosomal RNA biotype ‘rRNA’ were added to a mask 

file for use with the --mask-file option in Cufflinks. 

Filtration of noise contamination from aligned reads and ab initio assembly 
To discriminate genomic DNA contamination from robust transcription we developed a 

classification method that utilizes both relative transcript abundance and recurrence 

across independent biological samples. The method requires a known transcript catalogue 

(Ensembl version 69) to determine the annotation status of ab initio transfrags. 

Transfrags that overlapped known transcripts in the sense orientation were denoted 

“annotated”, and the remaining transfrags were categorized as either “Sense Intronic” or 

“Antisense / Intergenic” based on their relationship to annotated transcripts. Relative 

abundance was determined by using the empirical distribution of FPKM values to 

converting transcript FPKM values into quantiles. Recurrence levels were first computed 

per base by counting independent biological samples with evidence of transcription 

(replicates of identical cell lines or tumor tissues from the same patient were not counted 

towards recurrence). A single recurrence value was then computed for each transfrag by 

averaging the recurrence values of all bases of the transfrag. After computing relative 

abundance and recurrence for all transfrags, we trained a classifier to discriminate 

annotated from unannotated transfrags as a surrogate for classifying true transcription 

from background noise. Specifically, we compute bivariate kernel density estimates using 

the abundance-recurrence axes separately for annotated and unannotated transfrags. 
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These densities were mapped onto a square grid (50 x 50). We then divided the annotated 

density by the unannotated density at each grid point after adding a nominal value to 

avoid floating point overflow errors. This resulted in a new grid containing likelihood 

ratios for annotated versus unannotated transfrags along the abundance-recurrence axes. 

To account for the total noise present in the library we weighted the likelihood estimates 

by the relative ratio of unannotated versus annotated transfrags in the library being 

classified. This weight equaled the ratio of the fraction of known to unannotated 

transcripts in a library divided by the ratio of the medians of these fractions in all 

libraries. Finally, for each transfrag in an ab initio assembly we computed the weighted 

log-likelihood of the transfrag being annotated by linearly interpolating the transfrag 

abundance and recurrence onto the grid. For each library we determined a likelihood ratio 

cutoff by optimizing the balanced accuracy (average of sensitivity and specificity) of the 

classifier performance. Transfrags with likelihood below this cutoff were labeled 

‘background’ and the remainder ‘expressed’. Results from individual libraries were then 

concatenated to produce separate background and expressed transfrag catalogues as 

output. Transcripts classified as background noise were discarded and meta-assembly 

was carried out on the expressed fraction. To assess the sensitivity of our classification 

method we ran the filtering approach after leaving out 10% of annotated transfrags as 

‘test’ data. The ability to detect these genes was then assessed using likelihood cutoffs 

determined without the test data included. The classifier achieved remarkable 

performance (average AUC of 0.89, range 0.77-0.96) and displayed no bias for cancer 

versus normal samples. Moreover, the classifier recovered test transcripts left out of the 

training process with 80% mean sensitivity (range 0.64-0.95).  
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Transcriptome meta-assembly details 
 
We developed AssemblyLine (manuscript in preparation, see source code at 

http://assemblyline.googlecode.com) as a software package written in Python and R to 

(1) characterize and filter sources of background noise in RNA-Seq assemblies and (2) 

perform meta-assembly to coalesce large-scale RNA-Seq datasets. AssemblyLine accepts 

as input a set GTF files containing transfrags assembled from individual libraries. 

Transfrags of length less than 250bp were omitted from meta-assembly, and the 

remaining transfrags were labeled as ‘annotated’ or ‘unannotated’ relative to a reference 

GTF file (GENCODE version 16). An ab initio transfrag was considered ‘annotated’ if its 

exons overlapped any reference transcript exons on the identical strand. A recurrence 

score for each ab initio transfrag was computed as the average number of samples 

(replicate libraries from a single cell line or tissue were considered a single sample) per 

nucleotide with same-stranded transcription.  

 

We performed classification and filtering of ‘background’ and ‘expressed’ transfrags by 

modeling the abundance (FPKM) and recurrence of ‘annotated’ and ‘unannotated’ 

transcripts using bivariate kernel density estimation on a square grid (grid size 50x50, 

bandwidth determined by Silverman’s rule of thumb). A grid of likelihood ratios was 

derived from the ‘annotated’ and ‘unannotated’ grids by element-wise division at each 

grid point. The probability of each transfrag being ‘annotated’ was then determined by 

linear interpolation onto this grid, and this probability was used as a surrogate measure 
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for the chance that a transcript represented background noise. A likelihood ratio of less 

than or equal to one was used as a cutoff for filtering ‘background’ transcripts. 

 

Filtered transcripts were subjected to the AssemblyLine meta-assembly algorithm. First, 

we trim low scoring ends in the graph that correspond to extraneously long exons or 

overhanging exons that extend into introns. Second, nodes within introns are trimmed 

when their scores are less than a fraction of neighboring exons. Weakly connected 

components of the pruned splicing graphs are then extracted and processed 

independently. A splicing graph encompasses the milieu of possible isoforms that could 

be transcribed. Enumerating all possible paths through splicing graphs is impractical; 

many graphs have millions of paths of which only minute fractions are observed in vivo. 

The initial input transfrags provide partial paths through the splicing graph and also 

indicate which parts of the graph are more abundant. Our approach incorporates this 

partial path information by building a splicing pattern graph that subsumes the original 

splice graph. The splicing pattern graph is a type of De Bruijn graph where each node 

represents a contiguous path of length k through the splice graph, and edges connect 

paths with k-1 nodes in common. As k increases so does the amount of correlative path 

information retained in the graph at the cost of losing short transfrags with length less 

than k. Each node in the graph carries a weight equal to the summed weights from all 

transcripts that share the node. Thus for each splice graph the partial path length k is 

optimized to maximize the number of nodes in the path graph with the constraint that the 

summed node weights of transfrags with path length greater than or equal to k is above a 

user-specified fraction of the total score of all transfrags. After the path graph has been 
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constructed, we effectively extend every partial path transfrag into a full-length transcript 

by transmitting the transfrag’s weight along incoming and outgoing edges. This weight is 

allocated proportionally at nodes with multiple incoming or outgoing edges. This 

approach effectively extends all partial transcript fragments into full-length transcripts 

and assures that the sum of incoming and outgoing node weights are equivalent. Finally, 

a set of isoforms is predicted from the graph using a greedy algorithm. The algorithm 

finds and reports the highest abundance transcript by traversing the graph using dynamic 

programming. The weight of the transcript equals the minimum weight of all nodes in the 

path. The transcript weight is then subtracted from every node in the path and the 

dynamic programming procedure is repeated. Suboptimal transcripts are enumerated until 

a path weight falls below a fraction of the highest weighted transcript (e.g. the major 

isoform). The total number of isoforms produced from each gene can also be explicitly 

constrained. The meta-assembled isoforms are then reported in GTF and/or BED format. 

A genome track with summed node weights can optionally be reported in BedGraph 

format as well. 

 
To limit transcript output for complex loci, isoforms with abundance less than 10% of the 

major transcript isoform were excluded (--fraction-major-isoform 0.10), a maximum of 

20 isoforms were allowed for each gene (--max-paths 20). During splicing pattern graph 

creation an optimal De Bruijn graph parameter k was determined to maximize the number 

of graph nodes. A maximum value of k was limited to 20 to improve the computational 

tractability of the optimization approach (--kmax 20). The output of meta-assembly was a 

GTF-formatted file as well as BED and BEDGraph-formatted files (--gtf –bed --

bedgraph). 
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Classification of transcripts of unknown coding potential (TUCP) 
We ran Coding Potential Assessment Tool (CPAT) version 1.2.1 

(https://code.google.com/p/cpat) with default parameters and used the human hexamer 

table and logit model provided by the authors6. We scanned for Pfam 27.0 (March 2013) 

A and B hits using the pfam_scan.pl utility 

(ftp://ftp.sanger.ac.uk/pub/databases/Pfam/Tools) built on HMMER 3.1b7,8. We 

performed receiver operating characteristic (ROC) analysis using the ROCR package9. 

 

To control for false positives we also scanned non-transcribed intergenic regions in the 

same manner. We observed 3,781,935 hits to 12,430 unique Pfam domains in transcribed 

regions compared with 1,774,937 hits to 1,277 unique domains in non-transcribed 

intergenic space. We compared the occurrences of each Pfam domain in transcribed 

versus non-transcribed regions using Fisher’s Exact Test and flagged 750 domains with 

an odds ratio of less than 10.0 or p-value greater than 0.05 as likely artifacts. The 

remaining 11,726 Pfam domains were considered valid. This procedure filtered 2,972,629 

artifact hits and retained 809,306 valid hits. Putative non-coding transcripts harbored only 

4,674 (0.40%) of the valid Pfam domains. 

 

Conservation analysis 

Genomic conservation profiles generated by the phyloP (phylogenetic p-values) and 

PhastCons algorithms (http://compgen.bscb.cornell.edu/phast/) for multiple alignments of 

45 vertebrate genomes to the human genome 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP46way/vertebrate) were 
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downloaded from the UCSC genome browser10-12. The ‘wigFix’ files were converted into 

‘bigWig’ files using the ‘wigToBigWig’ binary utility program provided by the UCSC 

genome browser3. For each transcript a vector of exon-wise conservation scores was 

extracted using the ‘bigWigToBedGraph’ utility and concatenated into a single vector. 

Conservation metrics were then computed from these vectors. 

GWAS analysis 
Intersections of GWAS SNPs with transcripts or exons was performed using the 

BEDtools ‘intersect’ tool, with the ‘-split’ option invoked for quantification of exonic 

overlap4. 

 

The number of GWAS SNPs overlapping the entire assembly and individual transcript 

categories (i.e. lncRNA,TUCP, pseudogene, protein-coding, and read-through) was 

determined by BEDTools ‘intersect’ for both the whole transcript and for exonic regions 

(𝑛𝐺𝑊𝐴𝑆). Subsequently, a set of all the SNPs from two popular SNP arrays (Illumina 

HumanHap550 and Affymetrix SNP6) was created, which we term the “SNP 

background”. The amount of SNPs from the SNP background overlapping the 

MiTranscriptome was calculated (𝑛𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑), and the fraction of the number of 

overlapping GWAS SNPs to the number of overlapping SNPs from the SNP background 

(𝑓𝑟𝑎𝑐𝐺𝑊𝐴𝑆 = 𝑛𝐺𝑊𝐴𝑆
𝑛𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

) was then reported for each category. This fraction was also 

calculated using random shuffling of the MiTranscriptome and its components into non-

coding regions of the genome (𝑓𝑟𝑎𝑐𝑠ℎ𝑢𝑓𝑓𝑙𝑒). One hundred shuffles were performed for 

each condition, and an odds ratio (𝑂𝑅𝐺𝑊𝐴𝑆 = 𝑓𝑟𝑎𝑐𝐺𝑊𝐴𝑆
𝑓𝑟𝑎𝑐𝑠ℎ𝑢𝑓𝑓𝑙𝑒

) was determined for each 

Nature Genetics: doi:10.1038/ng.3192



shuffle. The purpose of using 𝑓𝑟𝑎𝑐𝐺𝑊𝐴𝑆instead of simply using 𝑛𝐺𝑊𝐴𝑆 in this analysis is 

to control for the possibility that during the shuffle, transcripts could be shuffled into 

regions not represented on SNP arrays (i.e. regions unable to possess GWAS SNPs), 

falsely lowering the amount of GWAS SNP overlap by the shuffle. If transcripts are 

shuffled into regions that are not represented by the SNP background, both 𝑛𝐺𝑊𝐴𝑆 and 

𝑛𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 will decrease together, with 𝑓𝑟𝑎𝑐𝐺𝑊𝐴𝑆 relatively unchanged.  

 

Shuffling was performed using the BEDTools ‘shuffle’ tool. MiTranscriptome transcripts 

were grouped by transcription locus (i.e. regions of the genome that have contiguous 

transcription) prior to shuffling. Shuffling of transcript loci was performed to control for 

the fact that transcripts within a locus are spatially linked to one another. Shuffling 

without locus clustering would falsely elevate the amount of genome covered by 

transcripts, and subsequently elevate the number of SNPs overlapping the shuffled 

regions. A concatenation of the UCSC hg19 gaps file 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/gap.txt.gz) and the 

MiTranscriptome protien-coding transcripts was used as an exclusion file for these 

shuffles. 

 

As a negative control, the entire above analysis was repeated using and equal number 

randomly selected SNPs (chosen from the Illumina HumanHap550 and Affymetrix SNP6 

background) in place of the GWAS SNPs. The significance of enrichment for GWAS 

SNPs versus random SNPs was measured across identical shuffles of the transcript loci 

using paired Student’s t-tests comparing the set of odds ratios for all shuffles. 
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Similar analysis was performed to determine enrichment for novel intergenic lncRNAs 

and TUCPs. The intergenic space was defined as all regions not covered by the merged 

reference. For this analysis, the shuffles were performed into the intergenic space, instead 

of all non-coding space. The exclusion file used by BEDtools ‘shuffle’ was a 

concatenation of the UCSC gaps file and the merged reference. 

Transcript expression estimation 
We estimated the transcript abundances for all transcripts in the MiTranscriptome 

assembly using Cufflinks version 2.1.15 with the following parameters: ‘--max-frag-

multihits=1’, ‘--no-effective-length-correction’, ‘--max-bundle-length 5000000’, ‘--max-

bundle-frags 20000000’. To convert normalized transcript abundance estimates (FPKM) 

to approximate fragment count values we multiplied each FPKM by the transcript length 

(in kilobases) and by the “Map Mass” value (divided by 1.0e6) reported in the Cufflinks 

log files. Through reverse engineering and some assistance from the seqanswers online 

forum (seqanswers.com) we determined that this factor was utilized in the normalization 

process. Abundance estimation for 28 libraries failed for technical reasons (corrupt BAM 

files) and these libraries were discarded from the expression analysis. Expression 

estimation for 2,246 transcripts yielded errors and/or zero-valued counts and hence 

discarded. 

Transcript expression enrichment testing 
 
The method adapts the weighted Kolmorgorov-Smirnoff (KS) tests proposed by Gene Set 

Enrichment Analysis (GSEA). In contrast to GSEA, which tests for associations with 
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gene sets, Sample Set Enrichment Analysis (SSEA) tests for associations between 

individual gene expression observations (which could be transcript or gene expression) 

and sample sets. Thus, SSEA is analogous to performing GSEA on a ‘transposed’ input 

dataset. However, SSEA incorporates important features not provided by GSEA: (1) 

methodology for non-parametric analysis of discrete count data (e.g. RNA-Seq count 

datasets), (2) engineering improvements to enable analysis of big datasets (here, we 

analyze a matrix of 381,731 rows and 6,475 columns using less than 1 Gb of RAM), and 

(3) parallelization of the algorithm for use in high-performance computing environments. 

For a discussion of the potential advantages of SSEA relative to other RNA-Seq 

differential expression analysis tools please refer to Supplementary Discussion. 

 
Differential expression testing was performed using the Sample Set Enrichment Analysis 

method developed as part of this study (http://ssea.googlecode.com). We ran SSEA with 

100 iterations of count resampling and 1,000 null permutations for each transcript (--

resampling-iterations=100, --perms=1000). These parameters yielded a minimum FDR 

resolution of approximately 1e-7 for all sample sets. Weights for the KS-test were log(x + 

1)-transformed normalized count values (--weight-hit=log, --weight-miss=log, --weight-

param=1). 

Discussion 
 

Approaches for mitigating background noise in RNA-Seq data 
To circumvent the added complexity of background noise previous transcriptome studies 

restricted themselves to multi-exonic transcripts, intergenic regions or both13-17. However, 

given that over 5% of RefSeq transcripts longer than 200nt are mono-exonic18 and that 
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lncRNAs generally have fewer exons than protein-coding genes19, a significant 

population of expressed mono-exonic transcripts may be missing from gene catalogs. 

Furthermore, the high degree of overlapping and interleaving transcription observed in 

humans demands analyses that include intronic regions as well. Apart from excluding 

areas of the genome, previous studies contended with background noise by designing 

filtering strategies. Ramskold et al. compared the expression levels of exons and 

intergenic regions to determine an empirical threshold for calling a gene expressed20. 

Similarly, Cabili et al. derived empirical detection thresholds by comparing the coverage 

of full length versus partial length transcripts corresponding to known genes, and further 

defined a high-confidence set of transcripts that were detected in multiple samples or by 

independent ab initio assembly programs17. A study to incorporate zebrafish RNA-Seq 

data into the Ensembl genebuild discarded exon regions with relatively low coverage14. 

In contrast to empirical filtering methods, Guttman et al. developed a statistical approach 

that models background noise as though read alignments were randomly permuted 

throughout the genome16. Although all of these strategies enriched for highly expressed 

genes, they do not account for classes of transcripts that are expressed at relatively low 

levels17. In their study of human transcription the ENCODE consortium employed a 

statistic called the non-parametric irreproducible detection rate (npIDR)21,22. This statistic 

embodies the notion that purposeful transcription should be observable by independent 

experiments. The study filtered unannotated transcripts that were less than 90% recurrent 

(npIDR < 0.1) between biological replicates of the same sample but still detected a large 

number of unannotated mono-exonic transcripts. The authors acknowledged the 

possibility of artifacts due to low levels of DNA contamination but did not compare 
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npIDR values between unannotated and annotated transcripts to credential their chosen 

detection threshold. Altogether the aforementioned schemes establish the use of noise 

thresholds based on expressed levels and reproducibility, but no previous study suggested 

a rigorous method for filtering background noise in large datasets.  

Accuracy for classification of expressed versus background transfrags 
Our transfrag classification method conservatively assumes that all unannotated 

transfrags are background noise and invariably overestimates the manifestations of 

genomic DNA contamination in libraries. Indeed, our goal in designing the classifier was 

to conservatively estimate true transcription in order to maximize confidence in 

unannotated transcript assemblies. 

Motivation for meta-assembly approach 
Meta-assembly refers to merging together multiple ab initio assemblies to produce a 

consensus assembly. Establishing a consensus assembly is vital to downstream analysis 

because it provides a common foundation for comparing transcriptional dynamics23,24. 

Previously, we developed a merging approach that clustered isoforms into a single set of 

exon regions per gene13. This strategy facilitated the discovery of unannotated cancer-

associated loci but abolished isoform-level information and relied upon additional assays 

such as Rapid Amplification of cDNA Ends RACE for precise delineation of transcript 

structures. An earlier generation of algorithms was developed for EST assembly and 

introduced splicing graphs as an effective representation of the isoform problem25,26. 

Building on these approaches, Trapnell et al. released a meta-assembly utility within the 

Cufflinks package called Cuffmerge24. Cuffmerge converts transcripts from ab initio 

assemblies into faux read alignments and reruns Cufflinks on these alignments in a 
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modified mode. Cufflinks then emits a minimal set of merged transcripts that explains the 

input transcripts. In our experience, the use of Cuffmerge on large datasets induced 

scalability issues even when we limited the allowable minor isoform fraction levels (data 

not shown). Thus, we believe that the most recent Cuffmerge version we had access to 

(Cufflinks version 2.0.2) required further optimization before it can be used effectively 

on large datasets. Alternatively, aggregating the raw sequences from multiple RNA-Seq 

samples before running standard ab initio or de novo assembly programs can produce a 

consensus assembly27. However, naively aggregating raw sequences compounds 

background noise, forcing a choice of a single set of filtering parameters for all samples. 

Most importantly, transcripts specific to a subset of samples may pose as minor isoforms 

and be unintentionally pruned. 

 

Performance of transcriptome reconstruction relative to reference catalogs 
In the recent assessment of transcriptome reconstruction methods for RNA-Seq, Steijger 

et al. observed relatively poor sensitivity for observed complete splicing patterns28. On 

the human test regions assessed, Cufflinks (the algorithm used as a foundation for this 

study) achieved 39% detection of all transcript exons. Although the Steijger et al. 

comparisons were limited to genes expressed in HepG2 liver cells, their result is roughly 

consistent with our observed splicing pattern sensitivity of 31% for RefSeq genes. Given 

these results, we offer three explanations for the low sensitivity and precision for splicing 

pattern detection: (1) RNA-Seq protocols tend to capture incompletely processed RNAs 

that may not have undergone complete splicing and/or poly-adenylation. Bioinformatics 

tools, including Cufflinks and the meta-assembler used in this study, attempt to account 
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for this problem by trimming first and last exons and clipping out retained introns. 

However, the ability of these tools to correct for incompletely processed RNA artifacts is 

limited, especially for loci where exonic and intronic RNA abundance levels are similar. 

(2) Illumina RNA-Seq protocols sequence libraries with fragments of approximately 200-

300bp, which is often much smaller than full-length transcripts. Thus, transcriptome 

assembly methods are hampered by the intrinsic nature of Illumina RNA-Seq data; 

specifically, the lack of long reads with full-length transcript splicing patterns. (3) The 

reference annotations that are used as a benchmark for evaluating the performance of 

transcriptome assembly tools may themselves be inaccurate or incomplete. Studies by the 

ENCODE consortium and others have revealed splicing complexity far beyond what has 

been catalogued21,28, and the results of this study assembly suggest an even greater level 

of splicing complexity than previously observed. Thus, perhaps the lack of detection of 

known splicing patterns may not be a fault of RNA-Seq or computational tools but rather 

at attribute of the reference catalogs. 

 

Assessing coding potential  
 
Although codon substitution frequency (CSF) metrics can be a powerful predictor of 

coding potential29, algorithms that employ CSF require multiple sequence alignments. In 

our transcriptome assembly we observed multitudes of putative lncRNAs in regions with 

poor evolutionary conservation where CSF analysis would lack sensitivity. Furthermore, 

we found the process of extracting and concatenating blocks of multiple sequence 

alignment data to be computationally cumbersome and poorly optimized. Therefore, for 

this study we opted to use the alignment-free Coding Potential Assessment Tool (CPAT) 
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version 1.2.1 (https://code.google.com/p/cpat)6. CPAT determines the coding probability 

of transcript sequences using a logistic regression model built from ORF size, Fickett 

TESTCODE statistic, and hexamer usage bias. Although CPAT does not utilize CSF 

information, it was nevertheless shown to have superior discriminatory ability for human 

transcriptome assembly data. We believe that the MiTranscriptome assembly offers an 

important benchmark for subsequent testing of coding potential prediction tools. Our 

approach of combining Pfam results with CPAT score produced confident calls for 

coding potential. The presence of Pfam domains provided a strong support for CPAT 

coding predictions. The presence or absence of a Pfam domain stratified transcripts by 

the three features modeled by CPAT as well as overall coding probability. Transcripts 

possessing Pfam domains were much more likely to be predicted positive by CPAT than 

those lacking a Pfam domain (p-value < 2.2e-16, odds ratio=90.3, Fisher’s Exact Test). 

Given the complementary aspects of Pfam domain and CPAT prediction we designated 

putative non-coding transcripts with either a Pfam domain or a positive CPAT prediction 

as TUCP. In total 11,603 uncharacterized transcripts were flagged as TUCPs, including 

5,248 transcripts previously annotated as lncRNAs. There were 2,729 uncharacterized 

transcripts with at least one Pfam domain, including 1,700 that did meet the CPAT 

criteria. By contrast, 8,874 CPAT positive transcripts lacked a valid Pfam domain. 

Intriguingly, transcripts predicted by CPAT that also harbored valid Pfam domains had 

longer ORFs, higher hexamer scores, and higher Fickett TESTCODE scores than other 

TUCPs, suggesting that the Pfam and CPAT calls may be complementary. 
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Differential expression testing via enrichment analysis  
An established paradigm for the differential expression analysis of RNA-Seq data is the 

parametric modeling of the data using the negative binomial distribution. Current 

prominent algorithms that operate in this manner include CuffDiff23, edgeR30, and 

DEseq31. With many thousands of RNA-seq libraries becoming available for analysis, 

there is a pressing need for a tool to analyze differential expression on large datasets. 

Besides overcoming important engineering considerations (such as storing expression 

data for thousands of samples and hundreds of thousands of genes in RAM), existing 

methods implicitly assume that the two conditions being analyzed (e.g. cancer versus 

normal) are homogenous (i.e. the samples within each condition are being drawn from 

the same population). Preliminary analyses of the TCGA data have discovered that there 

is substantial intracancer heterogeneity32,33, with many aberrations known to be present in 

only a subset of tumors from any given cancer type. The availability of large numbers of 

samples makes discovery of subtype-specific or ‘outlier’ events tractable. Of particular 

interest is the identification of transcript expression unique to aggressive cancers with 

poor prognosis. For example, the lncRNA SChLAP1 is expressed in only ~20% of 

prostate cancers and strongly predicts cancer-related mortality34. With these observations 

in mind, we designed SSEA to leverage the statistical power afforded by large numbers 

of samples by employing non-parametric, semi-supervised methodology. Validation of 

SSEA on known cancer outlier genes such as SChLAP1 illustrated its remarkable 

sensitivity to detect subtype-specific transcription. Head-to-head comparisons with 

parametric RNA-Seq methods are pending, but we anticipate that SSEA will offer unique 

discovery power for large-scale datasets. 
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