Supplementary Information

Deciphering African Late Middle Pleistocene hominin diversity and the origin of our Species

Mounier and Mirazón Lahr

Table of Contents

Supplementary Tables
Supplementary Table 1. Description of the specimens included in the study ^a
Supplementary Table 2. Description of the phylogenetic hypotheses, showing the topology of the trees along with associated split times and references
Supplementary Table 3. Description of the PCs from the aligned tree data for Hypotheses 1 and 2 12
Supplementary Table 4. Values for the phylogenetic signal K _{mult} (i.e. multivariate K-statistics from Blomberg's K ¹⁰⁶) for hypotheses 1, 2, 1b and 2b13
Supplementary Table 5. Description of the PCs from the aligned tree data for Hypotheses 1b and 2b14
Supplementary Table 6. Maximum, average and standard deviation of the surface deviations between the different vLCAs (mm)
Supplementary Table 7. African LMP specimens' percentage of preserved landmarks for GMM analyses
Supplementary Table 8. Description of the between group PCs – Analysis A 16
Supplementary Table 9. Description of the between group PCs – Analysis B
Supplementary Table 10. Description of the between group PCs – Analysis C
Supplementary Table 11. Description of the between group PCs – Analysis D 19
Supplementary Table 12. Description of the PCs from the aligned tree data for Hypothesis 1 using row data before sliding and data after sliding semilandmarks
Supplementary Table 13. Description of the between group PCs using a sub-sample of 239 landmarks
Supplementary Table 14. Values for the phylogenetic signal K _{mult} (i.e. multivariate extension of Blomberg's K-statistics ¹⁰⁶) of phylogenetic hypotheses 1, 1NS, 1Sub and 1Ld
Supplementary Table 15. Description of the between group PCs using a subsample of 53 landmarks
Supplementary Table 16. Description of the PCs from the aligned tree data for Hypothesis 1 using a sub-sample of 239 landmarks and semilandmarks
Supplementary Table 17. Description of the PCs from the aligned tree data for Hypothesis 1 using a sub-sample of 53 landmarks
Supplementary Figures

Supplementary Figure 1. World map showing the geographical and ethnical origin of the sampled population	.8
Supplementary Figure 2. Projection of the phylogenies 1b (black) and 2b (grey) in the morphospace	.9
Supplementary Figure 3. Surface deviation analyses comparing the vLCAs' morphologies	0
Supplementary Figure 4. Box-and-whisker plots showing the Procrustes distances between the vLCAs and the comparative sample for analyses A and B	2
Supplementary Figure 5. Box-and-whisker plots showing the Procrustes distances between the vLCAs and the comparative sample for analyses C and D	4
Supplementary Figure 6. Landmarks configurations used to run the GPAs and bgPCAs	5
Supplementary Figure 7. Results from the modelling based on hypotheses 1 and 1NS	6
Supplementary Figure 8. Morphospaces of bgPCAs for analyses E and F 3	9
Supplementary Figure 9. Results from the modelling based on hypothesis 1Sub	0
Supplementary Figure 10. Results from the modelling based on hypothesis 1Ld	3
Supplementary References	4

Supplementary Table 1. Description of the specimens included in the study^a.

Specimens	Chronology	Sex	Country	Population - Site	3Db	Inst	f/n ^d
Phylogeny sample	emeneigy	COA	country		••		0.37
H. habilis							0.50
KNM-ER1470	~1.8 Ma ⁹³	М	Kenva	Koobi Fora	ΡН	NMK	
KNM-ER1813	~1.8 Ma ⁹³	F	Kenva	Koobi Fora	PH	NMK	
H. ergaster							0.33
KNM-ER3733	∼1.6 Ma ⁹³	F	Kenva	Koobi Fora	PH	NMK	
KNM-ER3883	∼1.6 Ma ⁹³	М	Kenva	Koobi Fora	PH	NMK	
KNM-WT15000	1.6-1.4 Ma ⁹⁴	М	Kenva	Koobi Fora	PH	NMK	
H. georgicus			, ,				0.50
D2282	1.77 Ma ⁹⁵	F	Georgia	Dmanisi	PH	IPH	
D2700	1.77 Ma ⁹⁵	М	Georgia	Dmanisi	PH	IPH	
Early Neandertal			-				0.50
Saccopastore1	130-250 ka ⁹⁶	F	Italy	Saccopatore	PH	US	
Ehringsdorf H	∼200 ka¹ ⁹	М	Germany	Ehringsdorf	PH	IPH	
Near East Neandertal							0
Amud1	50-60 ka ¹⁹	Μ	Israel	Amud	OP	DC	
Shanidar1	45 ka ⁹⁷	Μ	Irak	Shanidar	PH	MH	
South Europe Neandertal							0.50
Guattari	52±12 ka ¹⁹	Μ	Italy	Monte Circeo	СТ	MP	
Gibraltar1	45-70 ka ⁹⁸	F	UK (Gibraltar)	Gibraltar	СТ	NHM	
West Europe Neandertal							0
LaFerrassie1	53-66 ka ⁹⁹	Μ	France	La Ferrassie	СТ	MH	
LaChapelle-aux-Saints	∼50 ka¹ ⁹	Μ	France	La Chapelle-aux-Saints	СТ	MH	
<u>Early H. sapiens</u>							0.33
Qafzeh6	100-130 ka ¹⁹	М	Israel	Qafzeh	PH	IPH	
Qafzeh9	100-130 ka ¹⁹	F	Israel	Qafzeh	OP	DC	
SkhūlV	88-117 ka ⁵⁷	М	Israel	Skhūl	СТ	PM	
<u>San</u>							0.60
Kh-149	19-20 th c.	Μ	Republic of South Africa	San	СТ	DC	
Kh-1738	19-20 th c.	F	Republic of South Africa	San	СТ	DC	
Kh-1751	19-20 th c.	Μ	Republic of South Africa	San	СТ	DC	
Kh-3731	19-20 th c.	М	Republic of South Africa	San	СТ	DC	
Kh-3732	19-20 th c.	F	Republic of South Africa	San	СТ	DC	
Kh-3733	19-20 th c.	F	Republic of South Africa	San	PH	DC	
Kh-5051	19-20 th c.	F	Republic of South Africa	San	СТ	DC	
Kh-5563	19-20 th c.	F	Republic of South Africa	San	PH	MH	
Kh-6109	19-20 th c.	F	Republic of South Africa	San	СТ	DC	
Kh-AF.30.0.1	19-20 th c.	М	Republic of South Africa	San	СТ	DC	
<u>Khoikhoi</u>							0.40
Kh-1549	19-20 th c.	F	Republic of South Africa	Khoikhoi	PH	MH	
Kh-1739	19-20 th c.	М	Republic of South Africa	Khoikhoi	СТ	DC	
Kh-1742	19-20 th c.	F	Republic of South Africa	Khoikhoi	СТ	DC	
Kh-1743	19-20 th c.	Μ	Republic of South Africa	Khoikhoi	СТ	DC	
Kh-1744	19-20 th c.	Μ	Republic of South Africa	Khoikhoi	СТ	DC	
Kh-1747	19-20 th c.	М	Republic of South Africa	Khoikhoi	СТ	DC	
Kh-3597	19-20 th c.	М	Republic of South Africa	Khoikhoi	PH	MH	
Kh-3598	19-20 th c.	Μ	Republic of South Africa	Khoikhoi	PH	MH	
Kh-3599	19-20 th c.	F	Republic of South Africa	Khoikhoi	PH	MH	
Kh-5102	19-20 th c.	F	Republic of South Africa	Khoikhoi	PH	DC	
<u> Pygmy - Bayaka</u>							0.50
Ру-9880	19-20 th c.	F	Central African Republic	Bayaka	PH	MH	
Ру-17761	19-20 th c.	F	Central African Republic	Bayaka	PH	MH	
Ру-17766	19-20 th c.	Μ	Central African Republic	Bayaka	PH	MH	
Ру-17767	19-20 th c.	М	Central African Republic	Bayaka	PH	MH	

Ру-17768	19-20 th c.	Μ	Central African Republic	Bayaka	PH	MH	
Ру-17769	19-20 th c.	Μ	Central African Republic	Bayaka	PH	MH	
Ру-17980	19-20 th c.	Μ	Central African Republic	Bayaka	PH	MH	
Py-18446	19-20 th c.	F	Central African Republic	Bayaka	PH	MH	
Py-18449	19-20 th c.	F	Central African Republic	Bayaka	PH	MH	
Ру-23641	19-20 th c.	F	Central African Republic	Bayaka	PH	MH	
<u> Pygmy - Mbuti</u>							0
Ру-5057	19-20 th c.	М	Congo	Mbuti	PH	DC	
Ру-5058	19-20 th c.	М	Congo	Mbuti	СТ	DC	
Central Africa			_				0.21
AfC-1730	19-20 th с.	M	Congo	Kongo	СТ	DC	
AfC-1774	19-20 th c.	Μ	Central Africa	Adamawa-Ubangi	СТ	DC	
AfC-1777	19-20 th с.	М	Congo	Kongo	СТ	DC	
AfC-5060	19-20 th c.	Μ	Congo	Kongo	СТ	DC	
AfC-5424	19-20 th c.	Μ	Nigeria	Benue	СТ	DC	
AfC-5428	19-20 ^т с.	М	Nigeria	Benue	СТ	DC	
AfC-5651	19-20 ^т с.	М	Nigeria	Benue	СТ	DC	
AfC-5701	19-20 th с.	F	Nigeria	Benue	СТ	DC	
AfC-6096	19-20 ^т с.	M	Central Africa	Adamawa-Ubangi	CT	DC	
AfC-6097	19-20 ^т с.	M	Central Africa	Adamawa-Ubangi	CT	DC	
AfC-AF.20.0.1	19-20 ^т с.	M	Central Africa	Adamawa-Ubangi	CT	DC	
AfC-AF.44.0.2	19-20 ^т с.	M	Nigeria	Yoruba	CT	DC	
AfC-AF.44.0.4	19-20 ^т с.	F	Nigeria	Yoruba	CT	DC	
AfC-AF1257	19-20 ^т с.	F	Central Africa	Adamawa-Ubangi	СТ	DC	0.40
	10.00th -	N 4	Tanaania	Llava	OT		0.43
AF.23.0.109	19-20 ⁴⁴ C.	IVI	Tanzania	Науа		DC	
AF.23.0.110	19-20 ⁴⁴ C.	IVI	Tanzania	Науа		DC	
AF.23.0.111	19-20 ⁴⁴ C.		Tanzania	Науа		DC	
AF.23.0.112	19-20 ⁴⁴ C.		Tanzania	Науа		DC	
AF.23.0.113	19-20 ⁴⁴ C.		Tanzania	Науа			
AF.23.0.16	19-20 ⁴⁴ C.	IVI	Tanzania	Науа		DC	
AF.23.0.18	19-20 ⁴⁴ C.		Tanzania	Науа			
AF.23.0.19	19-20 ^{°°} C.		Tanzania	Науа	СТ		
AF.23.0.20	19-20 th c.	Г	Tanzania	Пауа	СТ		
AF.23.0.21	19-20 th c.		Tanzania	Пауа	СТ		
AF.23.0.23	19-20 th c.	г с	Tanzania	Пауа	СТ		
AF.23.0.34	19-20 th c.	г с	Tanzania	Пауа	СТ		
AF.23.0.42	19-20 C.	г с	Tanzania	Пауа	СТ		
West Africa	19-20 C.	Г	Tanzania	Пауа	U1	DC	0.33
AfW-1725	19-20 th c.	М	Ghana	Akan-Fante	СТ	DC	0.00
AfW-1728	19-20 th c.	M	Guinea	Susu	СТ	DC	
AfW-1729	19-20 th c.	M	Guinea	Susu	СТ	DC	
AfW-1778	19-20 th c.	F	Mali	Gur	СТ	DC	
AfW-5419	19-20 th c.	F	Mali	Mandenka	СТ	DC	
AfW-5423	19-20 th c.	М	Mali	Mandenka	СТ	DC	
AfW-5643	19-20 th c.	М	Ghana	Akan-Fante	СТ	DC	
AfW-6087	19-20 th c.	М	Mali	Mandenka	СТ	DC	
AfW-6089	19-20 th c.	F	Mali	Mandenka	СТ	DC	
South Africa						-	0
AfS-1732	19-20 th c.	М	Republic of South Africa	Nguni	СТ	DC	
AfS-1733	19-20 th c.	М	Republic of South Africa	Nguni	СТ	DC	
AfS-1734	19-20 th c.	М	Republic of South Africa	Nguni	СТ	DC	
AfS-1735	19-20 th c.	М	Republic of South Africa	Sotho-Tswana	СТ	DC	
AfS-1737	19-20 th c.	М	Republic of South Africa	Xhosa	СТ	DC	
AfS-AF.35.0.1	19-20 th c.	М	Republic of South Africa	Xhosa	СТ	DC	
<u>Nilotic</u>							0

Nil-6092	19-20 th c.	Μ	Uganda	Teso	СТ	DC	
Nil-6093	19-20 th c.	Μ	Uganda	Teso	СТ	DC	
Nil-6094	19-20 th c.	Μ	Uganda	Teso	СТ	DC	
Nil-Af.21.0.1	19-20 th c.	М	Kenya	Turkana	PH	DC	
Nil-Af.21.0.2	19-20 th c.	М	Kenya	Turkana	PH	DC	
Nil-Af.21.0.4	19-20 th c.	М	Kenya	Turkana	PH	DC	
Nil-Af.21.0.5	19-20 th c.	М	Kenya	Turkana	PH	DC	
Nil-Af.21.0.6	19-20 th c.	М	Kenya	Turkana	PH	DC	
<u>Papua</u>							0.50
MEL076	19-20 th c.	F	Papua New Guinea	Papuan	PH	DC	
MEL084	19-20 th c.	М	Papua New Guinea	Papuan	PH	DC	
MEL085	19-20 th c.	Μ	Papua New Guinea	Papuan	PH	DC	
MEL104	19-20 th c.	F	Papua New Guinea	Papuan	СТ	DC	
MEL130	19-20 th c.	F	Papua New Guinea	Papuan	PH	DC	
MEL153	19-20 th c.	F	Papua New Guinea	Papuan	СТ	DC	
MEL154	19-20 th c.	F	Papua New Guinea	Papuan	СТ	DC	
MEL185	19-20 th c.	М	Papua New Guinea	Papuan	PH	DC	
MEL197	19-20 th c.	М	Papua New Guinea	Papuan	СТ	DC	
MEL207	19-20 th c.	F	Papua New Guinea	Papuan	PH	DC	
MEL210	19-20 th c.	F	Papua New Guinea	Papuan	PH	DC	
MEL214	19-20 th c.	М	Papua New Guinea	Papuan	PH	DC	
MEL217	19-20 th c.	М	Papua New Guinea	Papuan	PH	DC	
MEL273	19-20 th c.	М	Papua New Guinea	Papuan	PH	DC	
Australia							0.43
AUS001	19-20 th c.	Μ	Australia	Australian	СТ	DC	
AUS028	19-20 th c.	Μ	Australia	Australian	СТ	DC	
AUS046	19-20 th c.	F	Australia	Australian	СТ	DC	
AUS047	19-20 th c.	F	Australia	Australian	СТ	DC	
AUS059	19-20 th c.	F	Australia	Australian	СТ	DC	
AUS106	19-20 th c.	М	Australia	Australian	СТ	DC	
AUS108	19-20 th c.	Μ	Australia	Australian	СТ	DC	
AUS122	19-20 th c.	Μ	Australia	Australian	СТ	DC	
AUS124	19-20 th c.	F	Australia	Australian	СТ	DC	
AUS125	19-20 th c.	F	Australia	Australian	СТ	DC	
AUS126	19-20 th c.	Μ	Australia	Australian	СТ	DC	
AUS127	19-20 th c.	Μ	Australia	Australian	СТ	DC	
AUS128	19-20 th c.	Μ	Australia	Australian	СТ	DC	
AUS131	19-20 th c.	F	Australia	Australian	СТ	DC	
North Africa							0.40
AF.11-NU761	19-20 ^m c.	M	Soudan (Nubia)	Nubian	CT	DC	
AF.11.5.033	5.4-5.1 Ka ¹⁰⁰		Egypt	Badari	OP	DC	
AF.11.5.037	5.4-5.1 ka ¹⁰⁰	N/	Egypt	Badari			
AF.11.5.040	5.4-5.1 ka ¹⁰⁰	M	Egypt	Badari	OP	DC	
AF.11.5.046	5.4-5.1 ka ¹⁰⁰	F	Egypt	Badari	OP	DC	
AF.11.5.053	5.4-5.1 ka ¹⁰⁰	Μ	Egypt	Badari	OP	DC	
AF.11.5.054	5.4-5.1 ka ¹⁰⁰	F	Egypt	Badari	OP	DC	
AF.11.5.104	6.3-4.9 ka ¹⁰⁰	Μ	Egypt	Naqada	OP	DC	
AF.11.5.116	6.3-4.9 ka ¹⁰⁰	F	Egypt	Naqada	OP	DC	
AF.11.5.181	6.3-4.9 ka ¹⁰⁰	F	Egypt	Naqada	OP	DC	
AF.11.3.238	0.3-4.9 Ka ¹⁰⁰	M	Egypt	Naqada		DC	
AF.11.5.476	6.3-4.9 Ka ¹⁰⁰	F	⊏yypi Favnt	Nayaua eheneki			
AfN-1769	19-20 th c	N/	Favot	Arah	СТ		
South Europe	10-20 0.	111	רפיאי		01	50	0.33
Eu-1036	19-20 th c.	F	France	French	СТ	DC	
Eu-1042	19-20 th c	M	France	French	CT	DC	
Eu-1051	19-20 th c.	Μ	France	French	СТ	DC	
						-	

Eu-1065	19-20 th c.	F	France	French	СТ	DC	
Eu-1067	19-20 th c.	Μ	France	French	СТ	DC	
Eu-1114	19-20 th c.	Μ	Italy	Italian	СТ	DC	
Eu-1120	19-20 th c.	Μ	Italy	Italian	СТ	DC	
Eu-2235	19-20 th c.	М	France	Italian	СТ	DC	
Eu.24.00.1	19-20 th c.	М	France	French	СТ	DC	
Eu.42.00.1	19-20 th c.	F	Italy	Italian	СТ	DC	
Eu.42.00.2	19-20 th c.	М	Italy	Italian	СТ	DC	
Eu.42.00.5	19-20 th c.	М	Italy	Italian	СТ	DC	
Eu.43.00.3	19-20 th c.	М	Malta	Maltese	СТ	DC	
Eu.43.00.4	19-20 th c.	F	Malta	Maltese	СТ	DC	
Eu.45.4.1	3.0-2.2 ka	F	Spain	Minorca	СТ	DC	
North Europe							0.43
Eu-1143	19-20 th c.	Μ	Austria	Austrian	СТ	DC	
Eu-1150	19-20 th c.	F	Austria	Austrian	СТ	DC	
Eu-1155	19-20 th c.	Μ	Czech Republic	Czech	СТ	DC	
Eu-1173	19-20 th c.	F	Sweden	Sami	СТ	DC	
Eu-1178	19-20 th c.	Μ	Denmark	Dane	СТ	DC	
Eu-1181	19-20 th c.	Μ	Austria	Austrian	СТ	DC	
Eu.1.5.67	19-20 th c.	Μ	England	English	СТ	DC	
Eu.24.00.2	19-20 th c.	F	Germany	German	СТ	DC	
Eu.26.00.1	19-20 th c.	F	Germany	German	СТ	DC	
Eu.26.00.2	19-20 th c.	Μ	Germany	German	СТ	DC	
Eu.31.0.1	19-20 th c.	Μ	Ukraine	Ukrainian	СТ	DC	
Eu.31.00.1	19-20 th c.	Μ	Russia	Russian	СТ	DC	
Eu.31.00.2	19-20 th c.	F	Russia	Russian	СТ	DC	
Eu.34.4.1	19-20 th c.	F	Hungary	Hungarian	СТ	DC	
<u>South Asia</u>							0.21
SAS-03	19-20 th c.	M	India	Vedda	СТ	DC	
SAS-04	19-20 th c.	Μ	India	Vedda	СТ	DC	
SAS-05	19-20 th c.	Μ	India	Vedda	СТ	DC	
SAS-06	19-20 ^т с.	M	India	Vedda	СТ	DC	
SL3315	19-20 ^m c.	+	India	Sinhalese	CI	DC	
SL3317	19-20 ^{ur} c.	M	India	Sinhalese	CI	DC	
SL3318	19-20 ^m c.	M	India	Sinhalese	CI	DC	
SAS-08	19-20 ^{ur} c.	F	India	Tamil	CI	DC	
SAS-11	19-20 ⁴¹ C.	M	India	I amii	CT	DC	
SAS-13	19-20 ⁴⁴ C.	F	Pakistan	Nagyr			
5A5-14	19-20 ⁴⁴ C.		Pakistan	Nagyr			
5A5-15	19-20 th c.		Pakistan	Pashtun			
SAS-10	19-20 th c.		Pakistan	Pashtun	СТ		
South Fast Asia	19-20 C.	IVI	Fakislan	Fashtun	CI	DC	0.36
BU02	19-20 th c	F	Myanmar	Bamar	СТ	DC	0.00
BU04	19-20 th c	M	Myanmar	Bamar	СТ	DC	
BU08	19-20 th c.	M	Myanmar	Bamar	СТ	DC	
BU10	19-20 th c.	F	Myanmar	Bamar	CT	DC	
BU14	19-20 th c.	M	Myanmar	Bamar	СТ	DC	
BU16	19-20 th c.	М	Mvanmar	Bamar	СТ	DC	
BU19	19-20 th c.	M	Mvanmar	Bamar	CT	DC	
BU21	19-20 th c.	M	Myanmar	Bamar	СТ	DC	
BU24	19-20 th c.	M	Myanmar	Bamar	CT	DC	
BU26	19-20 th c.	F	Myanmar	Bamar	СТ	DC	
BU28	19-20 th c.	F	Myanmar	Bamar	СТ	DC	
BU29	19-20 th c.	М	Myanmar	Bamar	СТ	DC	
BU31	19-20 th c.	M	Myanmar	Bamar	СТ	DC	
BU32	19-20 th c.	F	Myanmar	Bamar	СТ	DC	

<u>East Asia - Japan</u>							0.30
EAS-1764	19-20 th c.	М	Japan	Ainu	СТ	DC	
EAS24-6	19-20 th c.	М	Japan	Ainu	СТ	DC	
EAS26-2377	19-20 th c.	М	Japan	Japanese	СТ	DC	
EAS28-5430	19-20 th c.	F	Japan	Japanese	PH	DC	
EAS-4194	19-20 th c.	М	Japan	Japanese	PH	DC	
EAS-9069	19-20 th c.	М	Japan	Japanese	PH	MH	
EAS-9071	19-20 th c.	М	Japan	Japanese	PH	MH	
EAS-9072	19-20 th c.	F	Japan	Japanese	PH	MH	
EAS-9074	19-20 th c.	М	Japan	Japanese	PH	MH	
EAS-ORSA0668	19-20 th c.	F	Japan	Japanese	СТ	OR	
<u>East Asia - China</u>							0.20
EAS-1760	19-20 th c.	М	China	Chinese	СТ	DC	
EAS-AS.21.0.7	19-20 th c.	М	China	Chinese	СТ	DC	
EAS-ORSA0426	19-20 th c.	М	China	Chinese	СТ	OR	
EAS-ORSA0427	19-20 th c.	М	China	Chinese	СТ	OR	
EAS-ORSA0550	19-20 th c.	F	China	Chinese	СТ	OR	
EAS-ORSA056	19-20 th c.	М	China	Chinese	СТ	OR	
EAS-ORSA0669	19-20 th c.	М	China	Chinese	СТ	OR	
EAS-ORSA0670	19-20 th c.	F	China	Chinese	СТ	OR	
EAS-ORSA1858	19-20 th c.	М	China	Chinese	СТ	OR	
EAS-ORSA1859	19-20 th c.	М	China	Chinese	СТ	OR	o = 0
Inuit - Greenland	40 ooth				от	50	0.50
NA123	19-20 ⁴¹ C.	M	Denmark (Greenland)	Inuit		DC	
NA124	19-20 ⁴¹ C.	F	Denmark (Greenland)	Inuit		DC	
NA133	19-20 ⁴¹ C.		Denmark (Greenland)	Inuit		DC	
NA134	19-20 ⁴⁴ C.		Denmark (Greenland)	Inuit			
NA136	19-20 ⁴⁴ C.		Denmark (Greenland)	Inuit			
NA137	19-20 th c.		Denmark (Greenland)	Inuit	СТ		
NA138	19-20 ⁴⁴ C.		Denmark (Greenland)	Inuit			
	19-20 th c.		Denmark (Greenland)	Inuit	CT		
NA 144	19-20 th c.	г с	Denmark (Greenland)	Inuit	СТ		
NA 145	19-20 th c.	Г	Denmark (Greenland)	Inuit	СТ		
	19-20 C.	IVI NA	Denmark (Greenland)	Inuit	СТ		
NA 145	19-20 C.		Denmark (Greenland)	Inuit	СТ		
NA151	19-20 C.	F	Denmark (Greenland)	Inuit	СТ		
NA173	19-20 0. 19-20 th c	F	Denmark (Greenland)	Inuit	СТ		
Inuit - Alaska	19-20 0.	1	Deninark (Greenland)	man	01	DC	0.62
99.1-102	19-20 th c.	F	USA (Alaska)	lpiutak	СТ	AM	0.02
99.1-103	19-20 th c.	М	USA (Alaska)	lpiutak	СТ	AM	
99.1-161	19-20 th c.	F	USA (Alaska)	lpiutak	СТ	AM	
99.1-168	19-20 th c.	F	USA (Alaska)	lpiutak	СТ	AM	
99.1-191	19-20 th c.	F	USA (Alaska)	Ipiutak	СТ	AM	
99.1-196	19-20 th c.	М	USA (Alaska)	Ipiutak	СТ	AM	
99.1-197	19-20 th c.	F	USA (Alaska)	lpiutak	СТ	AM	
99.1-199	19-20 th c.	F	USA (Alaska)	lpiutak	СТ	AM	
99.1-204	19-20 th c.	F	USA (Alaska)	lpiutak	СТ	AM	
99.1-252	19-20 th c.	М	USA (Alaska)	Ipiutak	СТ	AM	
99.1-684	19-20 th c.	F	USA (Alaska)	lpiutak	СТ	AM	
99.1-87	19-20 th c.	М	USA (Alaska)	lpiutak	СТ	AM	
99.1-92	19-20 th c.	М	USA (Alaska)	lpiutak	СТ	AM	
<u>North America (native)</u>			、				0.43
NA12	19-20 th c.	F	USA (New Mexico)	Zuni	СТ	DC	
NA15	19-20 th c.	F	USA (New Mexico)	Zuni	СТ	DC	
NA23	19-20 th c.	F	USA (New Mexico)	Zuni	СТ	DC	
NA46	19-20 th c.	F	USA (New Mexico)	Zuni	СТ	DC	

NA61	19-20 th c.	Μ	USA (New Mexico)	Zuni	СТ	DC	
NA68	19-20 th c.	F	USA (Midwest)	Sioux	СТ	DC	
NA72	19-20 th c.	М	USA (Midwest)	Sioux	СТ	DC	
NA74	19-20 th c.	М	Canada (Ontario)	Iroquois	СТ	DC	
NA81	19-20 th c.	М	Canada (Ontario)	Huron	СТ	DC	
NA82	19-20 th c.	Μ	Canada (Ontario)	Huron	СТ	DC	
NA83	19-20 th c.	М	Canada (Ontario)	Huron	СТ	DC	
NA92	19-20 th c.	М	Canada (British Columbia)	Squamish	СТ	DC	
NA95	19-20 th c.	М	Canada (British Columbia)	Squamish	СТ	DC	
NA97	19-20 th c.	F	Canada (British Columbia)	Squamish	СТ	DC	
LMP sample							0
Irhoud 1	~315±34 ka²º	Μ	Morroco	Jebel Irhoud	OP	DC	
Omo II	195±95 ka ²³	Μ	Ethiopia	Omo Valley	PH	NMK	
LH 18	200-300 ka ²⁹	?	Tanzania	Laetoli	СТ	TAZ	
Florisbad	259±35 ka ³¹	?	Republic of South Africa	Florisbad	PH	NM	
KNM-ES11693	270-300 ka ²⁸	?	Kenya	Eliye Springs	PH	NMK	

^a Bold types indicate when original specimens were examined.

^b Indicates the scanning method: CT scanner, optical scanner (OP) or photogrammetry (PH)

^c Indicates where the specimens are curated (DC = Duckworth Laboratory, Cambridge; IPH = Institut de Paléontologie Humaine, Paris; MH = Musée de l'Homme, Paris; SU = Museo di Antropologia, Sapienza Università di Roma; MP = Museo Pigorini, Rome; NHM = Natural History Museum, London; NMK = National Museums of Kenya, Nairobi; NM = National Museum, Bloemfontein; OR = ORSA database, Penn Museum; PM = Peabody Museum, Cambridge; TAZ = National Museum of Tanzania, Dar Es Salaam; AM = American Museum of Natural History, New York, CT scans from¹⁰⁵); Ma = millions of years; ka = thousands of years.

^d Ratio f/n indicates the ratio between the number of female versus the number of specimens for each group and for the total phylogeny sample.

			Hypothesis 1					Hypothesis 2		
Taxa names			Branch length	Split times	s at nodes			Branch length	Split times	at nodes
	Tips/Nodes	To node	(ka)	Nodes	Split (ka)	Tips/Nodes	To node	(ka)	Nodes	Split (ka)
Homo habilis	-		1800 ⁹³	30	2000	Ļ		1800 ⁹³	30	2000
Homo ergaster	2		1600 ⁹³	31	1900	2		1600 ⁹³	31	1900
Homo georgicus	e		1770 ⁹⁵	32	1800	e	·	1770 ⁹⁵	32	1800
Early Neandertal	4		190 ^{19,96}	33	600	4		190 ^{19,96}	33	600
Near East Neandertal	5		55 ^{19,97}	34	300	S		55^{19,97}	34	300
South Europe Neandertal	9		55 ^{19,98}	35	150	9		55^{19,98}	35	150
West Europe Neandertal	7		59.5 ^{19,99}	36	100	7		59.5 ^{19,99}	36	100
Early Homo sapiens	8		109 ^{19,57}	37	305	8		109 ^{19,57}	37	305
San	6		0	38	173	6	·	0	38	173
Khoikhoi	10		0	39	26	10		0	39	26
Pygmy Bayaka	11		0	40	171	11		0	40	171
Pygmy Mbuti	12		0	41	44	12	·	0	41	44
Central Africa	13		0	42	123	13		0	42	123
East Africa	14		0	43	25	14	ı	0	43	25
West Africa	15		0	44	10	15	ı	0	44	10
South Africa	16		0	45	5	16	ı	0	45	5
Nilotic	17		0	46	4	17	ı	0	46	4
North Africa	18		0	47	06	18	ı	0	47	75
South Europe	19		0	48	37.5	19	ı	0	48	63
North Europe	20		0	49	75	20	ı	0	49	24.5
South Asia	21		0	50	42	21	ı	0	50	28
Papua	22		0	51	24.5	22	ı	0	51	27
Australia	23		0	52	28	23	ı	0	52	25
South East Asia	24		0	53	22	24	ı	0	53	22
East Asia_Japan	25		0	54	14	25	ı	0	54	14
East Asia_China	26		0	55	12	26	ı	0	55	12
Inuits_Greenland	27		0	56	15	27	ı	0	56	15
Inuits_Alaska	28		0	57	2	28	ı	0	57	2
North America	29		0			29	ı	0		
	30	31	100			30	31	100		

Supplementary Table 2. Description of the phylogenetic hypotheses, showing the topology of the trees along with associated split times and references.

31	-	100	31	-	100
31	32	100	31	32	100
32	7	200	32	7	200
32	с	30	32	ო	30
30	33	1400 ⁶⁹	30	33	1400 ⁶⁹
33	34	300 ⁷⁸	33	34	300 ⁷⁸
34	4	110 ^{19,96}	34	4	110 ^{19,96}
34	35	150 ⁷⁸	34	35	150 ⁷⁸
35	S	95 ^{19,97}	35	S	95 ^{19,97}
35	36	50 ⁷⁸	35	36	5078
36	9	45 ^{19,98}	36	9	45 ^{19,98}
36	7	40.5 ^{19,99}	36	7	40.5 ^{19,99}
33	37	295 ⁶⁹	33	37	295 ⁶⁹
37	8	196 ^{19,57}	37	œ	196 ^{19,57}
37	38	13255	37	38	132 ⁵⁵
38	39	14755	38	39	147 ⁵⁵
39	6	26 ⁵⁵	39	6	26 ⁵⁵
39	10	26 ⁵⁵	39	10	26 ⁵⁵
38	40	255	38	40	2 ⁵⁵
40	41	12755	40	41	127 ⁵⁵
41	11	44 ⁵⁵	41	1	44 ⁵⁵
41	12	44 ⁵⁵	41	12	44 ⁵⁵
40	42	48 ⁵⁵	40	42	48 ⁵⁵
42	43	98 ⁵⁵	42	43	98 ⁵⁵
43	44	15 ⁵⁵	43	44	15 ⁵⁵
44	13	10 ⁵⁵	44	13	10 ⁵⁵
44	45	5102	44	45	5 ¹⁰²
45	14	5 ¹⁰²	45	14	5 ¹⁰²
45	46	1 102	45	46	1 102
46	15	4 ¹⁰²	46	15	4 ¹⁰²
46	16	4102	46	16	4 ¹⁰²
43	17	25 ⁵⁵	43	17	25 ⁵⁵
42	47	33 ³⁹	42	47	48 ³⁹
47	48	52.5 ¹⁴	47	20	75 ³⁹
48	18	37.5 ¹⁴	47	48	12 ⁵⁵

48	19	37.5 ¹⁴	48	49	38.5 ¹⁰³
47	49	15 ³⁹	49	21	24.5^{103}
49	20	75 ³⁹	49	22	24.5^{103}
49	50	33 ¹⁴	48	50	35 ⁵⁵
50	51	17.5 ¹⁰³	50	23	28 ⁵⁵
51	21	24.5 ¹⁰³	50	51	1 ⁵⁵
51	22	24.5 ¹⁰³	51	52	2^{14}
50	52	14 ⁵⁵	52	18	25 ¹⁴
52	23	28 ⁵⁵	52	19	25 ¹⁴
52	53	655	51	53	5 ⁵⁵
53	54	8 ⁵⁵	53	54	8 ⁵⁵
54	24	1455	54	24	14 ⁵⁵
54	55	2104	54	55	2 ¹⁰⁴
55	25	12 ¹⁰⁴	55	25	12 ¹⁰⁴
55	26	12 ¹⁰⁴	55	26	12 ¹⁰⁴
53	56	7105	53	56	7 ¹⁰⁵
56	57	13 ¹⁰⁵	56	57	13 ¹⁰⁵
57	27	2105	57	27	2 ¹⁰⁵
57	28	2105	57	28	2 ¹⁰⁵
56	29	15 ¹⁰⁵	56	29	15 ¹⁰⁵

	Eigenvalues	% Variance	Cumulative %
PC1	0.002221	65.61	65.61
PC2	0.000447	13.21	78.82
PC3	0.000196	5.78	84.59
PC4	0.000103	3.04	87.64
PC5	8.79E-05	2.60	90.23
PC6	6.41E-05	1.89	92.13
PC7	4.67E-05	1.38	93.50
PC8	4.09E-05	1.21	94.71
PC9	3.14E-05	0.93	95.64
PC10	2.87E-05	0.85	96.49
PC11	2.12E-05	0.63	97.11
PC12	1.91E-05	0.56	97.68
PC13	1.70E-05	0.50	98.18
PC14	1.07E-05	0.32	98.49
PC15	9.33E-06	0.28	98.77
PC16	7.61E-06	0.22	98.99
PC17	7.40E-06	0.22	99.21
PC18	6.16E-06	0.18	99.39
PC19	3.81E-06	0.11	99.51
PC20	3.29E-06	0.10	99.60
PC21	2.84E-06	0.08	99.69
PC22	2.31E-06	0.07	99.76
PC23	2.21E-06	0.07	99.82
PC24	1.65E-06	0.05	99.87
PC25	1.60E-06	0.05	99.92
PC26	1.12E-06	0.03	99.95
PC27	8.80E-07	0.03	99.98
PC28	7.96E-07	0.02	100.00

Supplementary Table 3. Description of the PCs from the aligned tree data for Hypotheses 1 and 2

PCs scores are used as variables to run the ancestral reconstruction

_ G	C1 to PC:	3 (85% of vari	iation)		PC	1 to PC8 (95	% of variation			All PCs (100	% variation)		Landn coordi (100% va	ıarks nates riation)
	K _{mult}	Crit. test stat.	Est. power	d	K _{mult}	Crit. test stat.	Est. power	d	Kmult	Crit. test stat.	Est. power	d	Kmult	d
Hypothesis 1	1.39	0.0211	1.000	0.001	0.543	0.0190	1.000	0.001	0.386	0.0188	1.000	0.001	0.385	0.001
Hypothesis 2	1.18	0.0197	1.000	0.001	0.539	0.0192	1.000	0.001	0.362	0.0175	1.000	0.001	0.368	0.001
Hypothesis 1b	1.13	0.0196	1.000	0.001	0.47	0.0171	1.000	0.001	0.334	0.0164	1.000	0.001	0.337	0.001
Hypothesis 2b	1.11	0.0217	1.000	0.001	0.48	0.0183	1.000	0.001	0.338	0.0182	1.000	0.001	0.338	0.001
K _{mult} is computed	d for the t	three first PC	S, the eight fi	irst PCs a	and the 28	8 PCs ³⁷ , as w	vell as for the	aligned	landmar	(s coordinate	es ³⁸ . In all case	es, the p	hylogene	tic signals

Supplementary Table 4. Values for the phylogenetic signal Kmult (i.e. multivariate K-statistics from Blomberg's K¹⁰⁶) for hypotheses 1, 2, 1b and 2b.

ົນ ñ . 2 _ 20 _ computed present higher values for Hypothesis 1. Kmult L

	Eigenvalues	% Variance	Cumulative %
PC1	0.0024	66.48	66.48
PC2	0.000516	14.28	80.76
PC3	0.000186	5.16	85.91
PC4	0.000118	3.26	89.17
PC5	8.36E-05	2.32	91.48
PC6	6.67E-05	1.85	93.33
PC7	4.88E-05	1.35	94.69
PC8	3.92E-05	1.09	95.77
PC9	3.43E-05	0.95	96.72
PC10	2.55E-05	0.71	97.43
PC11	2.03E-05	0.56	97.99
PC12	1.50E-05	0.42	98.40
PC13	1.38E-05	0.38	98.79
PC14	8.93E-06	0.25	99.03
PC15	7.45E-06	0.21	99.24
PC16	6.96E-06	0.19	99.43
PC17	4.15E-06	0.11	99.55
PC18	3.85E-06	0.11	99.65
PC19	3.04E-06	0.08	99.74
PC20	2.65E-06	0.07	99.81
PC21	2.21E-06	0.06	99.87
PC22	1.92E-06	0.05	99.93
PC23	1.51E-06	0.04	99.97
PC24	1.14E-06	0.03	100.00

Supplementary Table 5. Description of the PCs from the aligned tree data for Hypotheses 1b and 2b

PCs scores are used as variables to run the ancestral reconstruction

Reference	Test	Max. positive	Max. negative	Avg. positive	Avg. negative	SD
vLCA 1	vLCA 2	0.16	-0.15	0.05	-0.05	0.06
vLCA 1	vLCA 1b	1.00	-0.98	0.24	-0.22	0.30
vLCA 2	vLCA 2b	2.96	-2.45	0.62	-0.58	0.58
vLCA 1b	vLCA 2b	3.13	-2.84	0.78	-0.74	0.98
vLCA 1	vLCA 1NS	0.62	-0.50	0.11	-0.10	0.13
vLCA 1	vLCA 1Sub	2.93	-3.01	0.30	-0.35	0.51
vLCA 1	vLCA 1Ld	6.65	6.30	1.03	-1.08	1.65
vLCA 1	vLCA 1Ld	6.65	6.30	1.03	-1.08	1.65

Supplementary Table 6. Maximum, average and standard deviation of the surface deviations between the different vLCAs (mm).

Supplementary Table 7. African LMP specimens' percentage of preserved landmarks for GMM analyses

l d Configuration	Nh of I d	%	of preserved Ld for th	e African LMP s	pecimens	
La Configuration	ND OI LU	Irhoud 1	KNM-ES 11693	Florisbad	Omo II	LH 18
A (Full)	255	96	66	60	56	55
B (Calvaria)	148	97	79	46	96	95
C (Florisbad)	156	100	62	100	40	40
D (ES11693)	182	98	100	57	63	62

For preserved landmarks < 55% the specimens where not included in the analysis. Irhoud 1 and KNM-ES 11693 were included in the four analyses while Omo II, LH 18 were not included in analysis C and Florisbad in analyses B.

	Eigenvalues	% Variance	Cumulative %
bgPC 1	0.00032	28.89	28.89
bgPC 2	0.000266	24.04	52.93
bgPC 3	0.000119	10.74	63.66
bgPC 4	8.86E-05	8.00	71.67
bgPC 5	5.72E-05	5.17	76.83
bgPC 6	5.08E-05	4.59	81.42
bgPC 7	3.59E-05	3.24	84.66
bgPC 8	2.66E-05	2.41	87.07
bgPC 9	2.05E-05	1.85	88.92
bgPC 10	1.78E-05	1.61	90.53
bgPC 11	1.53E-05	1.38	91.92
bgPC 12	1.28E-05	1.15	93.07
bgPC 13	1.23E-05	1.11	94.18
bgPC 14	9.87E-06	0.89	95.07
bgPC 15	7.75E-06	0.70	95.77
bgPC 16	7.20E-06	0.65	96.42
bgPC 17	6.16E-06	0.56	96.98
bgPC 18	5.49E-06	0.50	97.48
bgPC 19	5.10E-06	0.46	97.94
bgPC 20	4.64E-06	0.42	98.36
bgPC 21	3.68E-06	0.33	98.69
bgPC 22	3.04E-06	0.27	98.96
bgPC 23	2.63E-06	0.24	99.20
bgPC 24	2.36E-06	0.21	99.41
bgPC 25	1.82E-06	0.16	99.58
bgPC 26	1.51E-06	0.14	99.71
bgPC 27	1.08E-06	0.10	99.81
bgPC 28	9.52E-07	0.09	99.90
bgPC 29	7.37E-07	0.07	99.96
bgPC 30	3.87E-07	0.03	100.00
bgPC 31	1.11E-08	0.00	100.00

Supplementary Table 8. Description of the between group PCs – Analysis A

	Eigenvalues	% Variance	Cumulative %
bgPC 1	0.0004178	37.09	37.09
bgPC 2	0.0002665	23.65	60.74
bgPC 3	0.0001207	10.71	71.46
bgPC 4	8.29E-05	7.36	78.82
bgPC 5	5.07E-05	4.50	83.31
bgPC 6	3.96E-05	3.51	86.83
bgPC 7	2.55E-05	2.26	89.09
bgPC 8	2.37E-05	2.10	91.19
bgPC 9	2.10E-05	1.87	93.05
bgPC 10	1.73E-05	1.54	94.59
bgPC 11	1.23E-05	1.10	95.69
bgPC 12	8.95E-06	0.79	96.48
bgPC 13	8.71E-06	0.77	97.26
bgPC 14	6.03E-06	0.54	97.79
bgPC 15	5.80E-06	0.52	98.31
bgPC 16	4.57E-06	0.41	98.71
bgPC 17	3.36E-06	0.30	99.01
bgPC 18	2.47E-06	0.22	99.23
bgPC 19	2.31E-06	0.21	99.43
bgPC 20	1.63E-06	0.14	99.58
bgPC 21	1.43E-06	0.13	99.71
bgPC 22	1.10E-06	0.10	99.80
bgPC 23	9.32E-07	0.08	99.89
bgPC 24	5.17E-07	0.05	99.93
bgPC 25	4.60E-07	0.04	99.97
bgPC 26	1.54E-07	0.01	99.99
bgPC 27	1.15E-07	0.01	100.00
bgPC 28	2.16E-08	0.00	100.00
bgPC 29	8.25E-09	0.00	100.00
bgPC 30	3.19E-09	0.00	100.00

Supplementary Table 9. Description of the between group PCs – Analysis B

	Eigenvalues	% Variance	Cumulative %
bgPC 1	0.0004149	34.56	34.56
bgPC 2	0.0003213	26.76	61.32
bgPC 3	0.0001306	10.88	72.20
bgPC 4	7.59E-05	6.32	78.52
bgPC 5	6.53E-05	5.44	83.97
bgPC 6	4.36E-05	3.63	87.59
bgPC 7	2.77E-05	2.30	89.90
bgPC 8	2.18E-05	1.81	91.71
bgPC 9	2.11E-05	1.75	93.47
bgPC 10	1.37E-05	1.14	94.61
bgPC 11	1.22E-05	1.02	95.63
bgPC 12	9.28E-06	0.77	96.40
bgPC 13	7.49E-06	0.62	97.02
bgPC 14	6.79E-06	0.57	97.59
bgPC 15	5.61E-06	0.47	98.06
bgPC 16	4.33E-06	0.36	98.42
bgPC 17	4.24E-06	0.35	98.77
bgPC 18	3.47E-06	0.29	99.06
bgPC 19	2.60E-06	0.22	99.28
bgPC 20	2.46E-06	0.20	99.48
bgPC 21	1.75E-06	0.15	99.63
bgPC 22	1.60E-06	0.13	99.76
bgPC 23	1.02E-06	0.09	99.84
bgPC 24	8.27E-07	0.07	99.91
bgPC 25	5.44E-07	0.05	99.96
bgPC 26	2.99E-07	0.02	99.98
bgPC 27	1.34E-07	0.01	99.99
bgPC 28	6.48E-08	0.01	100.00
bgPC 29	2.62E-09	0.00	100.00

 $\label{eq:supplementary} \textbf{Supplementary Table 10.} \ \text{Description of the between group PCs-Analysis C}$

	Eigenvalues	% Variance	Cumulative %
bgPC 1	0.000329	32.84	32.84
bgPC 2	0.0002363	23.59	56.43
bgPC 3	0.0001221	12.19	68.62
bgPC 4	7.11E-05	7.10	75.72
bgPC 5	4.56E-05	4.55	80.27
bgPC 6	3.69E-05	3.68	83.95
bgPC 7	2.69E-05	2.68	86.63
bgPC 8	2.10E-05	2.10	88.73
bgPC 9	1.88E-05	1.88	90.61
bgPC 10	1.74E-05	1.74	92.35
bgPC 11	1.26E-05	1.26	93.61
bgPC 12	1.03E-05	1.03	94.63
bgPC 13	9.17E-06	0.92	95.55
bgPC 14	8.12E-06	0.81	96.36
bgPC 15	6.35E-06	0.63	96.99
bgPC 16	5.29E-06	0.53	97.52
bgPC 17	4.52E-06	0.45	97.97
bgPC 18	3.63E-06	0.36	98.33
bgPC 19	3.41E-06	0.34	98.67
bgPC 20	2.81E-06	0.28	98.96
bgPC 21	2.25E-06	0.23	99.18
bgPC 22	2.08E-06	0.21	99.39
bgPC 23	1.91E-06	0.19	99.58
bgPC 24	1.00E-06	0.10	99.68
bgPC 25	9.71E-07	0.10	99.78
bgPC 26	8.56E-07	0.09	99.86
bgPC 27	6.77E-07	0.07	99.93
bgPC 28	3.95E-07	0.04	99.97
bgPC 29	2.57E-07	0.03	99.99
bgPC 30	6.16E-08	0.01	100.00
bgPC 31	1.59E-09	0.00	100.00

Supplementary Table 11. Description of the between group PCs – Analysis D

	Eigenvalues	% Variance	Cumulative %
PC1	0.002276	64.21	64.21
PC2	0.000485	13.68	77.89
PC3	0.000198	5.58	83.47
PC4	0.000107	3.01	86.49
PC5	8.56E-05	2.42	88.90
PC6	6.45E-05	1.82	90.72
PC7	5.35E-05	1.51	92.23
PC8	4.15E-05	1.17	93.40
PC9	3.98E-05	1.12	94.52
PC10	2.78E-05	0.78	95.31
PC11	2.52E-05	0.71	96.02
PC12	2.15E-05	0.61	96.63
PC13	1.81E-05	0.51	97.14
PC14	1.41E-05	0.40	97.53
PC15	1.18E-05	0.33	97.87
PC16	1.05E-05	0.30	98.16
PC17	8.54E-06	0.24	98.40
PC18	7.27E-06	0.21	98.61
PC19	6.41E-06	0.18	98.79
PC20	5.66E-06	0.16	98.95
PC21	4.94E-06	0.14	99.09
PC22	4.12E-06	0.12	99.21
PC23	3.17E-06	0.09	99.29
PC24	2.84E-06	0.08	99.37
PC25	2.65E-06	0.07	99.45
PC26	2.53E-06	0.07	99.52
PC27	2.12E-06	0.06	99.58
PC28	1.99E-06	0.06	99.64
PC29	1.54E-06	0.04	99.68
PC30	1.32E-06	0.04	99.72
PC31	1.26E-06	0.04	99.75
PC32	1.05E-06	0.03	99.78
PC33	9.61E-07	0.03	99.81
PC34	8.99E-07	0.03	99.84
PC35	7.91E-07	0.02	99.86
PC36	6.80E-07	0.02	99.88
PC37	6.49E-07	0.02	99.89
PC38	5.51E-07	0.02	99.91
PC39	4.62E-07	0.01	99.92
PC40	3.98E-07	0.01	99.93
PC41	3.39E-07	0.01	99.94
PC42	3.27E-07	0.01	99.95
PC43	2.61E-07	0.01	99.96
PC44	2.29E-07	0.01	99.97
PC45	2.21E-07	0.01	99.97
PC46	1.68E-07	0.00	99.98
PC47	1.40E-07	0.00	99.98
PC48	1.26E-07	0.00	99.99
PC49	1.02E-07	0.00	99.99
PC50	8.92E-08	0.00	99.99
PC51	8.02E-08	0.00	99.99
PC52	6.31E-08	0.00	100.00

Supplementary Table 12. Description of the PCs from the aligned tree data for Hypothesis 1 using row data before sliding and data after sliding semilandmarks

PC53	6.00E-08	0.00	100.00
PC54	3.69E-08	0.00	100.00
PC55	3.10E-08	0.00	100.00
PC56	2.29E-08	0.00	100.00
PC57	1.51E-08	0.00	100.00

PCs scores are used as variables to run the ancestral reconstruction

	Eigenvalues	% Variance	Cumulative %
bgPC 1	0.000325895	29.12%	29.12%
bgPC 2	0.000274239	24.50%	53.62%
bgPC 3	0.000119148	10.65%	64.26%
bgPC 4	8.89E-05	7.95%	72.21%
bgPC 5	5.78E-05	5.16%	77.37%
bgPC 6	4.87E-05	4.35%	81.72%
bgPC 7	3.61E-05	3.23%	84.95%
bgPC 8	2.54E-05	2.27%	87.22%
bgPC 9	2.08E-05	1.86%	89.07%
bgPC 10	1.77E-05	1.58%	90.66%
bgPC 11	1.49E-05	1.33%	91.99%
bgPC 12	1.30E-05	1.16%	93.15%
bgPC 13	1.28E-05	1.15%	94.30%
bgPC 14	9.29E-06	0.83%	95.13%
bgPC 15	7.93E-06	0.71%	95.84%
bgPC 16	7.41E-06	0.66%	96.50%
bgPC 17	5.91E-06	0.53%	97.03%
bgPC 18	5.39E-06	0.48%	97.51%
bgPC 19	5.05E-06	0.45%	97.96%
bgPC 20	4.27E-06	0.38%	98.34%
bgPC 21	3.88E-06	0.35%	98.69%
bgPC 22	3.15E-06	0.28%	98.97%
bgPC 23	2.51E-06	0.22%	99.19%
bgPC 24	2.32E-06	0.21%	99.40%
bgPC 25	1.79E-06	0.16%	99.56%
bgPC 26	1.56E-06	0.14%	99.70%
bgPC 27	1.12E-06	0.10%	99.80%
bgPC 28	1.01E-06	0.09%	99.89%
bgPC 29	7.73E-07	0.07%	99.96%
bgPC 30	4.07E-07	0.04%	100.00%
bgPC 31	3.61E-08	0.00%	100.00%
bgPC 32	4.68E-09	0.00%	100.00%

Supplementary Table 13. Description of the between group PCs using a sub-sample of 239 landmarks

4	C1 to PC	3 (85% of varia	tion)		PC	1 to PC8 (9	5% of variatio	(u		All PCs (100)% variation)		Landr	narks nates
	K _{mult}	Crit. test stat.	Est. power	d	K _{mult}	Crit. test stat.	Est. power	d	K _{mult}	Crit. test stat.	Est. power	d	(100% Vã K _{mult}	p p
Hypothesis 1	1.35	0.0211	1.000	0.001	0.549	0.0197	1.000	0.001	0.384	0.0188	1.000	0.001	0.385	0.001
Hypothesis 1 VS	1.33	0.0201	1.000	0.001	0.583	0.0193	1.000	0.001	0.352	0.0182	1.000	0.001	0.354	0.001
Hypothesis 1 Sub	1.61	0.0209	1.000	0.001	0.662	0.0185	1.000	0.001	0.400	0.0186	1.000	0.001	0.400	0.001
Hypothesis 1 d	1.10	0.0198	1.000	0.001	0.569	0.0176	1.000	0.001	0.274	0.0169	1.000	0.001	0.278	0.001

Supplementary Table 14. Values for the phylogenetic signal K_{mult} (i.e. multivariate extension of Blomberg's K-statistics¹⁰⁶) of phylogenetic hypotheses 1, 1NS, 1Sub and 1Ld.

similar for the original hypothesis and the non-slid hypothesis. Reducing the landmarks and semi-landmarks number seems to increase the phylogenetic signal (hypothesis 1 rollipulcu K_{mult} is computed for the three first PCs, the eight first PCs and the 28 PCs³⁷, as well as for the aligned landmarks coordinates⁻⁻⁻⁻. The phylogenet Sub) but the use of only landmarks reduces the value of K_{mult}.

	Eigenvalues	% Variance	Cumulative %
bgPC 1	0.0004984	31.30%	31.30%
bgPC 2	0.0002857	17.94%	49.24%
bgPC 3	0.0001334	8.38%	57.62%
bgPC 4	0.0001157	7.27%	64.89%
bgPC 5	0.0001064	6.68%	71.57%
bgPC 6	8.81E-05	5.53%	77.10%
bgPC 7	5.53E-05	3.47%	80.57%
bgPC 8	5.44E-05	3.41%	83.99%
bgPC 9	3.17E-05	1.99%	85.98%
bgPC 10	2.86E-05	1.80%	87.78%
bgPC 11	2.80E-05	1.76%	89.53%
bgPC 12	2.50E-05	1.57%	91.10%
bgPC 13	2.02E-05	1.27%	92.37%
bgPC 14	1.80E-05	1.13%	93.51%
bgPC 15	1.63E-05	1.02%	94.53%
bgPC 16	1.29E-05	0.81%	95.34%
bgPC 17	1.25E-05	0.78%	96.12%
bgPC 18	1.05E-05	0.66%	96.78%
bgPC 19	9.47E-06	0.59%	97.38%
bgPC 20	8.68E-06	0.54%	97.92%
bgPC 21	6.35E-06	0.40%	98.32%
bgPC 22	6.00E-06	0.38%	98.70%
bgPC 23	4.66E-06	0.29%	98.99%
bgPC 24	3.93E-06	0.25%	99.24%
bgPC 25	3.01E-06	0.19%	99.43%
bgPC 26	2.82E-06	0.18%	99.60%
bgPC 27	2.29E-06	0.14%	99.75%
bgPC 28	2.07E-06	0.13%	99.88%
bgPC 29	1.31E-06	0.08%	99.96%
bgPC 30	5.40E-07	0.03%	99.99%
bgPC 31	9.67E-08	0.01%	100.00%
bgPC 32	1.19E-08	0.00%	100.00%
bgPC 33	8.98E-10	0.00%	100.00%
bgPC 34	1.07E-10	0.00%	100.00%

Supplementary Table 15. Description of the between group PCs using a subsample of 53 landmarks

	Eigenvalues	% Variance	Cumulative %
PC1	0.00215	61.75	61.75
PC2	0.000431	12.39	74.14
PC3	0.000235	6.74	80.88
PC4	0.00013	3.74	84.62
PC5	0.000113	3.25	87.87
PC6	8.54E-05	2.45	90.32
PC7	5.51E-05	1.58	91.91
PC8	4.87E-05	1.40	93.31
PC9	4.50E-05	1.29	94.60
PC10	3.26E-05	0.93	95.53
PC11	2.69E-05	0.77	96.31
PC12	2.51E-05	0.72	97.03
PC13	2.09E-05	0.60	97.63
PC14	1.67E-05	0.48	98.11
PC15	1.43E-05	0.41	98.52
PC16	9.14E-06	0.26	98.78
PC17	8.22E-06	0.24	99.02
PC18	6.76E-06	0.19	99.21
PC19	5.05E-06	0.15	99.36
PC20	4.50E-06	0.13	99.49
PC21	3.87E-06	0.11	99.60
PC22	3.18E-06	0.09	99.69
PC23	2.56E-06	0.07	99.76
PC24	2.29E-06	0.07	99.83
PC25	2.14E-06	0.06	99.89
PC26	1.48E-06	0.04	99.93
PC27	1.22E-06	0.03	99.97
PC28	1.18E-06	0.03	100.00

Supplementary Table 16. Description of the PCs from the aligned tree data for Hypothesis 1 using a sub-sample of 239 landmarks and semilandmarks

PCs scores are used as variables to run the ancestral reconstruction

	Eigenvalues	% Variance	Cumulative %
PC1	0.001969	48.92	48.92
PC2	0.0004913	12.21	61.13
PC3	0.0004103	10.19	71.33
PC4	0.000235	5.84	77.17
PC5	0.0001923	4.78	81.95
PC6	0.0001393	3.46	85.41
PC7	0.0001027	2.55	87.96
PC8	8.91E-05	2.21	90.17
PC9	8.19E-05	2.04	92.21
PC10	5.56E-05	1.38	93.59
PC11	5.19E-05	1.29	94.88
PC12	4.12E-05	1.02	95.90
PC13	3.02E-05	0.75	96.65
PC14	2.44E-05	0.61	97.26
PC15	1.97E-05	0.49	97.75
PC16	1.88E-05	0.47	98.22
PC17	1.66E-05	0.41	98.63
PC18	9.86E-06	0.24	98.87
PC19	8.25E-06	0.20	99.08
PC20	7.89E-06	0.20	99.28
PC21	6.41E-06	0.16	99.44
PC22	5.09E-06	0.13	99.56
PC23	4.63E-06	0.12	99.68
PC24	3.45E-06	0.09	99.76
PC25	3.09E-06	0.08	99.84
PC26	2.60E-06	0.06	99.90
PC27	1.99E-06	0.05	99.95
PC28	1.88E-06	0.05	100.00

Supplementary Table 17. Description of the PCs from the aligned tree data for Hypothesis 1 using a sub-sample of 53 landmarks

PCs scores are used as variables to run the ancestral reconstruction

Supplementary Figures

Supplementary Figure 1. World map showing the geographical and ethnical origin of the sampled population.

Circles size is proportional with population size. World map modified from World with Countries - Single Color by FreeVectorMaps.com.

Supplementary Figure 2. Projection of the phylogenies 1b (black) and 2b (grey) in the morphospace.

The associated shape deformations are displayed next to each PC. Each node represents estimated ancestors shapes along with 95% confidence envelopes. Modern human populations as follow: 1 to 9 Sub-Saharan Africa; 10-11 Oceania, 12 North Africa, 13-14 Europe, 15 South Asia, 16 to 20 East Asia, 21 North America (see Fig. 1, Supplementary Fig. 1 and Supplementary Table 1). Source data are provided as a Source Data file.

Supplementary Figure 3. Surface deviation analyses comparing the vLCAs' morphologies.

Norma frontalis, lateralis, verticalis, occipitalis views of the result of the surface deviation of vLCA 1 vs 1b (a), vLCA 2 vs 2b, and vLCA 1b vs 2b (c). The histograms indicate the distribution of the deviation in mm between each vertex of the 3d models.

С

Supplementary Figure 4. Box-and-whisker plots showing the Procrustes distances between the vLCAs and the comparative sample for analyses A and B.

(a) and (c) show the distances to vLCAs 1 and 2 and (b) and (d) present the distances to vLCAs 1b and 2b. Coloured boxes indicate the interquartile range (25 to 75%) around the median (vertical line); the dotted lines indicate the maximum and minimum range for each population, the circles are outliers.

0

1

0

Т

0

0

Oceania -

Eurasia

Inuit - America

Africa

0

000

Supplementary Figure 5. Box-and-whisker plots showing the Procrustes distances between the vLCAs and the comparative sample for analyses C and D.

(a) and (c) show the distances to vLCAs 1 and 2. (b) and (d) present the distances to vLCAs 1b and 2b. Coloured boxes indicate the interquartile range (25 to 75%) around the median (vertical line); the dotted lines indicate the maximum and minimum range for each population, the circles are outliers.

Supplementary Figure 6. Landmarks configurations used to run the GPAs and bgPCAs.

(a) analysis A: full skull, (b) analysis B: calvarium only, (c) analysis C: preserved data for Florisbad, and (d) analysis D: preserved data for KNM-ES 11693.

Supplementary Figure 7. Results from the modelling based on hypotheses 1 and 1NS.

(a) Projection of the phylogenies 1 (black tree) and 1NS based on non-slid semilandmarks (yellow tree) in the morphospace. Nodes represent the computed ancestors' shape and display the 95% confidence envelope. (b) Surface

deviation spectrum between vLCA1 and vLCA1NS. The difference in the shape between the vLCAs is < to 1.0 mm (see, Supplementary Table 6). Modern human populations as follow: 1 to 9 Sub-Saharan Africa; 10-11 Oceania, 12 North Africa, 13-14 Europe, 15 South Asia, 16 to 20 East Asia, 21 North America (see, Fig. 1 and Supplementary Data 1). Source data are provided as a Source Data file.

Supplementary Figure 8. Morphospaces of bgPCAs for analyses E and F.

(a) shows the bgPCA from analysis E where the coordinates of the 239 landmarks and semilandmarks were extracted from vLCA1, vLCA1NS, vLCA1Sub as well as from the original comparative data from analysis A. (b) shows the bgPCA from analysis F which was run on 53 landmarks extracted from vLCA1, vLCA1NS, vLCA1Sub and vLCA1Ld along from the original comparative data from analysis A. The ellipses represent the 90% confidence interval for the estimated distribution of the specimens of each population. Both bgPCAs show that the differences between the ancestral shapes are small. Modern human populations as follow: 1 to 9 Sub-Saharan Africa; 10-11 Oceania, 12 North Africa, 13-14 Europe, 15 South Asia, 16 to 20 East Asia, 21 North America (see, Fig. 1 and Supplementary Data 1). Source data are provided as a Source Data file.

Supplementary Figure 9. Results from the modelling based on hypothesis 1Sub.

(a) Projection of the phylogeny 1Sub based on a sub-sample of 239 landmarks and semilandmarks in the morphospace. Nodes represent the computed ancestors' shape and display the 95% confidence envelope. (b) Surface deviation

spectrum between vLCA1 and vLCA1Sub. The difference in the shape between the vLCAs is < to 3.0 mm (see, Supplementary Table 6) for the areas where no landmark was inputted on the specimens used to compute vLCA1 Sub. Where landmarks were inputted, the difference in shape is < 1.0 mm. Modern human populations as follow: 1 to 9 Sub-Saharan Africa; 10-11 Oceania, 12 North Africa, 13-14 Europe, 15 South Asia, 16 to 20 East Asia, 21 North America (see, Fig. 1 and Supplementary Data 1). Source data are provided as a Source Data file.

Supplementary Figure 10. Results from the modelling based on hypothesis 1Ld.

(a) Projection of the phylogeny 1Ld based on a sub-sample of 53 landmarks in the morphospace. Nodes represent the computed ancestors' shape and display the 95% confidence envelope. (b) Surface deviation spectrum between vLCA1 and vLCA1Ld. The difference in the shape between the vLCAs is < to 6.0 mm (see, Supplementary Table 6) for the areas where no landmark was inputted on the specimens used to compute vLCA1 Ld. Where landmarks were inputted, the difference in shape is < 1.0 mm. Modern human populations as follow: 1 to 9 Sub-Saharan Africa; 10-11 Oceania, 12 North Africa, 13-14 Europe, 15 South Asia, 16 to 20 East Asia, 21 North America (see, Fig. 1 and Supplementary Data 1). Source data are provided as a Source Data file.

Supplementary References

- 93 Feibel, C. S., Brown, F. H. & McDougall, I. Stratigraphic context of fossil hominids from the Omo group deposits: Northern Turkana Basin, Kenya and Ethiopia. *Am. J. Phys. Anthropol.* **78**, 595-622, doi:10.1002/ajpa.1330780412 (1989).
- 94 McDougall, I. & Brown, F. H. Precise ⁴⁰Ar/³⁹Ar geochronology for the upper Koobi Fora Formation, Turkana Basin, northern Kenya. *J. Geol. Soc* **163**, 205-220, doi:https://doi.org/10.1144/0016-764904-166 (2006).
- 95 Gabunia, L., Vekua, A. & Lordkipanidze, D. The environmental contexts of early human occupation of Georgia (Transcaucasia). *J. Hum. Evol.* **38**, 785-802, doi:10.1006/jhev.1999.0383 (2000).
- 96 Marra, F. *et al.* A new age within MIS 7 for the *Homo neanderthalensis* of Saccopastore in the glacioeustatically forced sedimentary successions of the Aniene River Valley, Rome. *Quat. Sci. Rev.* **129**, 260-274, doi:http://dx.doi.org/10.1016/j.quascirev.2015.10.027 (2015).
- 97 Vogel, J. C. & H.T., W. Radiocarbon. *Groningen Radiocarbon Dates IV* 5, 163-202 (1963).
- 98 Oakley, K. P. The problem of man's antiquity. An historical survey *Bulletin of the British Museum of Natural History. Geology Series* **9**, 85-155 (1964).
- 99 Blackwell, B. *et al.* ESR dating bovid teeth from the Neanderthal layer at La Ferrassie, France. *Geol. Soc. Am. Bull.* **39**, 548 (2007).
- Hendrickx, S. La chronologie de la préhistoire tardive et des débuts de l'histoire de l'Egypte. Archéo-Nil
 9, 13-81 (1999).
- 101 Patin, E. *et al.* Dispersals and genetic adaptation of Bantu-speaking populations in Africa and North America. *Science* **356**, 543-546, doi:10.1126/science.aal1988 (2017).
- Yang, M. A. & Fu, Q. Insights into Modern Human Prehistory Using Ancient Genomes. *Trends Genet.* 34, 184-196, doi:https://doi.org/10.1016/j.tig.2017.11.008 (2018).
- 103 Nakagome, S. *et al.* Model-Based Verification of Hypotheses on the Origin of Modern Japanese Revisited by Bayesian Inference Based on Genome-Wide SNP Data. *Mol. Biol. Evol.* **32**, 1533-1543, doi:10.1093/molbev/msv045 (2015).
- 104 Raghavan, M. *et al.* Genomic evidence for the Pleistocene and recent population history of Native Americans. *Science* **349**, doi:10.1126/science.aab3884 (2015).
- 105 Blomberg, S. P., Garland, T. & Ives, A. R. TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE. *Evolution* **57**, 717-745, doi:10.1111/j.0014-3820.2003.tb00285.x (2003).
- 106 Copes, L. E. Comparative and Experimental Investigations of Cranial Robusticity in Mid-Pleistocene Hominins. Ph.D Dissertation thesis, Arizona State University, (2012).