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1. Data  

1.1. Cuisines 

1.1.1 Billing & Sherman data 

Billing & Sherman (1998) reported a significant correlation between average spice per 

recipe and average temperature. These data were derived from 93 traditional cookbooks 

from 36 national level cuisines and four sub-national regions (northern and southern United 

States, northeast and southwest China)1. For our analysis, these sub-national regions had to 

be assigned to specific areas in order to correct for proximity and derive environmental and 

diversity variables. For “Southern United States”, we included the states of Alabama, 

Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, Missouri, North Carolina, 

Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia, California, Arizona, 

New Mexico. “Northern United States” was all remaining states except Alaska and Hawaii. 

Similarly, we interpreted “Southwestern China” to include Chongqing, Sichuan, Yunnan, 

Guizhou and Xizang, and “Northeastern China” to include Liaoning, Jilin, Heilongjiang and 

Nei Mongol. Billing and Sherman (1998) provide average spice counts for these countries 

rather than the raw data on ingredients, so we are unable to derive variables such as 

number of ingredients, median spice, vinegar, alcohol or chilli.   

 

1.1.2 Expanded global dataset.  

To provide a more wide-ranging test of the adaptive cuisine hypothesis for spice use, we 

constructed a dataset that has a greater diversity of spices and a wider range of variables to 

analyse. This dataset is based on recipe data from four published sources2-5.  

 

The CulinaryDB database2 has recipe data grouped into a range of geographic regions. 

Some regions were too large to be useful for testing this hypothesis (e.g. South America, 

Africa, Eastern Europe), some regional cuisines included a large number of international 

recipes (e.g. Australia, Canada, US), and some had too few savoury recipes (e.g. 

Scandinavia), so we selected only those cuisines representing regions that could be 

considered comparable to the other regional units in our study. Most of these are national 

level, but we also include DACH (Germany+Austria+Switzerland) and Caribbean (which, 

for the purposes of estimating environmental and socioeconomic variables, we take to 

include Grenada, Dominica, Barbados, Bahamas, Saint Kitts and Nevis, Antigua and 

Barbuda, Dominican Republic, Jamaica, Cuba, Puerto Rico, Haiti, Trinidad and Tobago, 

Saint Lucia, St. Vincent and the Grenadines). 
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The Chinese regional recipe data was provided by Zhu et al (2013), who derived the 

ingredient lists from online recipe databases, resulting in a collection of 8,498 recipes with a 

total of 2,911 ingredients4. Each recipe was assigned to one of 20 regions. We analysed 19 

separate regions: we did not include recipes labeled “Other” as this includes a number of 

widely separated areas such as Tibet and Taiwan. Following the map provided in Zhu et al. 

(2013), we assigned the “muslim” cuisine (referred to in the original dataset as qingzhencai) 

to the Sinkiang province, and refer to this in our database as Xinjiang. We translated the 

list of ingredients for the recipes using online searches on both Chinese characters and 

English translations. We then coded each ingredient into categories, including spice, chilli, 

vinegar, alcohol and meat (we did not use the original spice coding published by Zhu et al. 

as it was inconsistent and did not separately count the spices in spice blends and sauces). 

While Zhu et al. (2013) counted many medicinal ingredients as spices, we only include those 

that have anti-spoilage or anti-microbial effects on food preparation (see Table 2 and 

Methods for details).  

 

The Japanese regional cuisine data was provided by Ohtsubo (2009) from a study designed 

to test the adaptive spice hypothesis using recipes from two sources: traditional recipes from 

elderly Japanese housewives, and cookbooks by experts in traditional cuisine5. We could not 

use the second dataset from cookbooks because these recipes are not identified to a 

particular regional cuisine. For the Japanese regional cuisines, we used the prefectures listed 

in the raw data5 to assign recipes to eight larger areas in order to have a sufficient sample of 

recipes per area. Our assignment of prefectures to areas is as follows: Tōhoku (Aomori, 

Iwate, Miyagi, Akita, Yamagata, Fukushima), Kantō (Ibaraki, Tochigi, Gunma, Saitama, 

Chiba, Tōkyō, Kanagawa), Chūbu (Niigata, Toyama, Ishikawa, Fukui, Yamanashi, Nagano, 

Gifu, Shizuoka, Aichi), Kansai (Mie, Shiga, Kyōto, Ōsaka, Hyōgo, Nara, Wakayama), 

Chūgoku (Tottori, Shimane, Okayama, Hiroshima, Yamaguchi), Shikoku (Tokushima, 

Kagawa, Ehime, Kōchi), Kyūshū (Fukuoka, Saga, Nagasaki, Kumamoto, Ōita, Miyazaki, 

Kagoshima). Hokkaido prefecture was counted as a single area. We exclude Okinawa 

prefecture because it is geographically separate from other prefectures (over 600 km south 

of the mainland of Japan) so could not be meaningfully combined with other prefectures, 

and it has too few recipes recorded to be included on its own. The Japanese dataset does 

record a temperature for each recipe by using thirty years of meteorological records from 

the closest observation point to the region where each interview was conducted5. However, 

because this detailed temperature data is only available for the eight Japanese cuisines, we 
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use a consistent procedure to calculate mean average temperature and other environmental 

variables for each of the countries and regions in our dataset. 

 

The Indian regional cuisine data is derived from a study of food flavour pairing by Jain et al 

(2015) using data from 156 recipes from an online recipe repository3. To obtain 

environmental and spatial variables, we assigned cuisines to states most commonly 

associated with those cultures. Gudjurati, Maharashtrian, Punjabi and Rajasthani cuisines 

were each assigned to the Indian state of the same name. For Bengali cuisine, we combined 

the areas of three Indian states: West Bengal, Tripura and southern Assam. For the South 

Indian cuisine, we included the five major southern states of India: Andhra Pradesh, 

Karnataka, Kerala, Tamil Nadu and Telangana. Mughlai cuisine is associated with northern 

India so we include the states of Jammu and Kashmir, Haryana, Himachal Pradesh, Uttar 

Pradesh and Uttarakhand. Jain cuisine is not easily assigned to a modern state but the Jain 

population is concentrated around Maharashtra, Rajasthan and Gudjurat, so we use those 

states to derive regional data for the Jain cuisine. Note that spatial overlap between cuisines 

is permissible, as we are using the location both to correct for spatial distance between 

cultures but also to characterise the environment that the cuisine is found in.  

 

1.2 Relatedness between cultures 

To represent similarity between cuisines due to relatedness, we first identified the principal 

language of each country or region as given in Ethnologue6. We then used the hierarchical 

relationships between languages in both the Ethnologue6 and Glottolog7 to construct a 

hierarchical arrangement of these cultures to use for phylogenetic correction. In some cases, 

we had to make a decision which of several principle languages to use. In these cases, we 

were guided by the number of speakers of the language within the country or region, 

geographic extent of the language within that country or region, and the source of the 

recipe data. For South Indian regions, all four of the languages with the largest number of 

speakers (Telugu, Tamil, Kannada, Malayalam) are Dravidian, so can all be represented at 

the same place in the tree. We assumed that the “muslim” cuisine identified by Zhu et al. 

(2013) to the Sinkiang province4 is associated with the Uyghur language. Since Jain 

religious writings are commonly associated with Sanskrit and Prakrit, we have used 

Sanskrit to place the Jain cuisine in the tree.  For South Africa in the B&S dataset1, the 

cookbooks from which the recipes were derived are written by Afrikaans-speaking authors8, 

so we have used the Afrikaans language to represent this cuisine.  
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To create the trees, we consulted the hierarchical taxonomy of languages in the 2016 

releases of both Ethnologue6 and Glottolog7. Where the two taxonomies were not identical, 

we accepted the taxonomy with greater resolution as long as it did not conflict with the 

other source. For example, Ethnologue placed Danish, Swedish and Norwegian as a 

polytomy within East Scandinavian, but Glottolog grouped Danish and Swedish together in 

East Scandinavian and Norwegian in West Scandinavian. Therefore in our tree we grouped 

Danish and Swedish together as the more resolved grouping that is compatible with both 

classifications. For the relationships between regional dialects of both Japanese and Chinese 

Mandarin, we followed Glottolog, which provides a finer level of resolution than 

Ethnologue. For example, while the Chinese regions have regional dialects, these were all 

classified by Ethnologue as Mandarin without additional hierarchical structure, but 

Glottolog grouped them into Northern, Central and Southern dialects. Similarly, the 

Japanese regions included in this study are all classified as Japanese speaking in Ethnologue, 

but many dialects are classified into Eastern and Western groups in Glottolog. The 

Hokkaido prefecture includes both Japanese and the language isolate Ainu. We do not know 

whether the recipes from the Hokkaido region are Ainu or Japanese, but as they are 

described as Japanese recipes we have included Hokkaido in the Eastern Japanese group.  

 

For the Billings and Sherman dataset we use the following tree: (((Lebanon, Morocco), 

Israel), ((Malaysia, Indonesia), Philippines), ((((South_Africa, (Germany, Austria)), 

(Australia, United_Kingdom, North_US, South_US)), (Norway, Denmark, Sweden)), (India, 

Iran), ((((Brazil, Portugal), Mexico), France), Italy), Greece, Poland, Ireland), ((Kenya, 

Nigeria), Ghana), (Hungary, Finland), (North China, South_China), Japan, South_Korea, 

Vietnam, Thailand, Ethiopia) 

 

For the global dataset, including CulinaryDB and the regional cuisines for India, China and 

Japan (see Table 1), we used this tree: (((DACH_Countries, United_Kingdom ) ,(((Gujarat 

,Rajasthan) , Mughlai), Punjab, Bengal, Maharashtra, Jain), (((Mexico, Spain), France), 

Italy), Greece), (Min, (Xiang, (Hu, Su, Zhe), Jiangxi, ((Chuan, Dongbei, Hubei, Hui, Jing, Lu, 

Xibei, Yu, Yungui), Shanxi), (Yue, Hong Kong))), ((Tohoku, Kanto, Chubu, Hokkaido), 

(Kansai, Chugoku, Shikoku), Kyushu), South_Korea, Thailand, Xinjiang, Caribbean, 

South_India);  

 

Of course, it is not possible to describe an undisputed hierarchy of relationships between 

cultures or cuisines, and in some cases a cuisine could be represented by an alternative 
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language that might alter its place in the tree. To test the robustness of our conclusions to 

changes in the position of cuisines in the hierarchy, we tested key analyses on an alternative 

tree with the following modifications to placement of cuisines: Caribbean associated with 

the European languages that are recognised as official languages in many countries; 

Mughlai grouped with Punjabi; Irish with English; Ethiopia with Semitic languages; and 

with European languages arranged according to Bouckaert et al. (2014)10.  

 

We use a previously published method to scale branch lengths, setting a maximum clade 

height relative to the root and dividing it by the number of language classification levels9.  

We scaled the branch heights according to the method given in Bromham et al 20189, using 

the relative age of language families to set an arbitrary node height for each clade (C). The 

purpose of this procedure is to provide an approximate depth of diversification for the 

phylogenetic analysis, to allow for the fact that distantly-related cultures will have had 

more time to accumulate differences than more recently diverged cultures. Family depths 

were derived from a range of published sources10-17, and used to scale the height of each 

clade relative to the root. We stress that the absolute ages of language families are 

immaterial for branch length scaling, only the relative depths of divergence are informative 

for this analysis.  

 

Then for each clade, we counted the number of levels in the language classification between 

the root and the tips.  We then used this to divide the clade height into arbitrary units 

representing depth of divergence within the clade. Then we scaled the node height within 

each language group by the classification level of tips, using the formula  

(Lc - Ls) * C 

where Lc is the maximum classification level in the clade, Ls is the classification level 

containing the sampled languages, and C is the clade height relative to the root. Again, this 

is not a perfect measure of degree of cultural relatedness, but it is better than either not 

using any relationship information or using unscaled branch lengths.  

 

1.3. Spatial, environmental and biodiversity data 

We retrieved high resolution climatic data from WorldClim18 and rescaled it to equal area 

projection with 10x10km grid cells. We calculated the mean value of mean annual 

temperature (Bio01) of grid cells whose centroid falls within the spatial polygon for each 

region. We estimate species richness for cuisine areas based on species distribution data 

mapped to hexagonal polygons of roughly 7800km2. The figure reported is the average 
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number of species for all such hexagons whose centroid falls within the cuisine area, as 

defined above. Plant diversity and crop diversity was derived from Ellis et al (2012) 19 which 

is provided in hexagonal polygons of roughly 7800km2; crop diversity is originally from 

Monfreda et al. (2008)20;  plant diversity from Kreft and Jetz (2007)21.  We also include 

language diversity as a measure of human cultural diversity, counting the number of L1 

spoken languages whose distribution occurs partially or wholly within each cuisine 

area9,22,23. We use bird and mammal species richness as a proxy to represent variation in 

biodiversity, including parasite diversity, since human pathogens correlate strongly with 

bird and mammal species richness24. Bird and mammal species richness data was obtained 

from Biodiversitymapping.org in equal area grid cells of 10x10km resolution, using data 

based derived from BirdLife International and NatureServe databases. We took the mean 

richness of grid cell values falling within each regional polygon 

 

For each spice in the dataset (Table 2) we extracted occurrence records for these species 

from the Global Biodiversity Information Facility (GBIF.org 2020, 

https://doi.org/10.15468/dl.dv5hu4). Occurrence records were then cleaned for common 

errors and data quality issues using the CoordinateCleaner package in R25. To reduce the 

effects of outlier points and variation in sampling intensity between spice species we 

converted the occurrence points into a continuous spatial density on the globe using 

spherical kernel density estimation. For this we used the spherical_kde Python package 

(https://github.com/williamjameshandley/spherical_kde), which was accessed from R 

using the reticulate R package26. Using the spherical KDE fit to the occurrence points, we 

predicted the density of points for all spice species across a global 1000 by 500 grid. To 

account for uneven sampling we then normalized the predicted densities to fall between 0 

and 1. Then, for each cuisine polygon in our analysis we calculated the average density of 

grid points falling within its boundary, for every spice species. Finally, we estimated the 

diversity of spice ingredients growing in the cuisine area using an abundance weighted 

metric, Simpson’s diversity index27, where we weighted by the average density of each spice 

rather than abundance. 

 

1.4 Socioeconomic data 

Population density was obtained from Ellis et al. (2012) 19 and based on the population 

model of Klein Goldewijk et al. (2010)28. For each cuisine area, mean population density 

(inhabitants per square kilometre) was extracted from all hexagons whose centroid fell 

within the polygon of the cuisine area. Life expectancy is based on most recent data for each 
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region or country. Country-level data is from the World Health Organisation. Chinese 

regional data on life expectancy is based on National Bureau of Statistics of the People's 

Republic of China using the map in Zhu et al. (2009) to identify regions associated with 

cuisines. Data on life expectancy for Indian states is from the United Nations Development 

Programme29. Life expectancy for Japanese prefectures is from Ministry of Health, Labour 

and Welfare of Japan (www.mhlw.go.jp). For US states, we used 2017 figures from Institute 

for Health Metrics and Evaluation.  For super-national regions, such as Caribbean or 

DACH, we average over values for each country. GDP per capita in US dollars for countries 

is from World Bank figures for 2017-2018 (data.worldbank.org); for Indian states is from 

Ministry of Statistics and Programme Implementation; for Chinese regions from National 

Bureau of Statistics of China; for Japanese prefectures from OECD.  

 

To reflect food availability and diet quality, we used data on child malnutrition, represented 

by the proportion of children aged five and under with stunted growth30. We used the 

gridded 5x5km data, averaged over the cuisine area. This dataset is for mid- to low-income 

countries, so for the high-income countries not included in this dataset we assign the lowest 

recorded value which is for Hong Kong. This is consistent with data from WHO which 

suggests that child stunting is typically 1% or less for high-income countries 

(https://data.worldbank.org/indicator/SH.STA.STNT.ZS), which is similar to levels 

recorded in Hong Kong31.  

 

To represent non-disease-based causes of death, we recorded road traffic fatalities per 

100,000 population from WHO Global Health Observatory data repository, using the 2013 

figures (because they had the greatest coverage at country level).  For US states, 2017 data 

from  U.S. Department of Transportation's Fatality Analysis Reporting System (via 

www.iihs.org); Chinese regions from the National Bureau of Statistics 2017; Japanese 

prefectures from Ministry of Health, Labour and Welfare 2016 data. While state-based 

estimates of road traffic deaths are available for Indian states from the Ministry of Road 

Transport and Highways32, these variables are calculated in a different way from the WHO 

statistics, with the  estimates much lower in all states than the national average reported for 

India in the WHO data (for both the 2008 and 2018 figures). Therefore we deemed that the 

Indian state data was not directly comparable to the other estimates of road traffic deaths, 

and only use the country-level estimate for India from the WHO in the country-level 

dataset.  
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To reflect the possible effect of colonization on socioeconomic measures such as GDP, we 

record for each cuisine whether it is in a country that has had a substantial period as a 

colony. Levels of colonial occupation and impact vary widely, but we recorded a binary 

variable as 1 for those countries that had been under a foreign colonial power (e.g. 

excluding neighbouring countries expansion of influence or disputed borders) for a period of 

decades (e.g. excluding occupation during world wars) within the past four centuries (e.g. 

excluding ancient empires such as Roman and Phoenician).  

 

For some of these socioeconomic datasets, the government database is not available for open 

searches, but the data has been made available on public platforms such as Wikipedia or 

StatisticsTimes.com, with fully referenced sources. We use this republished data for 

regional values for Life expectancy for China, USA, and Japan, and for regional values of 

GDP per capita for China, India and Japan. Road traffic deaths for Japan were accessed via 

stats-japan.com.  

 

 

2. Details of Analysis 

2.1. Autocorrelation due to proximity and relatedness between cultures 

We accounted for autocorrelation by constraining the residual correlation in spice use 

between each pair of cuisines to be a linear function of the spatial proximity and 

phylogenetic similarity between the two cuisines. Using the GLS analysis developed by Hua 

et al. (2019), the correlation matrix has the form:  

(1 − 𝑎%)𝐼 + 𝑎%[𝑎*𝑃 + (1 − 𝑎*)𝐷] 

, where  is an identity matrix,  is the phylogenetic similarity matrix, and  is the spatial 

proximity matrix,  represents the relative contribution of spatial and phylogenetic versus 

other residual effects,  represents the relative contribution of spatial versus phylogenetic 

effects. To calculate the spatial proximity matrix, we modeled the decay in spatial 

autocorrelation of cuisines with distance as the Gaussian function , where d is the 

great-circle distance between the between centroids of two cuisine polygons, calculated 

using functions gCentroid and earth.dist from the R packages rgeos and fossil respectively33,34; 

 is the coefficient describing how fast similarity decays over the distance between grid 

cells and is estimated by maximum likelihood approach. 
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2.2. Calculation of marginal likelihood 

Our regression model takes the form , where  follows a multivariate normal 

distribution with mean 0 and covariance , where  is the best fit correlation structure of 

residuals in . We used multivariate normal inverse gamma distribution as the prior for 

, which is conjugate to multivariate normal distribution, so the 

posterior distribution of  and  also follows a multivariate normal inverse gamma 

distribution: 

(𝑏, 𝜎*|𝑦, 𝑋)~𝑀𝑁𝐼𝐺

⎝

⎜
⎛

𝜇< = (𝜆<)?%(𝜆𝐼@𝜇 + 𝑋AC?%𝑦)
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The marginal likelihood of the data is then the ratio of the normalizing constant between 

the prior and the posterior distributions, which equals: 
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In the prior distribution,  define an inverse gamma distribution for , so we set 

 to give a rather flat distribution, and set  to make the mode of the distribution 

equal to the MLE of ;  define a multivariate normal distribution for , with mean  

and variance , so we set , and . 

 

 

3. Additional analyses and results 

3.1. Median spice 

In the main text, we use average number of spice ingredients per recipe to measure spice 

use, following Billing & Sherman (1998)1. Here we repeat the analyses using median 

number of spice ingredients per recipe to reduce the influence of cuisines that contain some 

complex recipes with very large numbers of spices. These analyses can only be conducted 

for the cuisines for which we have access to the raw data. The results are largely consistent 

with the results reported in the paper. Cuisines with higher average temperature have 

higher median number of spices per recipe for our dataset (t43=3.67, p<0.001), but this 

association is nonsignificant after accounting for spatial and phylogenetic autocorrelations 

(ß=0.12, t43=1.02, p=0.315). The data supported the absence of the relationship with a Bayes 

Factor of 5.2. But there is less variation in median spice use and so lower power to detect 
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associations than mean spice use, with sufficient power (>0.8) to detect any effect with ß 

≥0.2 (Supplementary Figure 1).  

 

The major results that are different from mean spice use is that median spice use is 

significantly associated with historical pathogen load (ß=0.43, t43=2.52, p=0.015, Bayes 

factor against the null result (BF) = 1.4), but not significantly associated with incidence of 

foodborne illness after accounting for spatial and phylogenetic autocorrelations (ß=0.24, 

t43=1.78, p=0.082, Bayes factor for the null result (BFnull) =1.6). As indicators of poverty, 

road traffic deaths (BF=12.2) is a significantly better predictor of median spice than 

foodborne illness, and GDPpc (BF=1.8) predicts median spice as well as foodborne illness.  

 

The data provide evidence that the association between median spice use and poverty could 

be explained by low food availability and shared latitude gradients: adding GDPpc to a 

model with malnutrition does not increases model fit to median spice use (likelihood ratio = 

1.58, p=0.209; Bayes factor=0.57), neither does adding GDPpc to a model with latitude 

(likelihood ratio = 2.35, p=0.125; Bayes factor=0.4). But we find no evidence that the 

association between spice use and poverty is influenced by the historical patterns of 

colonization. In fact, the association between spice use and GDPpc is stronger in cuisines 

that have not been under colonial control (ß=-0.69, t31=-4.71, p<0.001, BF=13.3). 

 

Median spice use is weakly correlated with average life expectancy (ß=-0.24, t43=-2.14, 

p=0.038, Bayes factor=0.6). Adding foodborne illness does not significantly increase the fit 

of a model of either GDPpc, or road traffic deaths, or average life expectancy predicting 

median spice use (Supplementary Data 1), suggesting that foodborne illness has little 

additional explanatory power for spice use above its association with poverty and poor 

health outcomes in general. 

 

The data also provides no evidence for other explanatory paths linking spice use and 

foodborne illness. Median spice use is not significantly linked to any biocultural diversity 

(Supplementary Data 1). Within all the climatic variables, median spice use is only 

significantly associated with precipitation seasonality (ß=0.43, t43=2.52, p=0.015), and the 

link is weakly supported as suggested by Bayes factor of 1.4 (Supplementary Data 1). Unlike 

indicators of poverty, adding precipitation seasonality does not significantly increase the fit 

of a model of foodborne illness predicting median spice use (likelihood ratio = 2.72, 

p=0.099; Bayes factor=0.6). 
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3.2. Alternative datasets 

In the main text we report results for the “Total” dataset (N=45, See Table 1), that includes 

only cuisines for which we were able to estimate spice counts directly. Here we repeated all 

analyses on the Combined dataset (N=70). This dataset has the highest statistical power, 

with sufficient power (>0.8) to detect any effect with ß ≥0.125 (Figure 3). Despite the 

higher power, the evidence is still weak for the link between spice use and foodborne illness 

after accounting for spatial and phylogenetic autocorrelations (ß=0.23, t68=2.27, p=0.027, 

Bayes factor=0.9). So is the link between spice use and child diarrhea (ß=0.41, t40=2.20, 

p=0.034, Bayes factor=1.4). In this dataset, there is no significant support for a link between 

spice use and GDPpc (ß=0.23, t68=-1.82, p=0.073, Bayes factor=0.5), as well as the link 

between spice use and average life expectancy (ß=-0.09, t68=-0.92, p=0.361, Bayes 

factor=0.2). Road traffic deaths predict mean spice as well as foodborne illness (BF=1.0). 

However, the association between spice use and GDPpc becomes significant after removing 

Spice Trade cuisines (ß=-0.23, t40=-2.28, p=0.026, BF=1.6). Spice use is also significantly 

associated with GDPpc in cuisines that had not been under colonial control (ß=-0.40, t40=-

3.50, p=0.001, BF=24.5). 

All other results are qualitatively the same as the results for mean and median spice use 

from N45 “Total” dataset (Supplementary Data 1). To test the sensitivity of our analysis to 

assumptions made about the relationship between cuisines, we rerun analyses on the 

combined dataset using an alternative tree, as outlined in Section 1.2. We find that using 

alternative tree does not change the results qualitatively (Supplementary Data 1), except 

that the evidence is stronger for link between spice use and foodborne illness (ß=0.27, 

t68=2.62, p=0.011, Bayes factor=2.1). 

 

We also performed the same tests for the adaptive cuisine hypothesis on the original Billing 

& Sherman dataset1 (N=38) and a country-level dataset (N=39). For the country level 

dataset, we exclude any supernational regions (e.g. Carribean, DACH), and for countries 

that have sub-national cuisines, we produce one value for each country by a weighted 

average over all the cuisines they contain. Due to smaller data size, both of these datasets 

have relatively low statistical power with sufficient power (>0.8) to detect effect with ß ≥0.3 

(Figure 3). Yet, both datasets give qualitatively the same results as other datasets analysed. 

Mean spice use is significantly associated with temperature and historical pathogen load 

before accounting for spatial and phylogenetic autocorrelations in Billing & Sherman 

dataset and in the country-level dataset (Supplementary Data 1). But after accounting for 
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these autocorrelations, mean spice use is not significantly associated with either 

temperature (ß=0.34, t36=1.68, p=0.102, Bayes factor for the null result (BFnull)=1.8) or 

historical pathogen load (ß=0.07, t36=0.31, p=0.759, BFnull  =4.8) in Billing & Sherman 

dataset, nor in the country-level dataset (temperature: ß=0.29, t37=1.37, p=0.178, BFnull 

=2.0; historical pathogen load: ß=0.04, t37=0.24, p=0.814, BFnull =5.2). Both datasets also 

provide very weak evidence for the link between spice use and risk of foodborne infection 

after accounting for spatial and phylogenetic autocorrelations. In Billing & Sherman 

dataset, mean spice use is not significantly associated with foodborne illness (ß=0.24, 

t36=1.93, p=0.061, BFnull =1.7). In country-level dataset, mean spice use is significantly 

associated with foodborne illness (ß=0.28, t36=2.23, p=0.032), but this link is weakly 

supported by Bayes factor 1.1. Mean spice use is also not related to child diarrhea (ß=0.22, 

t16=0.84, p=0.413, BFnull =3.2). 
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Supplementary Table 1 Selection of literature on antimicrobial properties of spices. 

Spices in Table 1 include all of those identified as a spice by Billing & Sherman (1998) plus 

additional spices present in recipes as defined in the Methods. If in doubt as to whether an 

ingredient should be considered a spice for the purpose of testing the adaptive cuisine 

hypothesis, we sought published studies showing antimicrobial activity. Examples of 

published studies are included in this table, but it is not an exhaustive list.  

 

Spice Example Reference 
Anjelica Fraternale, D., G. Flamini, and D. Ricci. 2014. Essential oil composition and 

antimicrobial activity of Angelica archangelica L.  (Apiaceae) roots. J. Med. 
Food 17:1043–1047. 

Ajwain (Carom) Hassanshahian, M., Z. Bayat, S. Saeidi, and Y. Shiri. 2014. Antimicrobial 
activity of Trachyspermum ammi essential oil against human bacterial. Int. J. 
Adv. Biol. Biomed. Res. 2:18–24. 

Asafoetida Iranshahy, M. & Iranshahi, M. Traditional uses, phytochemistry and 
pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)—A review. 
Journal of ethnopharmacology 134, 1-10 (2011). 

Chamomile Miraj, S., and S. Alesaeidi. 2016. A systematic review study of therapeutic 
effects of Matricaria recuitta chamomile (chamomile). Electron. physician 
8:3024–3031.  

Chervil Cho, E. J., J. M. Choi, H. M. Kim, K. Choi, J. Ku, K. W. Park, J. Kim, and S. 
Lee. 2013. Antibacterial activity and protective effect against gastric cancer 
by Anthriscus sylvestris fractions. Hortic. Environ. Biotechnol. 54:326–330. 

Chrysantheum sp. Shunying, Z., Y. Yang, Y. Huaidong, Y. Yue, and Z. Guolin. 2005. Chemical 
composition and antimicrobial activity of the essential oils of Chrysanthemum 
indicum. J. Ethnopharmacol. 96:151–158. 

Curry leaf Ali, S., H. Al Harbi, and U. M. Irfan. 2016. The Antibacterial Effect Of Curry 
Leaves (Murraya koenigii) European Journal of Pharmaceutical and Medical 
Research 3(10): 382-387. 

Drumstick leaves Singh, K., and G. M. Tafida. 2014. Antibacterial activity of Moringa oleifera 
(Lam) leaves extracts against some selected bacteria. Int. J. Pharm. Pharm. 
Sci. 6:52-54 

Epazote Ravindran, P. N., G. S. Pillai, and M. Divakaran. 2012. 28 - Other herbs and 
spices: mango ginger to wasabi. Pp. 557–582 in K. V. B. T.-H. of H. and S. 
(Second E. Peter, ed. Woodhead Publishing Series in Food Science, 
Technology and Nutrition. Woodhead Publishing. 

Fuki Kim S-J, Cho AR, Han J (2013) Antioxidant and antimicrobial activities of 
leafy green vegetable extracts and their applications to meat product 
preservation. Food Control 29(1):112-120 

Garcinia indica Lakshmi, C., K. A. Kumar, T. J. Dennis, and T. S. S. P. N. S. Sanath Kumar. 
2011. Antibacterial activity of polyphenols of garcinia indica. Indian J. 
Pharm. Sci. 73:470–473.  

Gardenia Chaichana J, Niwatananum W, Vejabhikul S, Somna S, Chansakaow S (2009) 
Volatile constituents and biological activities of Gardenia jasminoides. J 
Health Res 23(3):141-145 

Hyssop Kizil, S., N. Haşimi, V. Tolan, E. Kilinç, and H. Karataş. 2010. Chemical 
composition, antimicrobial and antioxidant activities of hyssop (Hyssopus 
officinalis L.) essential oil. Not. Bot. Horti Agrobot. Cluj-Napoca 38:99–103. 

myoga (Japanese 
ginger) 

Abe M, Ozawa Y, Uda Y, Yamada F, Morimitsu Y, Nakamura Y, Osawa T 
(2004) Antimicrobial activities of diterpene dialdehydes, constituents from 
myoga (Zingiber mioga Roscoe), and their quantitative analysis. Bioscience, 
Biotechnology, and Biochemistry 68(7):1601-1604 
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Japanese parsley Lu J, Fu X, Liu T, Zheng Y, Chen J, Luo F (2018) Phenolic composition, 
antioxidant, antibacterial and anti-inflammatory activities of leaf and stem 
extracts from Cryptotaenia japonica Hassk. Industrial Crops and Products 
122:522-532 

Lemon balm Abdellatif, F., H. Boudjella, A. Zitouni, and A. Hassani. 2014. Chemical 
composition and antimicrobial activity of the essential oil from leaves of 
Algerian Melissa officinalis L. EXCLI J. 13:772–781. 

Lemon verbena Koohsari, H., E. A. Ghaemi, M. S. S. Poli, and A. Sadegh. 2013. Evaluation of 
antibacterial activity of Lemon verbena (Lippia citriodora) leaves. Ann. Biol. 
Res. 4:52–55. 

Lovage Shafaghat A. Chemical constituents, antimicrobial and antioxidant activity of 
the hexane extract from root and seed of Levisticum persicum Freyn and 
Bornm. Journal of Medicinal Plants Research. 2011 Sep 30;5(20):5127-31. 

Mastic Gum Koutsoudaki, C., M. Krsek, and A. Rodger. 2005. Chemical composition and 
antibacterial activity of the essential oil and the gum of Pistacia lentiscus Var. 
chia. J. Agric. Food Chem. 53:7681–7685. 

Mate Prado Martin, J. G., E. Porto, S. M. de Alencar, E. M. da Glória, C. B. 
Corrêa, and I. S. Ribeiro Cabral. 2013. Antimicrobial activity of yerba mate 
(Ilex paraguariensis St. Hil.) against food pathogens. Rev. Argent. Microbiol. 
45:93–98. 

Mexican oregano Arana-Sánchez, A., M. Estarrón-Espinosa, E. N. Obledo-Vázquez, E. Padilla-
Camberos, R. Silva-Vázquez, and E. Lugo-Cervantes. 2010. Antimicrobial 
and antioxidant activities of Mexican oregano essential oils (Lippia graveolens 
H. B. K.) with different composition when microencapsulated inβ-
cyclodextrin. Lett. Appl. Microbiol. 50:585–590. 

Nigella Hanafy, M. S. M., and M. E. Hatem. 1991. Studies on the antimicrobial 
activity of Nigella sativa seed (black cumin). J. Ethnopharmacol. 34:275–278. 

Peppermint Singh, R., M. A. M. Shushni, and A. Belkheir. 2015. Antibacterial and 
antioxidant activities of Mentha piperita L. Arab. J. Chem. 8:322–328. 

Perilla Kang, R., R. Helms, M. J. Stout, H. Jaber, Z. Chen, and T. Nakatsu. 1992. 
Antimicrobial activity of the volatile constituents of Perilla frutescens and its 
synergistic effects with polygodial. J. Agric. Food Chem. 40:2328–2330. 

Rose Hirulkar, N. 2011. Antimicrobial activity of rose petals extract against some 
pathogenic bacteria. Int. J. Pharm. Biol. 1:478–484. 

Saffron Vahidi, H., M. Kamalinejad, and N. Sedaghati. 2002. Antimicrobial 
Properties of Croccus sativus L. Iran. J. Pharm. Res. 1:33–35. 

Sandalwood Jirovetz, L., G. Buchbauer, Z. Denkova, A. Stoyanova, I. Murgov, V. Gearon, 
S. Birkbeck, E. Schmidt, and M. Geissler. 2006. Comparative study on the 
antimicrobial activities of different sandalwood essential oils of various 
origin. Flavour Fragr. J. 21:465–468. 

Toon Wu, J.-G., W. Peng, J. Yi, Y.-B. Wu, T.-Q. Chen, K.-H. Wong, and J.-Z. Wu. 
2014. Chemical composition, antimicrobial activity against Staphylococcus 
aureus and a pro-apoptotic effect in SGC-7901 of the essential oil from 
Toona sinensis (A. Juss.) Roem. leaves. J. Ethnopharmacol. 154:198–205 

Vetiver Vázquez-Sánchez, D., M. L. Cabo, and J. J. Rodríguez-Herrera. 2015. 
Antimicrobial activity of essential oils against Staphylococcus aureus biofilms. 
Food Sci. Technol. Int. 21:559–570. 
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Supplementary Table 2: List of spice blends. Many recipes list a spice blend rather than separate 

spices, so we needed to count all the spices that would typically be included in that blend. This is an 

approximate list of spice blend ingredients used for the purposes of counting spices per recipe, but note 

that not all spice blends may correspond exactly to this list of ingredients. However, listing the likely 

ingredients is preferable to failing to count any of the spices likely to be included in a blend.   

 

Region Spice blend Number Commonly included spices 

India chaat masala 6 cumin, coriander, ginger, pepper, asafoetida, chilli, amchoor 

 
chicken masala powder 5 coriander, fenugreek, fennel, cumin, pepper 

 
chole masala 8 bay, mustard, cumin, coriander, cloves, chilli, pepper, pomegranate 

 
curry powder 8 coriander, cumin, tumeric, ginger, mustard, fenugreek, pepper, chilli 

 
dabeli masala 5 chilli, coriander, cinnamon, cloves, cumin 

 
garam masala 8 coriander, cumin, cardamom, pepper, fennel, mustard, cloves, chili 

 
goda masala 7 cumin, caraway, cardamom, cloves, pepper, bay, coriander 

 
jal jeera powder 7 cumin, citrus, mint, pepper, ginger, asafoetida, tamarind 

 
kebab masala 8 bay, ginger, cinnamon, cloves, pepper, coriander, fennel, chilli 

 
kitchen king masala 

17 
cumin, caraway, chili, turmeric, coriander, ginger, pepper, cloves, mustard, 

cardamom, fenugreek, fennel, cinnamon, star anise, nutmeg, poppy 

 
madras curry powder 

8 
coriander, cumin, cinnamon, chilli, tumeric, cardamom, pepper, cloves, 

pepper, fenugreek 

 
panch phoron 5 cumin, mustard, fenugreek, nigella, fennel 

 
pulao masala 6 pepper, cloves, cumin, cinnamon, cardamom, coriander 

 
rasam powder 5 pepper, coriander, cumin, chilli, asafoetida 

 
sambar powder 7 coriander, cumin, mustard, pepper, chilli, fenugreek, cinnamon 

 
tandoori masala 

11 
coriander, cumin, cardamom, pepper, fennel, mustard, cloves, chilli, garlic, 

ginger, onion 

Japan Japanese seven spice 6 citrus, Japanese pepper, sesame, hemp, ginger, seaweed 

 
wasabi  2 japanese horseradish, mustard 

China bag of spices (小滷包) 6 cumin, cinnamon, licorice, bay, anise, tea 

 
BBQ sauce 2 garlic, pepper 

 
beef sauce (酱牛肉汁) 8 cloves, cardamom, cinnamon, anise, pepper, onion, ginger, garlic 

 
black pepper sauce (黑椒汁) 2 garlic, pepper 

 
cantonese-style duck wings (广式滷鸭翅滷包) 6 citrus, chilli, licorice, cloves, cumin, cinnamon 

 
cattle hoof yellow (牛蹄黄調料) 4 garlic, onion, ginger, chilli 

 
char sui sauce (叉烧酱) 5 cinnamon, cloves, fennel, star anise, sichuan pepper 

 
chicken sauce (鸡汁) 2 garlic, chili 

 
Chilli garlic paste (辣椒蒜泥酱) 2 chilli, garlic 

 
Egret Island sauce (鹭岛酱) 2 chilli, garlic 

 
garlic sauce (蒜辣酱) 2 chilli, garlic 

 
Ginger vinegar (姜醋汁) 2 ginger, galangal, vinegar 

 
hoisin sauce 2 chilli, garlic 

 
hot pot (火锅调料) 5 sesame, chilli, onions, ginger, pepper, vinegar 

 
Hu spicy powder (胡辣粉) 4 coriander, onion, ginger, pepper 
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kimchi 5 chilli, ginger, garlic, radish, onion 

 Hot sauce (辣酱油) 3 tamarind, onions, garlic, vinegar 

 
korean hot sauce (韩式辣酱) 2 chilli, garlic 

 
mala sauce (麻辣酱) 

9 
sichuan pepper, chilli, cloves, garlic, star anise, cardamom, fennel, ginger, 

cinnamon 

 
milk soup (奶汤調料) 2 ginger, onions 

 Miyamoto sauce (宮本酱) 2 chilli, sesame, ginger, vinegar 

 
Mother of Pork chilli sauce (干妈香辣酱) 3 chilli, pepper, sesame 

 
mushroom oil (菌油) 4 tea, ginger, pepper, star anise 

 
oil chilli sauce (油辣酱) 3 chilli, sesame, onion 

 
Oil crisp pepper (油酥辣椒調料) 4 garlic, ginger, sesame, chilli 

 
OK sauce (ok酱) 2 citrus, garlic 

 
onion juice (洋葱汁) 3 onion, sesame, pepper 

 
pickle sauce (泡椒汁) 2 chilli, garlic 

 
pickled vegetables (泡青菜香料包) 4 garlic, celery, pepper, aniseed 

 
plum sauce (梅酱) 2 garlic, chili 

 
Red drum oil (红鼓油) 4 sichuan pepper, star anise, cinnamon, licorice 

 
red soy sauce (红酱油) 4 pepper, cinnamon, licorice, star anise 

 
red tank sauce (红槽汁) 5 onion, ginger, pepper, cinnamon, cloves 

 
ribs sauce (排骨酱) 2 sesame, garlic 

 
Sesame oil chili sauce (香油辣酱) 2 sesame, chilli 

 
Shacha sauce (沙茶酱) 3 garlic, onions, chilli 

 
Sichuan red oil sauce (红油汁) 2 chilli, onion 

 
spicy flowers (香辣姜花酱) 5 chilli, pepper, onion, ginger, garlic 

 
spicy lobster sauce (香辣豆豉) 4 ginger, chilli, garlic, star anise 

 
spicy marinade (辣味卤汁) 7 cumin, pepper, licorice, cloves, cinnamon, chilli, ginger 

 
spicy paste (辣糊) 5 seaweed, coriander, ginger, mustard, pepper 

 
spicy sauce (香辣酱) 5 chilli, garlic, ginger, sesame, allspice 

 
Spicy sesame paste (辣芝麻酱) 2 chilli, sesame 

 
sweet and sour (酸甜酱) 2 chilli, garlic 

 
Szechuan Kung Po (宮保酱) 3 chilli, sesame, ginger 

 
thousand island sauce 4 citrus, paprika, mustard, chilli 

 
wing lobster sauce (永豆豉) 3 garlic, onion, chilli 

 
worcester sauce 3 tamarind, onions, garlic 

 Yellow chilli sauce (黄辣酱) 2 capsicum, chilli 

 
XO sauce  2 chilli, garlic 

Global Old Bay Seasoning 11 

bay, celery, mustard, pepper, ginger, nutmeg, clove, allspice, chilli,  

cardamom, cinnamon 

 Herbes de Provence 11 

rosemary, lavender, fennel, parsley, savory, oregano, thyme, tarragon, 

basil, bay, marjoram 

 Cajun seasoning 7 cayenne, garlic, oregano, paprika, thyme, pepper, onion 

 ketchup 7 Vinegar, onion, allspice, coriander, clove, cumin, garlic, mustard 

 Creole seasoning 7 onion, pepper, garlic, oregano, chilli, basil, thyme 
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 Stock 6 onion, celery, thyme, bay, pepper, garlic 

 poultry seasoning 6 sage, thyme, marjoram, rosemary, nutmeg, pepper 

 Chinese five spice 5 cinnamon, star anise, fennel, pepper, clove 

 Ranch Dressing 5 garlic, onion, parsley, pepper, dill 

 Italian seasoning 4 basil, oregano, rosemary, thyme 

 Vegetable broth 3 onion, celery, sage 

 BBQ sauce 3 vinegar, onion, mustard, pepper 

 Adobo 3 chilli, garlic, vinegar, cumin 

 Hot sauce 1 chilli, vinegar 
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Supplementary Figure 1: Power of the GLS analysis on different datasets as listed in 

Table 1. The power (y axis) indicates how often the GLS analysis will detect significant 

effect of an independent variable that has certain amount of effect (x axis) on spice use in 

each dataset. The effect is measured as the amount of change in standard deviations in spice 

use with a standard deviation change in the independent variable, which is comparable to 

the estimated regression coefficients in the GLS analysis. 
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