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Supplement 1. Set of reasonable specifications for hurricanes study.  

 

Jung et al. (Jung, Shavitt, Viswanathan, & Hilbe, 2014) hypothesized that 

hurricanes with more feminine names are perceived as less threatening and hence lead to 

fewer precautionary measures by the general public.  To convert this hypothesis into a 

testable prediction, Jung et al carried out various operationalizations. To construct a 

specification curve, we examine what we judged to be the five major operationalizations 

(most likely to be consequential), and consider sensible alternatives. In particular, we shall 

examine these operationalizations:  

1. The set of storms to include in the analyses 

2. How to measure the femininity of storms’ names 

3. What regression model to run (e.g., Negative-Binomial vs OLS) 

4. What’s the key prediction made by the authors’ hypothesis  

5. What to control for 

Note that these five mirror the operationalizations in Figure 1 in the main paper. 

 

1) The set of storms to include in the analyses 

1.1) Universe of storms  

Jung et al. included only Atlantic hurricanes included in a NOAA list.1 The 

universe of named storms that cause destruction is much larger than that. First, named 

tropical storms (of lesser intensity than hurricanes) also lead to deaths and have gendered 

names (these would more than double sample size).  Second, hurricanes elsewhere in the 

 
1 The list has been saved on the WebArchive: 
http://web.archive.org/web/20140709120550/http://www.aoml.noaa.gov/hrd/hurdat/All_U.S._Hurricanes.html 

http://web.archive.org/web/20140709120550/http:/www.aoml.noaa.gov/hrd/hurdat/All_U.S._Hurricanes.html
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world also receive names and also cause deaths.2 Third, some Atlantic hurricanes are 

missing from the NOAA list used. For instance hurricane Diane from 1955, Isidore from 

2002, and Ernesto from 2006 are missing from the list.  

While it would be sensible and straightforward to assess the robustness of the 

results to different definitions of the universe of storms to study, this type of robustness is 

somewhat unusual (most papers cannot so easily expand their data-sources) and hence we 

have decided not to do so for our specification curve demonstration.   

 

1.2) Outliers  

The paper excludes hurricanes Katrina and Audrey from the analyses, considering 

them “outliers.” 3  The exclusion decision was made after the authors run the regressions 

with them included, and is motivated in the paper as seeking to eliminate over-dispersion 

from the model (rather than seeking to eliminate observations that may be invalid). 4,5   

The two excluded observations have 1833 and 416 deaths, see solid circles in 

supplementary figures S1A & S1B. The same figure highlights other candidate outlier 

observations (dotted circles). They can also be though thought of as leverage points, 

observations with extreme predictor values. 

 
2 See e.g. this list saved on the WebArchive: 
http://web.archive.org/web/20150216102357/http://www.nhc.noaa.gov/aboutnames.shtml  
3 Jung et al. reads “We removed two hurricanes, Katrina in 2005 (1833 deaths) and Audrey in 1957 (416 

deaths), leaving 92 hurricanes for the final data set. Retaining the outliers leads to a poor model fit due to 

overdispersion.” (p.4) 
4 There are many other ways to address over-dispersion. For example, a textbook on binomial regressions, 

written by one of the authors of the PNAS paper, suggests 35 different methods to deal with 

overdispersion; adjusting for outliers is just one of them, and there are in turn many ways to deal with 

outliers (Hilbe (2011) “Negative Binomial Regressions,” Second Edition, p. 158)  
5 Because those observations are known to be legitimate, the overdispersion these “outliers” create 

probably is better addressed by modifying the model rather than ignoring those valid datapoints.  

http://web.archive.org/web/20150216102357/http:/www.nhc.noaa.gov/aboutnames.shtml
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Supplementary Figure 1A & 1B. The solid circles are the two “outliers” drop from the analyses by Jung 

et al., the dashed circles identify additional potential outliers (or leverage points, extreme values of X 

variable). 

 

In light of the above, we examine the following alternatives to deal with outliers 

(new operationalizations in light blue, original in black):  

Alternative operationalizations for dealing with “outliers:”  

1) Exclude 0 observations. 

2) Exclude 1 most extreme on deaths (drop Katrina with 1833, keep Audrey) 

3) Exclude 2 most extreme on deaths (drop Katrina & Audrey) 

4) Exclude 2 most extreme on deaths and remaining 1 most extreme on damages 

5) Exclude 2 most extreme on deaths and remaining 2 most extreme on damages 

6) Exclude 2 most extreme on deaths and remaining 3 most extreme on damages 

 

 

2) How to measure the femininity of storms’ names 

The authors used 9 raters to judge in a 1-11 scale the femininity of the storm 

names, and also a binary (1=female, 0=male) gender indicator. 6,7 

Operationalizations for quantifying femininity: 8 

 
6 Throughout we use the term “linearity” abstracting from the fact that estimated regression is a negative 

binomial and hence a linear term is not really assuming a linear effect. The key point is that a linear term 

imposes a strong functional form assumption, rather than that assumption is of a linear effect per-se. 
7 An additional concern worth mentioning is that femininity of a name may be correlated with other 

attributes of the name, such as how strong, evil, or harmful names are perceived. E.g., male name Adolf vs 

female name Angel. This would require controlling for other name attributes, something that would be a 

distraction for our purposes but necessary to properly interpret the original results.   
8 Because the authors do not report femininity for Katrina and Audrey, we conducted an MTUrk survey 

with 32 participants asking them to rate all 94 storms using the same scale from Jung et al. The ratings were 

correlated r = .98 with those used by Jung et al. However, within gender the ratings are much lower: r = .67 
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1) Femininity rating 

2) Binary gender indicator 

 

3) What regression model to run  

Jung et al. estimated a negative binomial regression which is often used for count 

data with over-dispersion (that is, where the Poisson assumption of µ=σ does not apply). 

Some papers examining deaths from natural disasters employ a zero-inflated negative 

binomial (Czajkowski, Simmons, & Sutter, 2011), where a higher proportion of 

observation with 0 values (higher than that implied by a regular negative binomial) is 

observed. To perform a zero inflated one needs to identify variables that predict whether 

there are any deaths but not how many there are. This complication, paired with just 10% 

of observations having 0 deaths, leads us to not include a zero-inflated negative 

binominal in the specification curve.  

Another alternative to the negative binomial is to run OLS with log(count+1) as 

the dependent variable. Logging count data has been discouraged  (O’Hara & Kotze, 

2010). The discouragement is based on simulations that show that if the true data are 

binomial or Poisson, then log(count) performs worse than a Poisson or negative binomial 

model, but the whole point is that one may doubt the underlying data are adequately 

captured by a negative binomial or Poisson model, and wishes to run the log model for 

robustness. As the authors of the paper discouraging log(counts) write “…our result may 

not generalize to real data, which rarely has as balanced a design as our simulations”  

Simple linear models are known to be robust to a broad range of violations of 

assumptions, this is not the case for non-linear models like the negative binomial.  

 
for male names, r = .83 for female names. This suggests the measure of femininity beyond the binary 

gender variable adds considerable noise to the model.  We use the MTurk ratings in our analyses. 
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In addition, log(deaths) has a rather reasonable distribution, that a linear model should 

obtain valid estimates form. 

 

Supplementary Figure 1C. Distribution of log(deaths+1) across hurricanes in the 

sample 

 

Moreover, a well cited paper of predicted hurricane deaths uses a OLS with 

log(deaths+1) as the dependent variable (Toya & Skidmore, 2007). 9 We therefore 

include OLS regressions with log(count+1) as the dependent variable in our specification 

curve. 

 

Regression models 

1) Negative binomial 

2) OLS regression with log(deaths+1) as the dependent variable 

 

 

4) What’s the key prediction made by the authors’ hypothesis 

The key hypothesis in the paper is that “a hurricane with a feminine vs. masculine 

name will lead to less protective action and more fatalities.” (p.1)  This prediction 

 
9 279 Google cites as of January 2015. 
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suggests a main effect of gender of hurricane name on fatalities but the paper tests 

instead an interaction of femininity with dollar damages (such that the effect is stronger 

for hurricanes high in dollar damages).  

One can justify this specification by considering that fatalities is a proxy for 

insufficient protective measures, and the proxy is only sensible when people who fail to 

take protective measures have a higher probability of death. Failing to protect against 

harmless storms should not lead to higher probability of death. Nevertheless, there are 

many alternative ways to operationalize this potential dependency of the effect of gender 

on dollar damages (including ignoring it). We discuss these alternatives below.  

4.1 Damages vs log(damages) 

The operationalization in the paper has gender interacted with damages measured 

in dollars “linearly” 10 mapping on to deaths. As the histograms in supplementary figure 2 

show, damages measured in dollars is an extremely skewed distribution, while 

log(damages) has a reasonable degree of skew. We hence shall include specifications 

with log(damages) also.  

  

Supplementary Figure 2. Damages vs log(damages) in the hurricane sample 

  

 
10 See footnote 4 
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Functional form for $ damages: 

1)  $ Damages 

2) Log($ Damages) 

 

4.2 Interactions 

Beyond functional form, note that damages is being used as a proxy for potential 

fatalities. There are various other ways to proxy how deadly a storm would be expected 

to be. Rather than use only dollar damages, for instance, one may include hurricane 

characteristics as well, such as its category, it maximum wind speed, its year, etc. Indeed 

Jung et al used an interaction with minimum pressure as a covariate. We consider 

operationalizations that add or replace wind, and hurricane category as proxies for 

expected fatalities. 11 

 

4.3 Main effect 

Finally, while the justification for the interaction prediction is reasonable, it seems 

ex-ante also reasonable to examine the main effect of gender, on various grounds. First, 

as shown above, the stated hypothesis in the paper stipulated a main effect of femininity. 

Second, 90% of hurricanes lead to at least one fatality, suggesting lack of protective 

measures could be fatal for most observations.  Third, when the authors control for third 

variables (e.g., hurricane year), for which the same logic to require an interaction applies, 

they do not include the interaction, suggesting further than main effect estimates are 

sensible. Fourth, prior papers running models predicting fatalities from natural disasters 

like hurricanes and earthquakes test main effects (of variables like per-capita GDP) rather 

 
11 Jung et al indicate that wind data are not available prior to 1979, but we were able to locate such data and 

use it in our analyses.  
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than interactions with disaster intensity (Czajkowski et al., 2011; Kahn, 2005; Toya & 

Skidmore, 2007). It hence seems ex-ante sensible to estimate a gender main effect to test 

the hypothesis of interest. 

 

Operationalizations for key prediction. 
Codebook 

Zmin:12  -1*(standardize minimum pressure) 

Fem:   femininity of name of hurricane 

Dam: damages of hurricane (log or $) 

zCat:    standardize category of hurricane (1-5) 

zWin:   standardized maximum wind of hurricane 

z3: average(zMin, zCat, ZWin) 

 

Specifications to test the impact of femininity. 

Via interactions: 

1. Fem*Dam 

2. Fem*Dam   Fem*zMin 

3. Fem*Dam   Fem*zWind 

4. Fem*Dam   Fem*zCat 

5. Fem*Dam   Fem*z3 

Via main effect: 

6. Fem Dam z3 

 

 

5) What to control for 

Hurricane names are randomly assigned, hence covariates might be expected to 

not play an important role in the regression (omitted variables shouldn’t correlate with 

randomly assigned names). The key predictor in most specifications, however, involves 

an interaction, and the interaction term, Damages, is not randomly assigned and hence 

could have confounds. Moreover, as shown above it is highly skewed, introducing 

possible specification error into some models, additional controls interacted with 

damages may alleviate or at least facilitate identifying these problems. 

 
12 Minimum pressure is multiplied by -1 so that a higher number is associated with higher intensity and is 

hence easy to combine with the other indicators. 



10 

 

The dataset only contains year as a plausible covariate (in addition to the 

hurricane intensity variables from (3)).  Considering that time effects can often be non-

linear, and that year has an important discontinuity in 1979, prior to 1979 all hurricanes 

had male names we consider the following set of covariate: 

Specifications for covariates 

1) No covariate13 

2) Year * Damages   

3) Dummy for year after 1979 * Damages 

 

 

 

 
13 Jung et al. (2014) did also run models controlling for year and write that it “was dropped for the main 

analysis as its effect was nonsignificant in all models.” (p.4) 
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Supplement 2. Set of reasonable specifications for racial discrimination study. 

Bertrand and Mullainathan (2004) manipulated both the name of the fictitious 

candidates whose names they used and the quality of the resumes they sent. To 

manipulate perceived race, they used 18 distinctively African American names, and 18 

non-distinctively African-American names. Half the names were male. The way in which 

resumes’ quality was manipulated varied from ad to ad, creating some ambiguity in terms 

of how to quantify the quality of any given resume. This ambiguity is the primary source 

of the alternative specifications we consider. 

We generate the set or reasonable specifications by considering alternative 

operationalizations involving: 

1) How to deal with potential heterogeneity of the main effect across genders 

2) How to measure quality of resume 

3) What regression model to employ (OLS vs Probit) 

 

1) How to deal with potential heterogeneity of the main effect across genders 

 Considering that (1)  Bertrand and Mullainathan report some results broken down 

by gender, and that (2) it would be reasonable to observe and report discrimination only 

in one of the genders, or of different magnitude across gender, we report results for the 

entire sample, only for males, and only for females.  

 

2)   How to measure quality of resume 

 To most help-wanted ads, Bertrand and Mullainathan sent four resumes. Two 

high and two low quality ones (orthogonally varying race and gender also). Whether to 

be of high and low quality is randomly assigned, but how to implement how vs low 
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quality is decided on a case-by-case basis in light of the nature of the ad. Resumes were 

made of higher/lower quality by varying holes in employment history, having a 

certification degree, possessing foreign language skills, etc. 

 Bertrand and Mullainathan operationalize quality in their regression results in two 

main ways: using a 1/0 predictor for having been randomly assigned to high vs low 

quality, using a continuous predictor of quality (see e.g. Panels A and B in their Table 4).  

The continuous predictor was created by estimating the regressions in two stages. In the 

first stage, using 1/3 of the sample, they predict call-back rates using all measures of 

quality they manipulated. They then use the fitted values for call-back probabilities as the 

quality index for the remaining 2/3 of the sample, using a median split for high vs low 

predicted call-back rates as the alternative measure of quality. 

 We expand these two to fifteen alternative operationalizations of quality. We 

modify their two-stage estimation in a way that increases power. In particular, rather than 

use 1/3 of the sample to obtain fitted values, we use 1/2. In addition, we do not drop 

observations, our second stage includes all observations, one half of fitted values are 

obtained from the other half. One could increase power further with more refined 

techniques (e.g., jackknife-like procedure) but it is not necessary for the purposes of our 

demonstration. 

 As operationalizations of quality we added the simple sum of 0/1 quality 

indicators (that is, the number of quality variables that were changed to create a higher 

quality resume). A second alternative was the median split of this variable. 

 The remaining alternatives are rely on the two-stage estimation approach alluded 

to above. We varied whether this first stage included covariates or not (the specification 
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in the paper includes as covariates gender, city, occupation code for the job, and dummy 

variables for required skills), and whether it was estimated on all names, or only 

distinctively Black or White names.   The logic for this later variation in 

operationalizations is that Blacks and non-Blacks may benefit differently from different 

quality measures (e.g., some quality measures may alleviate negative stereotypes for 

Black names, but have no effect on White names).  

Each of these three 2-stage approaches was implemented with and without covariates 

in the 1st stage , and entered as a continuous or median split predictor in the 2nd stage, 

resulting in 3x2x2=12 operationalizations. Combined with the previously mentioned 3 we 

arrive at the 15 alternative specifications of quality. 

 

3) Regression model 

The paper (Bertrand & Mullainathan, 2004) reported probit regression for the 1st 

stage, classified observations into a high and low quality bin, and conducted simple χ2(1) 

difference of proportion tests on the resulting cells (see their Table 4).  Because we 

consider continuous predictors of quality we rely on regression models throughout, 

reporting results for both probit and OLS regressions. We should note that they key 

prediction is one of an interaction: is the benefit of a quality resume higher for nonblack 

names? (Gelman & Stern, 2006) But the authors only report the two simple effects 

(significant effect for non-Blacks, but not for Blacks). The non-reported interaction is not 

significant in either of the specifications included in the paper. 
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Supplement 3. Descriptive Specification Curves for Discrimination Study 

 

 

 

 
Supplementary Figure 3. Descriptive Specification Curve – Main effect of distinctively 

black name on call back rate. 
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Supplementary Figure 4. Descriptive Specification Curve – Interaction of distinctively 

black name and resume quality, on call back rate. 
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Supplement 4. The benefits of bootstrapping in specification-curve analysis.  

 

To illustrate the robustness to misspecification in specification-curve analysis, we 

conducted Montecarlo simulations estimating Poisson regressions, because they are 

known to have inflated false-positive rates when assumptions are not met.  

Specifically, we generated data where there is a true linear relationship between y 

and x, but the analyst does not observe x, and observes instead five alternative proxies: x1, 

x2, x3, x4, and x5. Each is correlated r=.85 with the latent variable x. The dependent 

variable consists of count data (see Supplementary Figure 5), but which does not follow a 

Poisson distribution.  

 

Supplementary Figure 5. Distribution of y-variable in Montecarlo simulations later 

analyzed via Poisson Regression. 

 

We consider an analyst who performs Poisson regression on each of the proxies 

separately, 5 specifications, and then combines them into a specification-curve analysis. 

Beginning with a scenario where the true effect of the latent variable on y is zero, thus it 
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is also zero for each of the five proxies, should result in a 5% false-positive rate, and this 

should also occur with specification-curve analysis overall, a 5% false-positive rate. 

 

Supplementary Figure 6. False-positive rate with Poisson regression, bootstrapped 

Poisson regression, and specification-curve analysis. 

 

The first five bars in Supplementary Figure 6 show that Poisson regressions have an 

elevated false-positive rate for these data, because they are not actually distributed 

Poisson, rejecting the null over 40% of the time for each proxy, due to the violation of 

assumptions. The next five bars shows that if p-values are computed via bootstrapping, 

bootstrapping those same Poisson regressions, the nominal 5% false-positive rate is 

attained. The next three bars show that combining the red bars, via each of the three test-

statistics proposed for specification-curve analysis, the False-Positive Rate remains at or 

just slightly above 5%. This demonstrates that submitting a set of specifications to 

specification-curve analysis, some of which may have inflated false-positive rates due to 



References for Supplementary materials 

18 

 

un-met assumption, does not lead the overall test, which relies on bootstrapping, to be 

inflated.  

 We next consider power, returning to the same scenario as before, but now the 

latent variable has an effect on the dependent variable, and thus each of the 5 proxies is 

truly correlated with it as well and thus we expect to reject the null more often than 5% of 

the time. 

 

Supplementary Figure 7 Power for individual specifications and the joint specification-

curve analysis 
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Supplementary Figure 7 shows that test statistics in specification-curve analysis have 

more power than the underlying individual specifications, especially so the Stouffer test 

which combines all p-values using the Stouffer method, and then assesses significance by 

comparing the observed Stouffer value to the bootstrapped ones. 

 In short, this supplement demonstrates the value of Bootstrapping in 

specification-curve analysis, serving two purposes. First, it corrects for many 

consequences of specification errors that may inflate the false-positive rate. Second, it 

allows conducting joint inference across specifications, enhancing their power. 
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Supplement 5. Alternative visualizations for Descriptive Specification Curve. 

 R Code to generate these visualizations available from https://osf.io/9rvps/  

Specification-curve analysis will often involve large enough numbers of alternative 

specifications that providing a graphical summary where each specification is represented 

can be challenging. In the main article, we approached this problem by depicting the most 

extreme 100 specifications, and a random 200 out of the remaining 1678 specifications.  In 

this supplement we discuss three alternative visualizations that authors relying on 

Specification Curve Analysis may wish to consider. To facilitate focusing on the 

differences across visualizations, we present them for a single operationalization decision: 

how to control for time effects on hurricane fatalities.  

  

Alternative 1. Local smoothers 

Instead of plotting a dot for each operationalization for each specification in which 

a given operationalization is present, we code such presence as a 1 and absence as a 0, and 

estimate a moving average of that presence (1/0), across all specifications, ranked by the 

estimate of interest. We then compute a moving average of presence across them, for 

Supplementary Figure 8 we rely on local regression, but results will be quite similar with 

alternative implementations (e.g., literal moving averages, polynomials, GAM models, 

etc). Specifically, the figure plots the fitted value from estimating, in R, 

lowess(presence~rank), where presence is 0 or 1, and rank is all integers from 1 to 1728. 

Intuitively, the results can be read as: "among specifications obtaining a point estimate 

about as extreme as this one, what percentage included this operationalization?" For 

example, in Supplementary Figure 8 we see in the bottom panel that among the 

https://osf.io/9rvps/
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specifications obtaining the lowest marginal effects of hurricane fatalities, about 50% of 

them did not control for year effects, while for specification obtaining a median effect size, 

only about 20% did not control for year effects. The figure makes clear that without 

controlling for year effects one obtains more extreme effects, either extremely large or 

extremely small. 

 

 

Supplementary Figure 8. Alternative visualization of which operationalizations are 

behind different specification results 

 

Alternative 2. Stacking the smoothers 

 A challenge for alternative 1 consists of conveying to readers that the percentages 

depicted on the y-axis, for any given operationalization decision, add up to 100%; that they 

consist of the share of operationalizations. A way to convey this clearly is to stack up the 

lines depicted in Supplementary Figure 8, leading to our second alternative visualization. 
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Supplementary Figure 9. Making it easier for readers to realize the percentages add up 

to 100% 

 

 

Alternative 3. Showing all dots 

 The trendlines from alternatives 1 & 2 are useful for detecting general patterns but 

they lose the depiction of each individual specification. The third alternative consists of 

depict all dots, but rather than randomly sampling specifications, adding vertical noise so 

that one dot does not block the other. 
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Supplementary Figure 10. Showing every specification with dots  
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