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Supplementary Figure 1: High quality DNA for ONT sequencing extracted from human stool samples (n=197).
Distribution of (A) DNA yield and (B) DNA fragmentation across samples. Data in B and C is presented as a
boxplot (center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points,
outliers). (C) classification of samples according to DNA quality. In general, we found that >60% of samples
could be used for ONT sequencing despite working with limited stool quantities.

A B

Sa
m

p
le

 f
ra

ct
io

n
 (

1
9

7
 s

am
p

le
s)

Low quality:
DNA peak size 
[1kbp, 2kbp]

Below requirement 
for ONT sequencing:

DNA amount  < 2.5 𝜇g or

DNA peak size  < 1kbp

High quality:
DNA peak size >5kbp

Medium quality:
DNA peak size 
[2kbp, 5kbp]

C

Sample classification



Supplementary Figure 2: Characteristics of long reads for stool metagenomics using ONT sequencing. (A) Throughput as a
function of read length across different samples. Reads longer than 1kbp typically provide >80% of the data and in some libraries
a sizeable fraction of reads were longer than 5kbp. (B) Correlation between species-level relative abundances using Illumina and
ONT data (n=28 samples). The high concordance seen suggests that ONT sequencing does not introduce a significant bias
towards some species compared to Illumina sequencing. Abundance profiles for both short and long reads were obtained using
Kraken (v0.10.5-beta, default parameters; species with abundance <0.1% were ignored to avoid the introduction of false positives
into the correlation analysis). Data is presented as boxplots (center line, median; box limits, upper and lower quartiles; whiskers,
1.5× interquartile range; points, outliers).

B

Pe
ar

so
n

 c
o

rr
el

at
io

n

Th
ro

u
gh

p
u

t 
(M

b
p

)

A



Supplementary Figure 3: Evaluation of OPERA-MS clusters. (A) Purity of clusters (fraction of sequence in
cluster that comes from the dominant genome) versus size of contigs in cluster (N50 = size such that >50% of
the sequence in the cluster is in longer contigs). Note that for most genomes cluster purity is >99% (dotted
red line), except in the case of two genomes from the HMP Mock community with relative abundances
<0.01%. (B) Cluster N50 compared to an optimal cluster N50 (when all connected contigs belonging to a
genome are in one cluster). Despite providing conservative clusters, OPERA-MS clusters have N50 that is
close to optimal values for most genomes.
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Supplementary Figure 4: Characteristics of the mock communities and datasets used in this study. Heatmaps on the left show genomic distances between the
species (n=20 for both datasets) that make up the community. Plots on the right show correlation between observed and expected species abundances using
various sequencing technologies. Read coverage of the respective genomes were obtained by mapping short reads (BWA-MEM v0.7.10-r789, default parameters)
and long reads (GraphMap v0.2.2, default parameters) to the reference genomes.

Illumina ONT Pacbio

Illumina PacbioIllumina Synthetic

G
IS

2
0

H
M

P
 m

o
ck

 
st

ag
ge

re
d

Mash genomic 
distance

Staphylococcus epidermidis

Fusobacterium nucleatum

Finegoldia magna

Enterococcus faecium

Acinetobacter baumannii

Helicobacter cinaedi

Capnocytophaga ochracea

Lactobacillus reuteri

Streptococcus parasanguinis

Eubacterium siraeum

Prevotella oris

Bifidobacterium longum

Bifidobacterium adolescentis

Pseudomonas putida

Parascardovia denticolens

Jonquetella anthropi

Enterobacter cloacae

Klebsiella pneumoniae

Salmonella enterica

Neisseria subflava

Escherichia coli

Neisseria meningitidis

Acinetobacter baumannii

Helicobacter pylori

Bacteroides vulgatus

Rhodobacter sphaeroides

Pseudomonas aeruginosa

Deinococcus radiodurans

Propionibacterium acnes

Actinomyces odontolyticus

Listeria monocytogenes

Enterococcus faecalis

Staphylococcus epidermidis

Staphylococcus aureus

Bacillus cereus

Streptococcus pneumoniae

Streptococcus agalactiae

Streptococcus mutans

Lactobacillus gasseri

Clostridium beijerinckii

Spearman: 0.97 Spearman: 0.961 Spearman: 0.944

Spearman: 0.967 Spearman: 0.894 Spearman: 0.967



Supplementary Figure 5: Correlation between read coverage and contig NGA50 for the genomes
assembled by MEGAHIT (n=37), IDBA-UD (n=37) and hybridSPAdes (n=74).
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Supplementary Figure 6: Indel and mismatch error rates for assemblers as a function of the different sequencing technologies
used. Note that each point represents performance for a genome in the mock community datasets used, and that the centre value
represents the median.

mismatch

indel

Short read

Illumina 
long read

Pacbio

Nanopore

B
as

ep
ai

r
er

ro
r/

M
b

p
B

as
ep

ai
r

er
ro

r/
M

b
p

MEGAHIT metaSPAdes IDBA-UD

hybridSPAdesCanu OPERA-MS



Supplementary Figure 7: OPERA-MS assemblies using contigs from other short-read metagenomic assemblers as inputs. (A,C) Scaling of OPERA-MS 
NGA50 values as a function of long-read coverage (n=74 genomes). (B,D) Improvement in NGA50 values obtained using OPERA-MS when compared to the 
starting assemblies from metaSPAdes and IDBA-UD, respectively. Data is presented as boxplots (center line, median; box limits, upper and lower quartiles; 
whiskers, 1.5× interquartile range; points, outliers). The number of genomes in each boxplot, in ascending order of coverage, is 3, 12, 20 and 19.
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Supplementary Figure 8: Evaluation of assembly completeness. OPERA-MS provides more complete
assemblies than short read only methods for long read coverage >5×. Similar advantages are seen
using hybridSPAdes but with a higher misassembly rate (Figure 2E). Data is presented as boxplots
(center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points,
outliers). The number of genomes for coverages 5-30× and >30× is 21 and 19 respectively.
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Supplementary Figure 9: Comparison of assembly and binning performance between Illumina-only (MEGAHIT)
and hybrid (OPERA-MS) assemblies in the presence of multiple strains of a species. (A) Fraction of genes from
Klebsiella pneumoniae that are assembled and present in various contig bins using the two approaches. (B)
Coverage of Klebsiella pneumoniae pathways (n=156) in various assembly bins. Note that despite the binning of
Illumina-only contigs, the corresponding bins only cover a fraction of the genes and pathways present in K.
pneumoniae, while the hybrid approach with OPERA-MS recovers the complete genome despite the presence of
multiple K. pneumoniae strains in the metagenome. Data is presented as boxplots (center line, median; box limits,
upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers)
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Supplementary Figure 10: Overview of genome assemblies obtained for 28 gut microbiomes with nanopore sequencing
data. N50 of assembled species (those with >1Mbp of sequence with Kraken hits) as a function of read coverage for (A)
MEGAHIT and (B) OPERA-MS. (C) Assembly improvement provided by OPERA-MS compared to MEGAHIT as a function of
read coverage. As was observed in the case of the mock communities, short-read assemblies plateau at an N50 of
~100kbp. In contrast, hybrid assemblies continue to scale and enable highly contiguous assemblies, with >90 genomes
with N50 >100kbp and the assembly of 6 near complete genomes (N50 >1Mbp).
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Supplementary Figure 11: Assembly of high quality draft genomes from 28 gut microbiomes with nanopore sequencing
data. The graphs show N50 of assembled genomes (after binning) as a function of read coverage. Assembly bins from
MaxBin2 were evaluated using CheckM (v1.0.7, --reduced_tree) and bins with completeness >90% and contamination
<5% were considered high quality genomes. Pink dots represent species where multiple genomes are present in the
metagenome. Overall, OPERA-MS assembles the most high-quality genomes (n=138), many of which have N50 >100kbp
(n=69). Also, in cases where there are multiple genomes for a species, OPERA-MS produces more genomes with high N50
(n=8) compared to hybridSPAdes (n=1).



Supplementary Figure 12: OPERA-MS assembles closed circular sequences from stool metagenomic data. (A)
The closed circular contigs assembled by OPERA-MS are frequently quite fragmented in the MEGAHIT
assembly. (B) The longest circular sequence assembled by OPERA-MS seems to be the complete genome for
an Enterobacter cloacae strain in the metagenome that shows high structural similarity and sequence
identity to the reference genome for Enterobacter cloacae subsp. cloacae strain ENHKU01. Note that this
genome was part of our reference database which enabled rescue of 13 assembly graph edges (out of 263 in
total) and helped merge 8 original clusters.
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Supplementary Figure 13: (A) Uniform coverage of >1kbp long
ONT reads across the 263kbp sequence of the putative jumbo
phage. (B) Maximum likelihood phylogenetic tree based on DNA
polymerase group B protein sequences from bacteria (red box),
small phages (blue box), and jumbo phages (not boxed). The
DNA polymerase B protein from the putative jumbo phage
genome assembled by OPERA-MS (green box) clustered with
other jumbo phage proteins. Numbers on the branches indicate
bootstrap confidence values based on 500 replicates. (C)
Fraction of metagenomic reads that mapped to the jumbo phage
genome. Start and end days for antibiotic treatment are marked
with arrows.
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Supplementary Figure 14: Genomic linkage of AR genes and identification of common cassettes in the gut microbiome. Edges between
genes indicate genetic linkage (<5kbp apart; grey otherwise) based on the 28 gut metagenomes analyzed. Markov clustering on the
network was used to identify AR gene cassettes that tend to co-occur. Edges are color-coded according to their respective clusters (A-J)
while resistance genes are color-coded according to the antibiotic classes that they can confer resistance to.
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Supplementary Figure 15: Species level analysis (n=12 samples) detects no correlation
between abundance of two Enterobacteriaceae species (E. coli and K. pneumoniae) over time
and the abundance of a plasmid containing a beta-lactamase gene (IMP).
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Supplementary Figure 16: Performance of long read assemblers for metagenomic assembly. We compared Canu with default
settings as used for the results in the manuscript, with alternate parameter settings (CANU-OPT, recommended for
metagenomic assembly; corOutCoverage=10000 corMhapSensitivity=high corMinCoverage=0), and WTDBG2 (default setting),
and observed that it has (A) higher assembly contiguity (median NGA50) where data is presented as boxplots (center line,
median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers), and (B) slightly higher
misassembly rate (centre value represents the median). In each figure, each data point represents one assembled genome
from the mock communities (n=20, 26 and 21 for CANU, CANU-OPT and WTBG2 respectively).
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Assembly 
method

Single or 
multi-

sample 
analysis

Sequence data
Metagenomics

specific

Assembly 
contiguity 
(NGA50)

Strain 
deconvolution

Software website

MGS Canopy
Multi-
sample

Illumina Yes <100kbp No
https://bitbucket.org/HeyHo/mgs-canopy-
algorithm/wiki/Home

MEGAHIT Single Illumina Yes <100kbp No https://github.com/voutcn/megahit

metaSPAdes Single Illumina Yes <100kbp No http://cab.spbu.ru/software/spades/

IDBA-UD Single Illumina Yes <100kbp No https://github.com/loneknightpy/idba

Canu Single
PacBio/Nanopore/Illumina

-SLR
No 100kbp-1Mbp No https://github.com/marbl/canu

WTDBG2 Single
PacBio/Nanopore/Illumina

-SLR
No 100kbp-1Mbp No https://github.com/ruanjue/wtdbg2

hybridSPAdes Single
Illumina + 

PacBio/Nanopore/Illumina
-SLR

No
100kbp-1Mbp

No http://cab.spbu.ru/software/spades/

Athena Single Illumina +10x read cloud No 100kbp-1Mbp No https://github.com/abishara/athena_meta/

OPERA-MS Single
Illumina + 

PacBio/Nanopore/Illumina
-SLR

Yes 100kbp-1Mbp Yes https://github.com/CSB5/OPERA-MS

Supplementary Table 1: Attributes of various assembly algorithms that have been used for metagenomic assembly. Assembly
contiguity values give an indication of expected performance assuming sufficient read coverage for the genome of interest
(typically >10-30×).



Sample ID Patient ID
Throughtput

(Mbp)

Number of 
reads                                            

(thousands)

Read N50                        
(kbp)

ONT sequencer ONT flow cell Technique used Kit Basecaller

S1 818VB-3 444 28 4.9 MinION R9 HMW NSK007 RNN SQK007 1.107

S2 631RZ-6 582 124 1.0 MinION R9 spoton HMW SQK-LSK208 2D flo106 250bps 1.125

S3 631RZ-5 70 5 4.2 MinION R9 spoton WGA SQK-LSK208 2D flo106 250bps 1.125

S4 135EA6 1124 150 2.0 MinION R9 spoton HMW SQK-LSK208 2D flo106 250bps 1.125

S5 948BA1 1115 426 0.6 MinION R9 spoton HMW SQK-LSK208 2D flo106 250bps 1.125

S6 V01-T-0506-S02 1006 106 2.5 MinION R9 spoton Normal SQK-LSK208 Albacore

S7 V03-T-0506-S04 1632 123 4.0 MinION R9 spoton Normal SQK-LSK208 Albacore

S8 V02-S-0510-S03 325 60 1.3 MinION R9.5 spoton Normal SQK-LSK208 Albacore

S9 V06-T-0502-S07 2438 172 5.1 MinION R9.5 spoton BluePippin SQK-LSK208 Albacore

S10 V05-T-0502-S06 3106 665 1.1 MinION R9.5 spoton Normal SQK-LSK208 Albacore

S11 V03-T-0508-S04 7996 393 6.4 MinION R9.5 spoton Normal SQK-LSK208 Albacore

S12 V00-S-0509-S01 4218 333 3.6 MinION R9.5 spoton Size Select SQK-LSK208 Albacore

S13 V02-T-0504-S03 7255 1032 2.0 MinION R9.5 spoton Size Select SQK-LSK208 Albacore

S14 V06-T-0501-S07 3190 511 1.8 GridION R9.5 spoton Normal SQK-LSK208 Guppy v0.3.0 for live 1D basecalling

S15 V00-S-0511-S01 2677 1345 0.7 GridION R9.5 spoton Size Select SQK-LSK208 Guppy v0.3.0 for live 1D basecalling

S16 V04-S-0509-S04 2572 629 1.2 GridION R9.5 spoton Size Select SQK-LSK208 Guppy v0.3.0 for live 1D basecalling

S17 V05-S-0512-S05 1990 540 1.1 GridION R9.5 spoton Normal SQK-LSK208 Guppy v0.3.0 for live 1D basecalling

S18 V05-T-0513-S05 2541 514 1.4 GridION R9.5 spoton Size Select SQK-LSK208 Guppy v0.3.0 for live 1D basecalling

S19 V07-S-0512-S07 5307 430 4.3 GridION R9.5 spoton Normal SQK-LSK208 Guppy v0.3.0 for live 1D basecalling

S20 V02-T-1664-S03 5412 275 6.2 GridION R9.5 spoton Normal SQK-LSK208 Guppy v0.3.0 for live 1D basecalling

S21 V02-T-1665-S03 4260 308 3.7 GridION R9.5 spoton Normal SQK-LSK208 Guppy v0.3.0 for live 1D basecalling

S22 V03-S-1663-S04 2517 618 1.0 GridION R9.5 spoton Normal SQK-LSK208 Guppy v0.3.0 for live 1D basecalling

S23 V03-S-0457-S04 2714 394 1.5 GridION R9.5 spoton Normal SQK-LSK208 Guppy v0.3.0 for live 1D basecalling

S24 V03-T-0504-S04 5870 537 3.1 GridION R9.5 spoton Size Select SQK-LSK208 Guppy v0.3.0 for live 1D basecalling

S25 V04-T-0508-S05 3167 233 4.0 GridION R9.5 spoton Size Select SQK-LSK208 Guppy v0.3.0 for live 1D basecalling

S26 V07-T-0504-S08 4308 559 2.0 GridION R9.5 spoton Size Select SQK-LSK208 Guppy v0.3.0 for live 1D basecalling

S27 V07-S-0510-S08 4940 561 2.5 GridION R9.5 spoton Size Select SQK-LSK208 Guppy v0.3.0 for live 1D basecalling

S28 V08-S-0510-S09 5233 507 2.8 GridION R9.5 spoton Size Select SQK-LSK208 Guppy v0.3.0 for live 1D basecalling

Supplementary Table 2: ONT sequencing protocols and statistics for stool metagenomics. Technique used: HMW (High Molecular Weight Extraction
protocol), WGA (Whole Genome Amplification), Normal (extraction protocol used for shotgun libraries), BluePippin (size selection from 3-50kb), Size Select
(size selection with 0.45X AMPure XP).



Strain ID Name Mass (in 𝜇g) Relative Abundance (%) Reference Genome

ATCC 39213 Pseudomonas putida 69 30.00% NA

ATCC 700721 Klebsiella pneumoniae 46 20.00% NC_009648

ATCC 17978 Acinetobacter baumannii 34.5 15.00% GCF_001077675.1_ASM107767v1_genomic

ATCC 12228 Staphylococcus epidermidis 23 10.00% NC_004461

ATCC BAA-472 Enterococcus faecium 16.1 7.00% NC_017960

ATCC 13311
Salmonella enterica subsp. enterica serovar 

typhimurium
11.5 5.00% GCF_000743055.1_ASM74305v1_genomic

DSM17610 Neisseria subflava 6.9 3.00% NA

DSM 7271 Capnocytophaga ochracea 6.9 3.00% NC_013162

DSM20016 Lactobacillus reuteri 3.45 1.50% NC_010609

DSM 20219 Bifidobacterium longum 3.45 1.50% NC_015067

DSM 22815 Jonquetella anthropi 2.3 1.00% GCF_000237805.1_ASM23780v1_genomic

DSM20472 Finegoldia magna 1.15 0.50% NC_010376

DSM 30054 Enterobacter cloacae 1.15 0.50% NC_014121

DSM 15702 Eubacterium siraeum 1.15 0.50% NA

DSM 20083 Bifidobacterium adolescentis 0.575 0.25% NC_008618

DSM 6778 Streptococcus parasanguinis 0.575 0.25% NC_015678

DSM 20482 Fusobacterium nucleatum subsp. polymorphum 0.575 0.25% GCF_000153625.3_ASM15362v1_genomic

DSM 18711 Prevotella oris 0.23 0.10% GCF_000377685.1_ASM37768v1_genomic

DSM5359 Helicobacter cinaedi 0.23 0.10% NC_020555

DSM 10105 Parascardovia denticolens 0.23 0.10% GCF_000191785.1_ASM19178v1_genomic

Supplementary Table 3: GIS20 mock community composition.



Supplementary Table 4: MinION sequencing statistics for the GIS20 mock community.

Sequencing 
run

Throughput                      
(Mbp)

Number of reads                      
(thousands)

N50            
(kbp)

ONT flow cell Kit Basecaller

1 238 9 9.4 R7 MAP006 RNN SQK007 1.69

2 415 17 8.6 R7 MAP006 RNN SQK007 1.69

3 267 7 12.1 R7 MAP006 RNN SQK007 1.69

4 188 4 14.7 R7 MAP006 RNN SQK007 1.69

5 480 22 8.0 R9 NSK007 RNN SQK007 1.97

6 859 34 9.3 R9 NSK007 RNN SQK007 1.99

TOTAL 2,446 91 9.2



Supplementary Table 5 : Novel antibiotic resistance gene combinations identified.

Gene Name Associated Antibiotic Resistance
Aac3-Iva Aph4-Ia TEM-176 CmlA1 SulIII AadA2 CTX-M-55 aminoglycoside(3), cephalosporin(2), phenicol, sulfone

DfrA17 SulI AadA5 AacA4 IMP-39 diaminopyrimidine, sulfone, aminoglycoside(2), carbapenem

SulI CmlA1 Arr3 SulIII sulfone(2), phenicol, rifamycin

OXA-48 OXA-30 CatB3 Aac6Ib-cr carbapenem/cephalosporin, penam, phenicol, fluoroquinolone, aminoglycoside 

Aph3-III ErmB Ant6-Ia Sat4A aminoglycoside(2), lincosamide, nucleoside 

OXA-30 Aac6Ib-cr Qnr-S1 penam, fluoroquinolone(2), aminoglycoside

OXA-30 Aac6Ib-cr CatB4 penam, fluoroquinolone, aminoglycoside, phenicol

CmlA1 AadA2 SulIII phenicol, aminoglycoside, sulfone

SulIII CmlA1 AadA2 sulfone, phenicol, aminoglycoside 

Aph3-III Ant6-Ia Sat4A aminoglycoside(2), nucleoside 

OXA-30 Aac6Ib-cr CatB4 penam, fluoroquinolone, aminoglycoside, phenicol

KPC-2 TEM-191 CTX-M-15 carbapenem, cephalosporin(2)

OXA-30 Aac6Ib-cr CatB4 penam, fluoroquinolone, aminoglycoside, phenicol

Aph3-III OXA-347 FloR aminoglycoside, penam, phenicol

KPC-2 MphA carbapenem, macrolide 

SulII TEM-176 sulfone, cephalosporin 

Aac6Ib-cr CatB4 fluoroquinolone, aminoglycoside, phenicol

ErmA Spc lincosamide, aminoglycoside 

TetO Tet-40 tetracycline(2)

TetX FloR tetracycline, phenicol

Tet-40 TetO tetracycline(2)

TetW Tet-40 tetracycline(2)

QnrB4 DfrA17 fluoroquinolone, diaminopyrimidine

Aph3''Ia SulI aminoglycoside, sulfone



Supplementary	Note	1:	Impact	of	technology-specific	and	Illumina	polishing	on	
base-pair	level	accuracy	of	long-read	assembly	

We	evaluated	 the	 base-pair	 level	 accuracy	 of	 Canu	 long-read	 only	 assemblies	 using	 different	
polishing	approaches.	 In	addition	to	 the	default	approach	of	using	Racon	which	 is	 technology	
agnostic,	we	evaluated	the	use	of	Quiver1	for	PacBio	reads	and	Nanopolish2	for	nanopore	reads.	
As	expected,	using	Quiver	 improved	 the	accuracy	of	 the	Pacbio	assemblies	 further	but	many	
genomes	still	continue	to	have	 low	quality,	 likely	due	to	shallow	coverage	for	 these	genomes	
(Supplementary	 Note	 Figure	 1).	 Improvement	 using	 Nanopolish	 was	 limited	 for	 nanopore	
assemblies,	likely	due	to	the	lack	of	coverage	in	low	abundance	genomes.	Finally,	polishing	with	
Illumina	reads	(using	Pilon)	provided	accuracy	that	was	closer	to	hybrid	assemblies	but	OPERA-
MS	assemblies	still	had	1/5th	of	the	errors	(Supplementary	Figure	6).	

Note	 that	 a	potential	 advantage	of	 long-read	assembly	 is	 its	 ability	 to	 resolve	 repeat	 regions	
better.	We	evaluated	this	property,	using	MUMmer	self-alignments	to	identify	repeat	regions	in	
the	genome,	and	observed	 that	while	OPERA-MS	 improved	notably	over	Canu	assemblies	 for	
nanopore	data	(1/3rd	of	the	errors),	 it	showed	slight	improvements	for	Illumina	synthetic	long	
read	and	PacBio	datasets	(20%	fewer	base-pair	errors)	in	such	regions.	

	

	

	 	

Supplementary	Note	Figure	1:	Evaluation	of	base-pair	level	accuracy	for	Canu	assemblies	with	
different	 polishing	 steps	 (polishing	 steps	 are	 listed	 in	 order	 of	 use	 in	 the	 legend).	 Each	 dot	
represents	results	for	a	genome	from	the	mock	communities.	Quiver	(v2.2.2)	and	Nanopolish	
(v0.9.2;	R9	model)	were	run	with	default	settings.	 



Supplementary	Note	2:	Utility	of	reference	genomes	for	metagenomic	assembly	
with	OPERA-MS	

To	evaluate	the	utility	of	the	reference-guided	step	in	OPERA-MS,	we	ran	OPERA-MS	without	this	
optional	 step	 (no	 reference),	 as	well	 as	with	a	database	where	 species-level	 references	were	
removed	(genus-level	reference),	before	analyzing	the	mock	communities.	In	all	settings,	OPERA-
MS	 provided	 assemblies	 with	 high	 median	 NGA50	 compared	 to	 Illumina-only	 assemblies	
(Supplementary	Note	Figure	2).	Notably,	switching	from	having	all	references	to	only	those	at	
the	genus-level	resulted	in	no	NGA50	reduction,	while	using	no	references	led	to	~20%	reduction	
(median	across	genomes).	The	impact	of	references	was	felt	under	two	conditions:	(i)	low	read	
coverage	(<5×),	where	references	provided	a	65%	boost	in	median	NGA50,	or	(ii)	high	coverage	
skew	(>1.2),	as	can	be	seen	in	rapidly	dividing	bacteria3,	with	median	NGA50	improvement	of	
25%.	With	the	sequencing	coverage	generated	in	this	study,	we	estimated	that	these	conditions	
primarily	impact	less	than	half	of	the	species	with	relative	abundance	<0.5%	in	the	community.	
Additionally,	we	did	not	see	an	impact	on	the	ability	to	assemble	strain	genomes	in	the	presence	
of	multiple	strains	in	the	virtual	gut	community	(e.g.	the	dominant	K.	pneumoniae	strain	was	still	
assembled	into	a	4.3Mbp	contig	with	only	2	small	errors).	
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Supplementary	 Note	 Figure	 2:	 Evaluation	 of	 utility	 of	 the	 reference-guided	 step	 for	
metagenomic	assembly	with	OPERA-MS.	We	evaluated	results	on	the	mock	communities	with	
3	 settings:	 (i)	 default	 reference	 database,	 (ii)	 using	 a	 filtered	 genome	 database	 with	 no	
corresponding	 species-level	 references	 (genus-level	 reference),	 and	 (iii)	using	no	 references. 
Each	dot	in	the	figure	represents	an	assembled	genome	in	the	mock	communities. 



Supplementary	Note	3:	Sensitivity	of	Mash	distance	for	identifying	links	between	
clusters	

The	Mash	toolkit	was	used	to	estimate	distances	between	contig	clusters	and	reference	genomes	
due	 to	 its	 computational	 efficiency4.	 As	 Mash	 uses	 kmer	 occurrences	 to	 measure	 Jaccard	
similarities,	for	small	clusters	we	can	expect	a	drop	in	sensitivity.	This	is	indeed	what	we	observed	
on	 the	mock	 community,	with	 sensitivity	 being	 as	 low	as	 40%	 for	 clusters	 shorter	 than	1kbp	
(Supplementary	Note	Figure	3).	However,	for	clusters	longer	than	10kbp,	sensitivity	was	greater	
than	90%	and	precision	was	consistently	high	in	all	cases	(~95%).	Correspondingly,	we	noted	that	
hundreds	of	new	links	were	correctly	discovered	for	the	mock	communities	(GIS20	Nanopore	–	
601,	 Pacbio	 –	 454,	 HMP	 staggered	mock	 Pacbio	 –	 936,	 Illumina	 synthetic	 long	 read	 -	 1037),	
especially	for	low	coverage	or	high	coverage	skew	genomes	(see	Supplementary	Note	2).	
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Supplementary	Note	Figure	3:	Performance	of	Mash	distance	for	 identifying	 links	between	
clusters.	Evaluation	of	the	(A)	sensitivity	and	(B)	precision	of	the	Mash	distance	based	approach	
in	OPERA-MS	 to	 rescue	 links	between	clusters,	 as	a	 function	 of	 cluster	 size	 (minimum	size	
among	the	two	clusters	for	a	link).	The	evaluation	was	done	on	the	GIS20	nanopore	dataset	
and	true	links	were	identified	by	mapping	of	contigs	to	the	reference	genomes	using	MUMmer. 
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