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Text S1. Methods: community resampling
Here we present the results of our simulated resampling of the best sampled bird commu-
nities in Texas, USA in the eBird database (communities with greater than 1,300 complete
lists). We resampled 5-120 complete lists from the 46 most sampled communities 100 times.
From these results we determined, subjectively, that with fewer than 80 complete lists, the
gain in total number of communities was not worth the increased error rate and loss of
species representation; at greater than 80 complete lists the loss in communities was too
large for the small decrease in error and small gain in species.
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Figure S1. Result from 100 subsamples from each of the 46 communities with greater than 1,300
complete lists. Violin plots show distribution of medians across the 46 communities from the 100
resampling events. The top panel shows the RMSE between the relative proportions of all birds in
the complete communities and subsampled communities as a function of the number of lists
subsampled. The secondary axis shows the number of communities that would be left in the Texas
dataset if the corresponding number of lists were used as a cutoff to define a well sampled
community.
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Figure S2. A second depiction of results from 100 subsamples from each of the 46 communities
with greater than 1,300 complete lists. Top and bottom panels shows how much RMSE is gained, or
the additional proportion of species that are lost, respectively, with an increase in retained Texas
communities (which are gained when fewer complete lists are used as a cutoff to define a well
sampled community, see Figure S1). Points in both panels show overall medians across all
communities and 100 resampling events. Blue lines are smooths showing approximate slope. 80
complete lists resides at approximately the beginning of the accelerating portion of this curve,
though our overall choice of 80 communities is fundamentally a qualitative and not quantitative
decision.



Sampling region for the mosquito biting preferences model
Figure S3 shows the eBird sampling region used to inform our prior in the Bayesian
component of the mosquito biting preference model.

Figure S3. Delineation of the area where eBird lists were used as prior information for
the bird community sampled in [1]. The center of this region was given as the location of
the sampling conducted in [1]. The entire area is contained within Cook County, IL and is
composed primarily of suburban Chicago, IL.



Text S2. Methods: phylogenetic mixed effects model validation
We present results for R2 and blocked leave-one-out cross validation in Table S1. We
calculated conditional R2 (which measures the variance explained by both fixed and
random factors; see [2, 3, 4]) for our phylogenetic mixed models using slightly modified
code from R package MuMIn [5]). For blocked leave-one-out cross validation we left out
all data for a single species at a time, refit our model with and without the species level
phylogenetic random effect, and calculated goodness of fit of predicted values to the
left out bird species’ data for each model. For models with a normal or Poisson error
distribution we use scaled root mean squared error (RMSE) between predicted values and
the data with the following formula:√

1
n ∑

n
i=1 (yi− ŷi)

2

ȳ
. (1)

For predicting responses using the titer model we use mean log dose across all infection
experiments (which decreases fit to individual infection experiments, inflating RMSE
slightly). For the binomial model (bird survival), we use area under the curve (AUC),
calculated using the observed number of birds that died and did not die on each day
and the estimated probabilities for each of these outcomes. Set up in this way, larger
AUC values mean a better fit between the predicted values and the empirical data. AUC
cannot be calculated for scenarios in which no birds died; in our calculation we ignore
experiments in which no individual birds died. To calculate AUC we used the R package
MESS [6]. Table S1 shows mean RMSE across all species for each method.

Despite an established method for calculating R2 for mixed effects models [2, 3, 4],
R2 can be difficult to interpret for these models. Additionally, by convention, the biting
preference model without the phylogenetic random effect (an intercept only model) has
an R2 = 0, which makes the ratio of R2 values for this model difficult to interpret. The
important point is that R2 increases (in many cases greatly) for all four of our models when
the species level phylogenetic random effect is included (Table S1).

The inclusion of a species level phylogenetic random effect increases the ability of three
of four models to predict left-out species’ responses (Table S1). For the survival model,
AUC values are small overall because most bird species survive with high probability;
it is difficult to predict the rare case of individual birds dying. AUC increases when a
phylogenetic random effect is included in the survival model because this model is better
able to predict the mortality of species that die with a higher frequency than the average
species. For the biting preference model, the phylogenetic random effect marginally
increases RMSE (Table S1); this may be due to minor overfitting.



Table S1. Phylogenetic mixed effects model validation. We use RMSE to quantify
leave-one-out cross validation error for titer, biting preference, and detectability models,
and AUC to quantify error for the survival model.

Model

Titer Survival Biting preference Detectability

Phylogenetic random effect included? No Yes No Yes No Yes No Yes

Conditional R2 0.65 0.93 0.805 0.898 0.00 0.97 0.51 0.92

Leave-one-out goodness of fit estimate 0.48 0.41 0.01 0.03 0.23 0.30 0.25 0.18



Text S3. Methods: Ricker function
The Ricker function:

y = axe−bx (2)

is a hump-shaped curve that is commonly used for modeling right-skewed patterns in
ecology [7] such as density dependence (e.g. [8]). When a = 1 this function is a Ricker
function; when a 6= 0 this function is a Generalized Ricker. We use a Generalized Ricker
function to model patterns in titer in birds, where x is given by day. Using log(titer) as our
response variable, we estimate the a and b parameters in the Generalized Ricker function
using a linear model with the form log(titer) ∼ day + log(day).



Text S4. Results: community R0

Complete eBird Dataset
Estimates for WNV R0 using the complete eBird dataset were more variable, but had
similar monthly medians to the well sampled eBird dataset in most months (Figure S4,
Figure S5).

The spatio-temporal GAM model explained 97% of the variation in WNV R0. WNV R0
was once again found to be driven mostly by temperature, and vary little across human
population density and years. With the full dataset, bird communities most favorable
for WNV transmission were once again estimated to be in the “Llano Uplift” ecoregion,
while the least competent bird communities were estimated to be in the “High Plains” and
“Oak Woods & Prairies” ecoregions. Overall R0 was estimated to be the highest in the
“Piney Woods” and “Oak Woods & Prairies” (favorable temperature in the “Oak Woods &
Prairies” has a much larger effect than the unfavorable bird communities in this region),
and the lowest in the “High Plains”.
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Figure S4. A comparison of R0 estimates. Purple and green boxplots show R0 estimates from
models fit to the full and reduced eBird datasets respectively.
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Figure S5. A comparison of R0 estimates. The gray histograms shows estimates for the full ebird
data set and the blue histograms shows estimates for the reduced eBird data set by month. The
vertical dotted gray and blue lines show the medians of the distributions.



No uncertainty propagated: reduced eBird Dataset
Estimates for WNV R0 when propagating no uncertainty were more variable than when all
uncertainty was propagated (Figure S6 vs main text Figure 1). No uncertainty propagation
increased the impact of variation in the bird community on variation in R0 estimates within
months (Figure S6).
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Figure S6. WNV R0 estimates between months and among Texas counties when no uncertainty is
propagated. Blue boxplots show R0 estimates across Texas counties within months for a “Full”
model, which used the eBird community and NOAA temperature data for each community. Red
boxplots show R0 estimates from a model where each community retained their specific eBird
community, but whose temperature was replaced with average temperature over all of Texas for
that month. With no uncertainty propagated, variation in R0 within months attributable to
variation in the bird communities (red boxplots) is much larger than when all uncertainty is
propagated (see main text Figure 1). The increase in variation explained by the bird community is
due to the translation of titer into bird-to-mosquito transmission probability, which has a maximum
of one (see main text: Discussion for a full description of this phenomenon). Increases or decreases
in medians between the models within months is due to the effects of averaging temperature prior
to predicting R0 using the nonlinear functions for mosquito-to-bird transmission and mosquito
survival across temperature.



Seasonally variable mosquito-to-bird ratio
Estimates for WNV R0 with seasonally vairable mosquito-to-bird ratio are shown in
Figure S7. With strong seasonal variation in mosquito-to-bird ratio that follows either
a sinusoidal function or a Gaussian function with peaks in July or August respectively,
estimates for R0 are lower in the spring months, and lower overall than the estimates we
obtain using our full model.
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Figure S7. WNV R0 estimates between months and among Texas counties. Purple boxplots show
R0 estimates across Texas counties within months for our full model, which used the eBird
community and NOAA temperature data for each community, but assumes a constant
mosquito-to-bird ratio across space and time. Green boxplots use the same model but assume that
mosquito-to-bird ratio follows a cyclic sinusoidal function with a peak in mid July and a trough in
mid February. Orange boxplots use the same model but assume that mosquito-to-bird ratio follows
a Gaussian function with a peak in August. Given these hypothetical seasonal patterns in
mosquito-to-bird ratio, assuming a constant mosquito-to-bird ratio (purple boxplots) results in
higher R0 estimates in every month.



Single sources of uncertainty: reduced eBird Dataset
For each model and for most sources of uncertainty, using point estimates for a single
parameter decreases the CV of R0 and increases the amount of variance explained in the
spatio-temporal model. However, for the titer model, ignoring uncertainty in fixed effects
increases the CV because of a smaller decrease in standard deviation than in the mean. In
the titer model, ignoring uncertainty in the amount of evolutionary change along the most
recent branch in time leading to species i results in the largest change in the CV of R0 for
any source of uncertainty for any model, regardless of direction: a median of a 1.3 fold
increase in the CV of R0.



Text S5. Results: species-specific contributions to R0

Complete eBird Dataset
Here we present which species have the largest impact on R0 when they are removed
from each of the 30,188 communities that they occupy, which gives a distribution of effects
across communities. Northern cardinals were estimated to have a median effect on R0
similar in magnitude to their effect in the reduced dataset, but with a larger range of
effects (recorded in 68% of the bird communities in the full dataset; median: 0.91 fold
decrease in R0, 0.76-0.99 in 95% of communities). Jay species appear as the most impactful
amplifiers in the full dataset as well. As in the reduced data set, Mourning doves (Zenaida
macroura, recorded in 78% of the bird communities in the full dataset) accounted for the
largest median dilution effect, but with an increased range of effect sizes (median: 1.05
fold increase in R0, 1.01-1.30 in 95% of communities). Again, only 2 species (Mourning
doves: Zenaida macroura and White-winged doves: Zenaida asiatica) had a median dilution
effect greater than a 1.01 fold increase in R0.

These analyses also provide a clear example of the type of problems that arise when
using undersampled bird communities. In November of 2004 in Lamb county, a single
complete list was submitted with two species, Sharp-tailed sandpiper (Calidris acuminata)
and Ring-necked pheasant (Phasianus colchicus). Sharp-tailed sandpipers are estimated to
be moderately competent hosts, while Ring-necked pheasants are estimated to be very
poor hosts. This is the only “community” in which Sharp-tailed sandpipers were recorded
in all of Texas. Sharp-tailed sandpipers were estimated to have a dilution effect of 0.29,
which is implausible given the magnitude of the effects we estimate for the most important
amplifier and diluter species.



Text S6. data citations
Laboratory infections of birds: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]

Laboratory infections of mosquitoes: bird-to-mosquito and mosquito-to-bird transmis-
sion: [35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69]

Bird detectability: [70, 71, 72, 73], and [74, 75, 76, 77, 78, 79, 80] (cited in [81])



References
[1] Hamer GL, Kitron UD, Goldberg TL, Brawn JD, Loss SR, Ruiz MO, et al. Host selection

by Culex pipiens mosquitoes and West Nile virus amplification. The American Journal
of Tropical Medicine and Hygiene. 2009;80(2):268–278.

[2] Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution. 2013;4(2):133–
142.

[3] Johnson PC. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes
models. Methods in Ecology and Evolution. 2014;5(9):944–946.

[4] Nakagawa S, Johnson PC, Schielzeth H. The coefficient of determination R2 and intra-
class correlation coefficient from generalized linear mixed-effects models revisited and
expanded. Journal of the Royal Society Interface. 2017;14(134):20170213.

[5] Barton K, Barton MK. Package ‘MuMIn’. 2018;.

[6] Ekstrøm CT. MESS: Miscellaneous Esoteric Statistical Scripts; 2019. R package version
0.5.5. Available from: https://CRAN.R-project.org/package=MESS.

[7] Bolker BM. Ecological models and data in R. Princeton, NJ: Princeton University Press;
2008.

[8] Elliott J. Mechanisms responsible for population regulation in young migratory trout,
Salmo trutta. The critical time for survival. The Journal of Animal Ecology. 1989;p.
987–1001.

[9] Brault AC, Langevin SA, Bowen RA, Panella NA, Biggerstaff BJ, Miller BR, et al.
Differential virulence of West Nile strains for American crows. Emerging Infectious
Diseases. 2004;10(12):2161.

[10] Brault AC, Huang CY, Langevin SA, Kinney RM, Bowen RA, Ramey WN, et al. A
single positively selected West Nile viral mutation confers increased virogenesis in
American crows. Nature Genetics. 2007;39(9):1162–1166.

[11] Brault AC, Langevin SA, Ramey WN, Fang Y, Beasley DW, Barker CM, et al. Reduced
avian virulence and viremia of West Nile virus isolates from Mexico and Texas. The
American Journal of Tropical Medicine and Hygiene. 2011;85(4):758–767.

[12] Clark L, Hall J, McLean R, Dunbar M, Klenk K, Bowen R, et al. Susceptibility of
greater sage-grouse to experimental infection with West Nile virus. Journal of Wildlife
Diseases. 2006;42(1):14–22.

[13] Duggal NK, Bosco-Lauth A, Bowen RA, Wheeler SS, Reisen WK, Felix TA, et al.
Evidence for co-evolution of West Nile Virus and house sparrows in North America.
PLoS Neglected Tropical Diseases. 2014;8(10):e3262.

https://CRAN.R-project.org/package=MESS


[14] Fang Y, Reisen WK. Previous infection with West Nile or St. Louis encephalitis viruses
provides cross protection during reinfection in house finches. The American Journal
of Tropical Medicine and Hygiene. 2006;75(3):480–485.

[15] Grubaugh ND, Smith DR, Brackney DE, Bosco-Lauth AM, Fauver JR, Campbell CL,
et al. Experimental evolution of an RNA virus in wild birds: evidence for host-
dependent impacts on population structure and competitive fitness. PLoS Pathogens.
2015;11(5):e1004874.

[16] Guerrero-Sánchez S, Cuevas-Romero S, Nemeth NM, Trujillo-Olivera M, Worwa G,
Dupuis A, et al. West Nile virus infection of birds, Mexico. Emerging Infectious
Diseases. 2011;17(12):2245–2252.

[17] Hofmeister E, Porter RE, Franson JC. Experimental susceptibility of wood ducks (Aix
sponsa) for West Nile virus. Journal of wildlife diseases. 2015;51(2):411–418.

[18] Hofmeister EK, Lund M, Shearn-Bochsler V, Balakrishnan CN. Susceptibility and
antibody response of the laboratory model zebra finch (Taeniopygia guttata) to West
Nile virus. PloS one. 2017;12(1):e0167876.

[19] Kilpatrick AM, Dupuis AP, Chang GJJ, Kramer LD. DNA vaccination of Amer-
ican robins (Turdus migratorius) against West Nile virus. Vector-Borne Zoonot.
2010;10(4):377–380.

[20] Kilpatrick AM, Peters RJ, Dupuis AP, Jones MJ, Daszak P, Marra PP, et al. Predicted
and observed mortality from vector-borne disease in wildlife: West Nile virus and
small songbirds. Biological Conservation. 2013;165:79–85.

[21] Kinney RM, Huang CYH, Whiteman MC, Bowen RA, Langevin SA, Miller BR, et al.
Avian virulence and thermostable replication of the North American strain of West
Nile virus. Journal of General Virology. 2006;87(12):3611–3622.

[22] Kipp AM, Lehman JA, Bowen RA, Fox PE, Stephens MR, Klenk K, et al. West Nile
virus quantification in feces of experimentally infected American and fish crows. The
American Journal of Tropical Medicine and Hygiene. 2006;75(4):688–690.

[23] Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, et al. Experimental
infection of North American birds with the New York 1999 strain of West Nile virus.
Emerging Infectious Diseases. 2003;9(3):311–322.

[24] Komar N, Panella NA, Langevin SA, Brault AC, Amador M, Edwards E, et al. Avian
hosts for West Nile virus in St. Tammany Parish, Louisiana, 2002. The American
Journal of Tropical Medicine and Hygiene. 2005;73(6):1031–1037.

[25] Langevin SA, Brault AC, Panella NA, Bowen RA, Komar N. Variation in virulence of
West Nile virus strains for house sparrows (Passer domesticus). The American Journal
of Tropical Medicine and Hygiene. 2005;72(1):99–102.



[26] Langevin SA, Bowen RA, Reisen WK, Andrade CC, Ramey WN, Maharaj PD, et al.
Host competence and helicase activity differences exhibited by West Nile viral variants
expressing NS3-249 amino acid polymorphisms. PLoS ONE. 2014;9(6):e100802.

[27] Melian EB, Hall-Mendelin S, Du F, Owens N, Bosco-Lauth AM, Nagasaki T, et al.
Programmed ribosomal frameshift alters expression of West Nile Virus genes and facil-
itates virus replication in birds and mosquitoes. PLoS Pathogens. 2014;10(11):e1004447.

[28] Nemeth NM, Hahn DC, Gould DH, Bowen RA. Experimental West Nile virus infection
in eastern screech owls (Megascops asio). Avian Diseases. 2006;50(2):252–258.

[29] Nemeth NM, Oesterle PT, Bowen RA. Humoral immunity to West Nile virus is long-
lasting and protective in the house sparrow (Passer domesticus). The American Journal
of Tropical Medicine and Hygiene. 2009;80(5):864–869.

[30] Nemeth N, Thomsen B, Spraker T, Benson J, Bosco-Lauth A, Oesterle P, et al. Clin-
ical and pathologic responses of American crows (Corvus brachyrhynchos) and fish
crows (C. ossifragus) to experimental West Nile virus infection. Veterinary Pathology.
2011;48(6):1061–1074.

[31] Owen J, Moore F, Panella N, Edwards E, Bru R, Hughes M, et al. Migrating birds as
dispersal vehicles for West Nile virus. EcoHealth. 2006;3(2):79–85.

[32] Owen JC, Nakamura A, Coon CA, Martin LB. The effect of exogenous corticosterone
on West Nile virus infection in Northern Cardinals (Cardinalis cardinalis). Veterinary
Research. 2012;43(1):34.

[33] Reisen WK, Fang Y. Does feeding on infected mosquitoes (Diptera: Culicidae) enhance
the role of song sparrows in the transmission of arboviruses in California? Journal of
Medical Entomology. 2007;44(2):316–319.

[34] Reisen WK, Hahn DC. Comparison of immune responses of brown-headed cowbird
and related blackbirds to West Nile and other mosquito-borne encephalitis viruses.
Journal of Wildlife Diseases. 2007;43(3):439–449.

[35] Reisen W, Fang Y, Martinez V. Avian host and mosquito (Diptera: Culicidae) vector
competence determine the efficiency of West Nile and St. Louis encephalitis virus
transmission. Journal of Medical Entomology. 2005;42(3):367–375.

[36] VanDalen KK, Hall JS, Clark L, McLean RG, Smeraski C. West Nile virus infection in
American robins: new insights on dose response. PLoS ONE. 2013;8(7):e68537.

[37] Worwa G, Wheeler SS, Brault AC, Reisen WK. Comparing Competitive Fitness of West
Nile Virus Strains in Avian and Mosquito Hosts. PLoS ONE. 2015;10(5):e0125668.

[38] Ziegler U, Angenvoort J, Fischer D, Fast C, Eiden M, Rodriguez AV, et al. Pathogenesis
of West Nile virus lineage 1 and 2 in experimentally infected large falcons. Veterinary
Microbiology. 2013;161(3):263–273.



[39] Anderson JF, Main AJ, Cheng G, Ferrandino FJ, Fikrig E. Horizontal and vertical
transmission of West Nile virus genotype NY99 by Culex salinarius and genotypes
NY99 and WN02 by Culex tarsalis. The American Journal of Tropical Medicine and
Hygiene. 2012;86(1):134–139.

[40] Bolling BG, Olea-Popelka FJ, Eisen L, Moore CG, Blair CD. Transmission dynam-
ics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory
colony and effects of co-infection on vector competence for West Nile virus. Virology.
2012;427(2):90–97.

[41] Ciota AT, Chin PA, Kramer LD. The effect of hybridization of Culex pipiens complex
mosquitoes on transmission of West Nile virus. Parasites & Vectors. 2013;6:305.

[42] Danforth ME, Reisen WK, Barker CM. Extrinsic incubation rate is not accelerated
in recent California strains of West Nile virus in Culex tarsalis (Diptera: Culicidae).
Journal of Medical Entomology. 2015;52(5):1083–1089.

[43] Dodson BL, Kramer LD, Rasgon JL. Larval nutritional stress does not affect vector
competence for West Nile virus (WNV) in Culex tarsalis. Vector-Borne and Zoonotic
Diseases. 2011;11(11):1493–1497.

[44] Dodson BL, Hughes GL, Paul O, Matacchiero AC, Kramer LD, Rasgon JL. Wolbachia
enhances West Nile virus (WNV) infection in the mosquito Culex tarsalis. PLoS Ne-
glected Tropical Diseases. 2014;8(7):e2965.

[45] Dohm DJ, O’Guinn ML, Turell MJ. Effect of environmental temperature on the ability
of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. Journal of Medical
Entomology. 2002;39(1):221–225.

[46] Ebel GD, Rochlin I, Longacker J, Kramer LD. Culex restuans (Diptera: Culicidae)
relative abundance and vector competence for West Nile virus. Journal of Medical
Entomology. 2005;42(5):838–843.

[47] Goddard LB, Roth AE, Reisen WK, Scott TW. Vector competence of California
mosquitoes for West Nile virus. Emerging Infectious Diseases. 2002;8(12):1385–1391.

[48] Goenaga S, Kenney JL, Duggal NK, Delorey M, Ebel GD, Zhang B, et al. Potential for
Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile
Virus Transmission in Mosquitoes. Viruses. 2015;7(11):5801–5812.

[49] Hanley KA, Goddard LB, Gilmore LE, Scott TW, Speicher J, Murphy BR, et al. Infectiv-
ity of West Nile/dengue chimeric viruses for West Nile and dengue mosquito vectors.
Vector-Borne and Zoonotic Diseases. 2005;5(1):1–10.

[50] Johnson B, Chambers T, Crabtree M, Arroyo J, Monath T, Miller B. Growth characteris-
tics of the veterinary vaccine candidate ChimeriVaxTM-West Nile (WN) virus in Aedes
and Culex mosquitoes. Medical and Veterinary Entomology. 2003;17(3):235–243.



[51] Kilpatrick AM, Meola MA, Moudy RM, Kramer LD. Temperature, viral genetics, and
the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathogens.
2008;4(6):e1000092.

[52] Moudy RM, Meola MA, Morin LLL, Ebel GD, Kramer LD. A newly emergent genotype
of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. The
American Journal of Tropical Medicine and Hygiene. 2007;77(2):365–370.

[53] Moudy RM, Zhang B, Shi PY, Kramer LD. West Nile virus envelope protein gly-
cosylation is required for efficient viral transmission by Culex vectors. Virology.
2009;387(1):222–228.

[54] Reisen WK, Fang Y, Lothrop HD, Martinez VM, Wilson J, O’Connor P, et al. Over-
wintering of West Nile virus in southern California. Journal of Medical Entomology.
2006;43(2):344–355.

[55] Reisen WK, Fang Y, Martinez VM. Vector competence of Culiseta incidens and Culex
thriambus for West Nile Virus 1. Journal of the American Mosquito Control Association.
2006;22(4):662–665.

[56] Richards SL, Mores CN, Lord CC, Tabachnick WJ. Impact of extrinsic incubation
temperature and virus exposure on vector competence of Culex pipiens quinquefasciatus
Say (Diptera: Culicidae) for West Nile virus. Vector-Borne and Zoonotic Diseases.
2007;7(4):629–636.

[57] Richards SL, Anderson SL, Lord CC. Vector competence of Culex pipiens quinquefasciatus
(Diptera: Culicidae) for West Nile virus isolates from Florida. Tropical Medicine and
International Health. 2014;19(5):610–617.

[58] Sardelis MR, Turell MJ. Ochlerotatus j. japonicus in Frederick County, Maryland: discov-
ery, distribution, and vector competence for West Nile virus. Journal of the American
Mosquito Control Association. 2001;17(2):137–141.

[59] Sardelis MR, Turell MJ, Dohm DJ, O’Guinn ML. Vector competence of selected North
American Culex and Coquillettidia mosquitoes for West Nile virus. Emerging Infectious
Diseases. 2001;7(6):1018.

[60] Tiawsirisup S, Platt KB, Evans RB, Rowley WA. A comparision of West Nile Virus
transmission by Ochlerotatus trivittatus (COQ.), Culex pipiens (L.), and Aedes albopictus
(Skuse). Vector-Borne and Zoonotic Diseases. 2005;5(1):40–47.

[61] Turell MJ, O’Guinn M, Oliver J. Potential for New York mosquitoes to transmit West
Nile virus. The American Journal of Tropical Medicine and Hygiene. 2000;62(3):413–
414.

[62] Turell MJ, O’Guinn ML, Dohm DJ, Jones JW. Vector competence of North American
mosquitoes (Diptera: Culicidae) for West Nile virus. Journal of Medical Entomology.
2001;38(2):130–134.



[63] Vanlandingham DL, Schneider BS, Klingler K, Fair J, Beasley D, Huang J, et al. Real-
Time reverse transcriptase–polymerase chain reaction quantification of West Nile
virus transmitted by Culex pipiens quinquefasciatus. The American Journal of Tropical
Medicine and Hygiene. 2004;71(1):120–123.

[64] Vanlandingham DL, McGee CE, Klinger KA, Vessey N, Fredregillo C, Higgs S. Relative
susceptibilties of South Texas mosquitoes to infection with West Nile virus. The
American Journal of Tropical Medicine and Hygiene. 2007;77(5):925–928.

[65] Vanlandingham DL, McGee CE, Klingler KA, Galbraith SE, Barrett AD, Higgs S.
Comparison of oral infectious dose of West Nile virus isolates representing three
distinct genotypes in Culex quinquefasciatus. The American Journal of Tropical Medicine
and Hygiene. 2008;79(6):951–954.

[66] Gould DJ, Barnett HC, Suyemoto W. Transmission of Japanese encephalitis virus by
Culex gelidus Theobald. Transactions of the Royal Society of Tropical Medicine and
Hygiene. 1962;56(5):429–435.

[67] MACKENZIE-IMPOINVIL L, Impoinvil D, Galbraith S, Dillon R, Ranson H, Johnson
N, et al. Evaluation of a temperate climate mosquito, Ochlerotatus detritus (= Aedes
detritus), as a potential vector of Japanese encephalitis virus. Medical and Veterinary
Entomology. 2015;29(1):1–9.

[68] Muangman D, Edelman R, Sullivan MJ, Gould DJ. Experimental transmission of
Japanese encephalitis virus by Culex fuscocephala. The American Journal of Tropical
Medicine and Hygiene. 1972;21(4):482–6.

[69] Van Den Hurk A, Nisbet D, Hall R, Kay B, Mackenzie J, Ritchie S. Vector competence
of Australian mosquitoes (Diptera: Culicidae) for Japanese encephalitis virus. Journal
of Medical Entomology. 2003;40(1):82–90.

[70] Dixon T. The distance at which sitting birds can be seen at sea. Ibis. 1977;119(3):372–375.

[71] Gibbs JP, Melvin SM. Call-response surveys for monitoring breeding waterbirds. The
Journal of Wildlife Management. 1993;p. 27–34.

[72] Ronconi RA, Burger AE. Estimating seabird densities from vessel transects: distance
sampling and implications for strip transects. Aquatic Biology. 2009;4(3):297–309.

[73] Pagano AM, Arnold TW. Detection probabilities for ground-based breeding waterfowl
surveys. The Journal of Wildlife Management. 2009;73(3):392–398.

[74] Smith PM. Yuma Clapper Rail Study Mohave County, Arizona, 1973. State of California,
The Resources Agency, Department of Fish and Game; 1974.

[75] Bart J, Stehn RA, Herrick JA, Heaslip NA, Bookhout TA, Stenzel JR. Survey methods
for breeding Yellow Rails. The Journal of wildlife management. 1984;48(4):1382–1386.



[76] Piest L, Campoy J. Report of Yuma Clapper Rail Surveys at Cienega de Santa Clara,
Sonora. Unpublished Report. 1998;.

[77] Kerlinger P, Sutton C. Black rail in New Jersey. Records of New Jersey Birds.
1989;15(2):22–26.

[78] Legare ML, Eddleman WR, Buckley P, Kelly C. The effectiveness of tape playback in
estimating Black Rail density. The Journal of wildlife management. 1999;p. 116–125.

[79] Tecklin J. Distribution and abundance of the California black rail (Laterallus jamaicensis
coturniculus) in the Sacramento valley region with accounts of ecology and call behavior
of the subspecies. Contract Nos FG6154WM and FG6154-1WM. 1999;.

[80] Spear LB, Terrill SB, Lenihan C, Delevoryas P. Effects of Temporal and Environmen-
tal Factors on the Probability of Detecting California Black Rails. Journal of Field
Ornithology. 1999;p. 465–480.

[81] Conway CJ, Gibbs J. Factors influencing detection probability and the benefits of call
broadcast surveys for monitoring marsh birds. Final Report, USGS Patuxent Wildlife
Research Center, Laurel, MD. 2001;.


