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Abstract

Bile acids were first proposed as carcinogens in 1939. Since then, accumulated evidence has linked exposure of
cells of the gastrointestinal tract to repeated high physiologic levels of bile acids as an important risk factor for
gastrointestinal cancers. High exposure to bile acids may occur in a number of settings, but most importantly, is
prevalent among individuals who have a high dietary fat intake.
A rapid effect on cells of high bile acid exposure is the generation of reactive oxygen species and reactive nitrogen
species, disruption of the cell membrane and mitochondria, induction of DNA damage, mutation and apoptosis,
and development of reduced apoptosis capability upon chronic exposure. Here, we review the substantial evidence
of the mechanism of secondary bile acids and their role in colon cancer.
Introduction
Bile Acids (BA) are normal components of the lumenal
contents of the gastrointestinal (GI) tract, where they en-
able absorption of lipids, cholesterol, and fat-soluble vita-
mins. In essence, they act as a physiologic detergent and
regulator of intestinal epithelial homeostasis in the gastro-
intestinal tract [1].
However, BAs, specifically lithocholic acid (LCA) - a sec-

ondary BA - also constitute a rare example of toxic endobi-
otics [2]. In fact, BAs were first proposed as a potential
tumor-promoting agent in 1939 [3].
At high physiologic concentrations, BAs can cause oxida-

tive/nitrosative stress, DNA damage, apoptosis, and muta-
tion [4]. Furthermore, frequently repeated and prolonged
exposure of tissues to high physiological levels of BAs can
lead to the generation of genomic instability, development
of apoptosis resistance and, ultimately, cancer [4].
And since BAs are normal components of the luminal

contents of the GI tract, finding the exact mechanism of
their carcinogenic effect has become intriguing. Several
factors have been found to increase levels of BAs: most
importantly, a high dietary fat intake.
Our aim is to explain the correlation between the con-

centration of fecal secondary BAs -mainly deoxycholic acid
(DOC) and LCA - and the colorectal cancer incidence that
* Correspondence: as04@aub.edu.lb
Department of Hematology/Oncology, American University of Beirut Medical
Center, PO Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon

© 2014 Ajouz et al.; licensee BioMed Central L
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
was highlighted by several epidemiological studies but
whose molecular mechanism remain far from clear.
Furthermore, BAs were also found to be etiologic agents

of other GI tract cancers, namely that of the esophagus
[5], stomach [6], small intestine [7], liver [8], pancreas [9]
and biliary tract [10].

Review
Biochemistry and physiology of secondary bile acids in
the body
Primary BAs (cholic acid and chenodeoxycholic acid) are
derived from cholesterol by a sequence of enzymatic reac-
tions occurring mainly in the liver. Synthesis of a full com-
plement of BAs requires 17 individual enzymes and occurs
in multiple intracellular compartments that include the
cytosol, endoplasmic reticulum (ER), mitochondria, and
peroxisomes [11]. After synthesis, these BAs are conju-
gated with glycine or taurine and then excreted and stored
in the gall bladder. In humans, BAs are largely re-absorbed
in the terminal ileum by an active transport mechanism,
but less than 5% of the BA pool enters the colon per day
[12]. The BAs that enter the colon are metabolized by bac-
terial flora, where the primary BAs (cholic and cheno-
deoxycholic acid) are converted into the secondary BAs,
DOC and LCA, respectively.
DOC is partly absorbed in the colon and enters the

enterohepatic circulation, where it is conjugated in the
liver and secreted in the bile [13]. LCA is fairly insoluble
and little of it is reabsorbed [13]. Thus, the circulating
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BA pool (conjugated when it leaves the gallbladder, and
then de-conjugated by action of bacterial enzymes after
it enters the colon) is composed of about 30 to 40% each
of cholic acid and chenodeoxycholic acid, about 20 to
30% of DOC, and less than 5% of LCA [14].
BAs are amphipathic and many of their properties are

related to their amphipathic nature [15]. Their amphi-
pathic nature enables them to get involved in emulsifica-
tion and digestion of dietary fats; yet, levels above those
that are physiologic are potentially membrane damaging.

Factors that change secondary bile acids levels
Almost 40 years ago, Berg was the first to make the ob-
servation that CRC (colorectal cancer) risk was higher
among descendants of individuals in low-risk populations
after moving to developed countries and converting to a
Western-type diet that is rich in red meat and saturated
fatty acids [16]. This was also consistent with a prospective
cohort study that investigated 55,487 Danish middle-aged
men and women and suggested that adherence to recom-
mendations for five lifestyle factors (physical activity, smok-
ing, waist circumference, alcohol intake and diet) may
indeed considerably reduce CRC risk [17].
Prolonged, high consumption of red meat and saturated

fatty acids were found to increase CRC risk. In their case
control study, Bayerdorffer et al. [18] confirmed that DOC
(Doxycholic acid) levels were significantly higher in the sera
of patients with colorectal adenomas. Later, Bayerdorffer
et al. [19] found that this positive association between DCA
in the serum and colorectal adenomas was highest in the
unconjugated fraction, which originates directly from the
colon. High fat diets stimulate bile discharge, hence they in-
crease the concentration of BAs above physiologic levels
[20]. Population-based studies have shown that subjects
who consume high-fat and high-beef foods display elevated
levels of fecal secondary BAs, mostly DOC and LCA, as do
patients diagnosed with colonic carcinomas [12,13]. Results
of such studies, however, are not very coherent due to diffi-
culties in accurately measuring secondary BA levels in their
different forms. Such incoherencies transpired because only
levels of free LCA were measured, when most of LCA is in
sulphated form. The increase in DOC and LCA reflects in-
creased production of BAs in order to emulsify the increased
level of dietary fat. Consequently, elevated secondary BA
levels would alter the growth of intestinal epithelium, thus
acting as tumor promoters [21]. Add to that, nicotine from
smoking can interact synergistically in colon cells to increase
oxidative stress and DNA damage [22].
Conversely, diets rich in vegetables and fruits are linked

to a decreased CRC incidence. Dietary fibers (from vegeta-
bles and fruits) can bind to LCA and aid in its excretion in
stool [23]; as such, fibers can protect against colon cancer.
Not only fibers play a protective role, but vitamin D and
high dietary Calcium supplementation also inhibits colon
carcinogenesis induced by either high-fat diets or intrarec-
tal instillation of LCA [24].
LCA activates vitamin D receptor, which may activate

a feed-forward catabolic pathway that leads to the de-
toxification of LCA. Whereas, high dietary calcium leads
to the formation of insoluble calcium soaps, this in turn
decreases the concentration of free BAs in the intestinal
lumen that ultimately may protect against formation of
colon cancer [25].

Secondary bile acids and the plasma membrane
An essential constituent of plasma membrane is choles-
terol, which rigidifies the membrane and is an important
structural component of membrane microdomains [26].
Due to the fact that BAs are cholesterol derivatives with
detergent properties, BAs may alter the stability of the
membrane lipid bilayer [27]. In fact, BAs with increased
hydrophobicity have a greater capacity to perturb the
structure of, or partly digest, cell membranes [28]. Sec-
ondary BAs (DOC and LCA) also increased paracellular
permeability in a dose-related manner, with LCA exert-
ing more potent effects than DOC [29]. When present in
high concentrations, secondary BAs, cause unspecific cell
membrane damage resulting in focal destruction of intes-
tinal epithelium (Payne, 2008 [4]). Worse yet, subsequent
repair mechanisms involving inflammatory reactions and
hyperproliferation of undifferentiated cells would then in-
crease the risk of transition into a precancerous state.
Hyperproliferation of the colorectal mucosa is regarded as
an early step in colorectal tumorigenesis [30].
In the colonic epithelium, high secondary BA concentra-

tions induce cell proliferation by activating epidermal growth
factor receptors (EGFRs) and post-EGFR/ERK (extracellular
signal-regulated kinase) signaling [31]. In addition, BA-
induced hyperproliferation can occur through the activity
of protein kinase C (PKC), which can be activated down-
stream of the EGFR or by membrane perturbations [32].

Bile acids and nuclear receptors
Nuclear receptors (NRs) are transcription factors that act
as sensors of dietary and endogenous molecules, translat-
ing nutritional and hormonal stimuli into transcriptional
programs [33]. Recently, it has become apparent that nu-
clear BA receptors FXR, vitamin D receptor (VDR) and
pregnane X receptor (PXR)/steroid xenobiotic receptor
(SXR) play an important role in protecting against car-
cinogenic effects of BAs by activating transcriptional pro-
grams aimed at coordinating the control of BA uptake,
detoxification, and basolateral secretion [34]. FXR, a mem-
ber of the nuclear receptor superfamily, responds to BAs
as physiological ligands [35]. FXR has a key role in activat-
ing pathways that maintain BA homeostasis. FXR protects
against intestinal tumorigenesis, possibly by a mechanism
involving induction of apoptosis [36].
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Vitamin D deficiency is a known major risk factor for
colorectal cancer [37]. When vitamin D binds to VDR it
functions as a transcription factor for many genes. In this
manner vitamin D exerts profound antimitogenic and pro-
differentiating effects on many normal and malignant cells
including colon cancer cells [24]. Thus in Vitamin D in-
sufficiency levels may not be high enough for effective
regulation of cell growth and function. VDR functions as a
receptor of secondary BAs such as LCA, and has a key
role in activating a pathway that detoxifies LCA [37]. Simi-
larly, the human xenobiotic receptor SXR and its rodent
homolog PXR are BA receptors that when activated in-
duce a response that detoxifies BA [38]. PXR promotes
BA detoxification by activating BA metabolizing enzymes
and transporters [39]. In both human colon cancer cells
and normal mouse colon epithelium, PXR/SXR protects
against oxidant induced apoptosis.
Interestingly, the enteric NR transcriptome has been

found to be downregulated in both mouse and human
models of CRC when the tissues are progressing from
normal intestinal epithelia to dysplastic lesions [40]. This
suggests a therapeutic and/or diagnostic potential for
these transcription factors in CRC.

Decreased HLA class I mRNA
Reduced or lost expression of HLA (human leukocyte
antigen) antigens is seen in human colon carcinogenesis
[41]. LCA was found to reduce the expression of HLA
class I antigens on the surface of colon cells by 42% [42].
This dose-dependent reduction was specific for both the
target genes and the chemical structure of LCA. Not only
LCA, but DOC also - though to a lesser extent - decreased
steady-state HLA class I mRNA levels. Data pertinent to
the in vivo status of HLA in response to LCA, however, is
still lacking.

Bile acids and production of reactive oxygen species and
reactive nitrogen species
One of the most important cytotoxic effects of BAs is the
increased production of reactive oxygen/nitrogen species
(ROS/RNS) [43]. Activation of several plasma membrane
enzymes - such as NAD (P) H oxidases and phospholipase
A2 - lead to the production of ROS [44]. This may also be
induced by perturbations in the mitochondrial membrane.
Increased production of ROS/RNS, can lead to increased
DNA damage and thus, increased mutation. The produc-
tion of ROS/RNS following BA exposure is likely to occur
through multiple pathways involving disruptions of the
cell membrane and mitochondria [43].

Bile acids and NF-kB activation
The balance between whether BAs induce proliferation or
cell death in colonic epithelial cells is finely tuned by acti-
vation of NF-kB. The ability of BAs to induce activation of
NF-kB largely determines intestinal epithelium cell fate
[45]. Closely related to the BA’s ability to induce ROS
production and inflammation, the redox-sensitive tran-
scription factor NF-kB is also important in many cellu-
lar processes such as inflammation and apoptosis [4].
Persistent activation of this factor (NF-kB) in the colon
results in colitis and ultimately colon cancer [46]. ROS
dependent and independent pathways can activate NF-
kB thus meticulously regulating the balance between
cell proliferation and demise.
A report has highlighted the mechanism of DOC-

induced NF-kB activation in HCT116 cells by showing
the significant correlation that binds NAD (P) H oxidase,
Na+/K + −ATPase, cytochrome P450 isoform 1B1, cal-
cium levels and the terminal mitochondrial respiratory
complex IV [47].

Secondary bile acids and DNA damage
BAs induce DNA damage in colon cells with oxidative
DNA damage being a likely component [48]. Defective re-
pair of oxidative DNA damage is linked to increased risk
of colon cancer. ROS causes oxidative damage in DNA by
disrupting the base excision repair pathway.
Genetic instabilities and chromosomal alterations are

frequently found in CRC [49]. BAs can induce genomic in-
stability in colonic epithelial cells through multiple mecha-
nisms, including the disruption of mitosis (leading to
aneuploidy), defects in spindle assembly checkpoints, oxi-
dative DNA damage, cell cycle arrest at G1 and/or G2
along with improper alignment of chromosomes at the
metaphase plate and multipolar divisions [50]. The nu-
merous studies showing that BAs induce DNA damage in
colon cells suggest that BAs may also induce mutation
and genomic instability. DOC may induce K-ras mutations
as well as aneuploidy and micronuclei formation [51].

Secondary bile acids and cell death
BAs have the potential to induce cell death both through
nonspecific detergent effects and receptor-mediated inter-
actions [52]. Elevated DOC and LCA levels promote apop-
tosis primarily through activation of the intrinsic apoptotic
pathway involving stimulation of mitochondrial oxidative
stress, generation of reactive oxygen species (ROS), cyto-
chrome C (cytC) release and activation of cytosolic caspases
[53]. Yui et al. recently reported a biphasic effect of cyto-
protection and induction of apoptosis by hydrophobic BAs
in the HCT116 cell line [54], with induction of different cel-
lular responses depending on BA concentrations. This has
raised a probability that epithelial cells of the intestinal tract
acquire resistance to apoptosis after chronic exposure to
low concentrations of hydrophobic BAs [34]. In a physio-
logical condition, epithelial cells are exposed to proapopto-
tic stimuli, causing DNA damage or oxidative stress, some
of which act as tumor initiators. Apoptosis that occurs
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spontaneously in vivo prevents tumor incidence by elimin-
ating damaged cells [55]. Several studies of colon cancer pa-
tients have shown that epithelial cells in areas of the
colonic mucosa that do not contain the cancer itself have
increased resistance to induction of apoptosis by DOC [56].
In addition, the expression of anti-apoptotic protein Bcl-xL
is elevated in the colorectal mucosa adjacent to colorectal
adenocarcinomas [57].

Conclusions
Since the CRC incidence and mortality rates are ex-
pected to increase in the coming decades, in-depth un-
derstanding of the molecular and cellular mechanisms
underlying CRC becomes crucial. Focusing on the role
of secondary BAs in developing CRC would be of great
significance since altering the risks that increase second-
ary BAs would alter the incidence of CRC. Not only that,
but secondary BAs may become an effective screening
marker. Secondary bile acids solve the puzzle of colorec-
tal cancer because they sit at the crossroad of nutritional
and hormonal signals modulating the tangled interactions
between the environmental factors, such as diet, and the
nuclear receptors such as VDR. The pivotal question that
emerges from the current evidence is to specify what epi-
genetic abnormalities are required in the crypt stem cell to
render them prone to secondary BA. The next challenge is
to unravel how potential stem cell specific mutations ren-
der them more prone to environmental factors, which in
turn, renders them more prone toward either normal or
tumorigenic phenotypes.
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