↓ Skip to main content

Extracellular Vesicles As Mediators of Cardiovascular Calcification

Overview of attention for article published in Frontiers in Cardiovascular Medicine, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
114 Dimensions

Readers on

mendeley
117 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Extracellular Vesicles As Mediators of Cardiovascular Calcification
Published in
Frontiers in Cardiovascular Medicine, December 2017
DOI 10.3389/fcvm.2017.00078
Pubmed ID
Authors

Amirala Bakhshian Nik, Joshua D. Hutcheson, Elena Aikawa

Abstract

Involvement of cell-derived extracellular particles, coined as matrix vesicles (MVs), in biological bone formation was introduced by Bonucci and Anderson in mid-1960s. In 1983, Anderson et al. observed similar structures in atherosclerotic lesion calcification using electron microscopy. Recent studies employing new technologies and high- resolution microscopy have shown that although they exhibit characteristics similar to MVs, calcifying extracellular vesicles (EVs) in cardiovascular tissues are phenotypically distinct from their bone counterparts. EVs released from cells within cardiovascular tissues may contain either inhibitors of calcification in normal physiological conditions or promoters in pathological environments. Pathological conditions characterized by mineral imbalance (e.g., atherosclerosis, chronic kidney disease, diabetes) can cause smooth muscle cells, valvular interstitial cells, and macrophages to release calcifying EVs, which contain specific mineralization-promoting cargo. These EVs can arise from either direct budding of the cell plasma membrane or through the release of exosomes from multivesicular bodies. In contrast, MVs are germinated from specific sites on osteoblast, chondrocyte, or odontoblast membranes. Much like MVs, calcifying EVs in the fibrillar collagen extracellular matrix of cardiovascular tissues serve as calcification foci, but the mineral that forms appears different between the tissues. This review highlights recent studies on mechanisms of calcifying EV formation, release, and mineralization in cardiovascular calcification. Furthermore, we address the MV-EV relationship, and offer insight into therapeutic implications to consider for potential targets for each type of mineralization.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 117 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 117 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 26 22%
Researcher 14 12%
Student > Bachelor 13 11%
Student > Master 12 10%
Professor > Associate Professor 7 6%
Other 18 15%
Unknown 27 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 20 17%
Medicine and Dentistry 20 17%
Agricultural and Biological Sciences 15 13%
Engineering 12 10%
Immunology and Microbiology 4 3%
Other 13 11%
Unknown 33 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 December 2017.
All research outputs
#5,665,113
of 23,011,300 outputs
Outputs from Frontiers in Cardiovascular Medicine
#844
of 6,928 outputs
Outputs of similar age
#110,290
of 439,919 outputs
Outputs of similar age from Frontiers in Cardiovascular Medicine
#4
of 27 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,928 research outputs from this source. They receive a mean Attention Score of 4.2. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,919 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.