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Myocardial Injury After Ischemia/
Reperfusion Is Attenuated By 
Pharmacological Galectin-3 
Inhibition
Jaime Ibarrola1, Lara Matilla1, Ernesto Martínez-Martínez1, Alexandre Gueret2, 
Amaya Fernández-Celis1, Jean-Paul Henry2,3, Lionel Nicol2,3, Frederic Jaisser4,5, 
Paul Mulder2,3, Antoine Ouvrard-Pascaud2,3 & Natalia López-Andrés1,5

Although optimal therapy for myocardial infarction includes reperfusion to restore blood flow to the ischemic 
region, ischemia/reperfusion (IR) also initiates an inflammatory response likely contributing to adverse left 
ventricular (LV) extracellular matrix (ECM) remodeling. Galectin-3 (Gal-3), a β-galactoside-binding-lectin, 
promotes cardiac remodeling and dysfunction. Our aim is to investigate whether Gal-3 pharmacological 
inhibition using modified citrus pectin (MCP) improves cardiac remodeling and functional changes associated 
with IR. Wistar rats were treated with MCP from 1 day before until 8 days after IR (coronary artery ligation) 
injury. Invasive hemodynamics revealed that both LV contractility and LV compliance were impaired in IR 
rats. LV compliance was improved by MCP treatment 8 days after IR. Cardiac magnetic resonance imaging 
showed decreased LV perfusion in IR rats, which was improved with MCP. There was no difference in LV 
hypertrophy in MCP-treated compared to untreated IR rats. However, MCP treatment decreased the 
ischemic area as well as Gal-3 expression. Gal-3 blockade paralleled lower myocardial inflammation and 
reduced fibrosis. These novel data showing the benefits of MCP in compliance and ECM remodeling in IR 
reinforces previously published data showing the therapeutic potential of Gal-3 inhibition.

The primary pathological expression of coronary artery disease is myocardial injury resulting from an ischemia/
reperfusion (IR) insult. Myocardial IR injury is a complex event with many interlinked processes, and it is a 
strong inductor of adverse left ventricular (LV) extracellular matrix (ECM) remodeling1. Abnormal ECM turno-
ver results in activation of cellular and molecular events that lead to structural instability. Moreover, IR activates 
an inflammatory response where inflammatory cells are recruited to the ischemic area, exacerbating cardiomy-
ocyte death2. Understanding ECM and inflammatory changes is important for identifying factors that facilitates 
the adverse LV remodeling that leads to progressive ventricular dysfunction and congestive heart failure (HF). 
Importantly, approaches to combat this phenomenon are not adequately developed, and it is necessary to find out 
an agent that reduces myocardial IR injury and minimize the damage.

Galectin-3 (Gal-3) is a 29 to 35 kDa protein, member of a β-galactoside binding lectin family expressed in car-
diac cells which has emerged as a potential regulator of physiological and pathological processes including inflam-
mation and fibrosis3. Modified citrus pectin (MCP) (a complex water soluble indigestible polysaccharide riche 
in β-galactose) is a Gal-3 inhibitor that blocks the lectin’s activity4. We and others have demonstrated that Gal-3 
inhibition improves cardiovascular remodeling in several pathological conditions such as hyperaldosteronism, 
obesity, hypertension, angiotensin II treatment, pressure overload and aortic stenosis5–8. Based on our previous 
findings demonstrating the cardioprotective efficacy of the Gal-3 inhibitor MCP in a variety of cardiovascular 
pathologies5,6,8,9, we tested the hypothesis that MCP treatment provides cardioprotection against LV remodeling 
associated to IR injury in rats, delaying the adverse remodeling that leads to progressive LV dysfunction and HF. 
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To that purpose, we evaluated the early benefits of Gal-3 inhibition on cardiac functional, histological and molec-
ular alterations in the rat model of IR.

Results
Effects of Gal-3 inhibition on cardiac function and myocardial perfusion in IR rats.  Magnetic res-
onance imaging (MRI) measurements showed that IR-associated injuries are responsible for increased LV end-sys-
tolic and LV end-diastolic volumes (LVESV and LVEDV), likely contributing to reductions in LV ejection fraction 
and in cardiac output (Table 1). Invasive hemodynamics indicated that the load-dependent rates dP/dtmax and 
dP/dtmin of LV pressure rise and fall, taken as indexes of LV global systolic contractility and diastolic relaxation 
respectively, were altered after IR (Table 1). Neither LV end-systolic pressure (LVESP) nor LV end-diastolic pressure 
(LVEDP) was modified (Fig. 1A,B). However, LV pressure-volume curves that allow the load-independent assess-
ments of LV systolic contractility and of LV compliance in diastole, via the calculation of the LV end-systolic or 
end-diastolic pressure-volume relations respectively (LVESPVR and LVEDPVR), indicated that both were altered at 
8 days post-IR (Fig. 1C,D). Nevertheless, in MCP treated compared to untreated IR rats, a trend toward the improve-
ment of the LV filling pressure i.e. LV end-diastolic pressure (LVEDP) (Fig. 1A,B) paralleled clear amelioration of 
the calculated LV compliance in diastole (LVEDPVR; Fig. 1C,D). In the same way, the relaxation constant τau1/2 was 
unaltered in MCP treated IR rats compared to Sham-operated (Table 1). Concerning myocardial perfusion which 
takes place during the diastolic phase of the cardiac cycle, MRI measurements indicated that IR induced a decrease 
in LV perfusion, as evidenced in both the interventricular septum and the LV free wall (Fig. 1E,F). Interestingly, 8 
days of MCP treatment partly improved myocardial perfusion in comparison to untreated IR rats (Fig. 1E,F).

Serum brain natriuretic peptide (BNP), an early marker predicting the structural and/or functional heart 
changes, was increased (p < 0.05) in rats with IR but normalized by Gal-3 blockade with MCP treatment (Table 1), 
showing the need to further study LV remodeling.

MCP treatment did not affect all measured parameters in the absence of IR.

Effects of Gal-3 blockade on cardiac structure and Gal-3 expression.  Representative LV micro-
photographs of IR rats treated or not with the Gal-3 inhibitor MCP shown in Fig. 2A were used to measure LV 
ischemic and non ischemic areas. Treatment allowed increasing the non-ischemic LV area and decreasing the LV 
ischemic area (Fig. 2B).

There was no difference neither in LV weight (Table 1) nor in cardiomyocyte mean cross sectional area 
(Fig. 2C,D) at this early stage of the disease. This was confirmed by the absence of changes in GDF-15 (growth dif-
ferentiation factor-15) protein expression, a cytokine whose increased expression has been involved in induction 
of cardiomyocyte hypertrophy10 (Fig. 2E). Interestingly, cardiac Gal-3 protein expression was increased (p < 0.01) 
in IR animals and it was reduced (p < 0.01) in the ischemic zone of MCP-treated IR rats (Fig. 2F). Detection of 
Gal-3 by immunohistochemistry confirmed its increased expression in the myocardium of IR rats as compared to 
controls and its lowered expression in the myocardium of MCP-treated animals as compared to IR untreated rats 
(Fig. 2G). In order to confirm that MCP was blocking Gal-3 downstream proteins, reticulocalbin-3 (RCN-3) and 
fumarase two proteins recently described to be down-regulated by Gal-3 were analyzed11,12. The levels of protein 
expression of both RCN-3 and fumarase were decreased in myocardium from IR rats and restored by MCP treat-
ment (Fig. 2H). MCP treatment did not affect all measured parameters in the absence of IR.

Effects of Gal-3 blockade on cardiac inflammation.  Serum inflammatory markers CRP (C-reactive protein) 
and IL-1β (interleukin 1-β) were enhanced (p < 0.05) in untreated IR rats and reduced by MCP treatment (Table 1). IR 
rats presented higher (p < 0.01) both mRNA and protein levels of CCL-2 (chemokine ligand 2, also known as mono-
cyte chemoattractant protein-1) and of the pro-inflammatory osteopontin as compared to controls (Fig. 3A,B). While 
MCP treatment allowed diminishing mRNA level of osteopontin only (Fig. 3A), it induced decreased (p < 0.01) protein 
expression of both CCL-2 and osteopontin (Fig. 3A,B). In addition, the increase in immunostainings observed of CCL-
2, osteopontin, cd45 and cd68 were lowered in IR rats receiving the Gal-3 inhibitor (Fig. 3C).

Because inflammation and cytokines play a critical role in the activation of MMPs (metalloproteinases) 
involved in ECM turnover, MMP-2 and MMP-9 activity and expression were assessed, showing that MCP treat-
ment allowed reducing (p < 0.01) the increases in MMP-2 activity (p < 0.05) (Fig. 3D). There was no differences 
in the protein expression of MMP-2, MMP-9, TIMP-1 and TIMP-2 between the groups (Fig. 3E).

MCP treatment did not affect all measured parameters in the absence of IR.

Effects of Gal-3 blockade on cardiac fibrosis.  LV ischemic zone of rats with IR presented higher 
(p < 0.01) collagen-1 subunit α1 mRNA expression as well as collagen-1 protein expression, with similar levels 
of collagen-3 (Fig. 4A,B). Gal-3 blockade decreased collagen-1 expression in the ischemic zone at both mRNA 
and protein level (p < 0.01) (Fig. 4A,B) without affecting collagen-3. The expression level of the profibrotic medi-
ators TGF-β (Transforming growth factor-beta) and CTGF (Connective-tissue growth factor) were measured. 
Although TGF-β only displayed increased mRNA level (p < 0.01) in rats with IR (Fig. 4C), MCP treatment 
allowed preventing (p < 0.01) the increases (p < 0.01) in protein expression of both TGF-β and CTGF (Fig. 4D). 
Furthermore, in rats with IR, MCP treatment allowed preventing (at least limiting) (p < 0.01) the increases 
(p < 0.01) in mRNA and protein expressions of the ECM component fibronectin, the α-smooth muscle actin 
(Figure E and F) and the protein expression of the intermediary filament vimentin (Figure F), all of these proteins 
being relevant fibroblast activation markers. The reduction in fibrosis and ECM components in the ischemic zone 
of MCP-treated animals was confirmed after staining of collagens by Sirius red or Masson trichrome, as well as by 
immunohistochemistry for collagen type I, CTGF and α-SMA (Fig. 4G).

MCP treatment did not affect all measured parameters in the absence of IR.
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Sham IR IR + MCP

Weights n = 10 n = 12 n = 10

Body (g) 323 ± 5 297 ± 7* 294 ± 8*

Heart (mg) 1036 ± 22 974 ± 27 992 ± 31

LV (mg) 719 ± 17 691 ± 21 698 ± 22

HW/BW (mg/g) 3.21 ± 0.06 3.29 ± 0.09 3.38 ± 0.06

LVW/BW (mg/g) 2.23 ± 0.05 2.33 ± 0.06 2.38 ± 0.05

Function (MRI) n = 10 n = 9 n = 9

HR (bpm) 403 ± 11 349 ± 12* 343 ± 18*

LVESV (μl) 102 ± 5 190 ± 15*** 224 ± 22***

LVEDV (μl) 352 ± 14 433 ± 22* 466 ± 32**

EF (%) 71 ± 1 57 ± 2*** 52 ± 2***

SV (µl) 250 ± 10 244 ± 12 242 ± 17

CO (ml/min) 100 ± 3 84 ± 4* 83 ± 6*

Perfusion (MRI) n = 10 n = 10 n = 10

LV perf (ml/mg/min) 6.09 ± 0.19 3.64 ± 0.15*** 4.27 ± 0.14***,†

Septum perf (ml/mg/min) 6.35 ± 0.22 3.75 ± 0.17*** 4.60 ± 0.17***,††

Hemodynamics n = 8 n = 8 n = 7

HR (bpm) 417 ± 14 394 ± 14 379 ± 13

SBP (mmHg) 132 ± 5 124 ± 5 121 ± 3

DBP (mmHg) 94 ± 4 92 ± 5 90 ± 3

LVESP 125.7 ± 3.2 121.9 ± 5.9 111.9 ± 5.3

LVEDP 2.2 ± 0.5 4.0 ± 0.9 2.9 ± 0.7

dP/dt max 9784 ± 294 8283 ± 452 7968 ± 572*

dP/dt min 8504 ± 392 6889 ± 362* 6591 ± 321**

LVESPVR 24.38 ± 0.98 17.83 ± 0.90*** 17.19 ± 0.91***

LVEDPVR 0.82 ± 0.09 2.32 ± 0.30*** 1.51 ± 0.12†

Tau e 5.34 ± 0.20 7.63 ± 0.32*** 6.71 ± 0.43*

Tau 1/2 4.19 ± 0.18 5.29 ± 0.38* 4.44 ± 0.22

Serum parameters n = 10 n = 10 n = 10

BNP (AU) 0.16 ± 0.014 0.26 ± 0.024* 0.19 ± 0.024†

IL-1 β (AU) 127 ± 14 184 ± 12* 139 ± 11†

CRP (AU) 2667 ± 410 4231 ± 425* 2436 ± 235†

Hemodynamics n = 8 n = 8 n = 7
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LVESP 125.7 ± 3.2 121.9 ± 5.9 111.9 ± 5.3

LVEDP 2.2 ± 0.5 4.0 ± 0.9 2.9 ± 0.7

dP/dt max 9784 ± 294 8283 ± 452 7968 ± 572*

dP/dt min 8504 ± 392 6889 ± 362* 6591 ± 321**

LVESPVR 24.38 ± 0.98 17.83 ± 0.90*** 17.19 ± 0.91***

LVEDPVR 0.82 ± 0.09 2.32 ± 0.30*** 1.51 ± 0.12†

Tau e 5.34 ± 0.20 7.63 ± 0.32*** 6.71 ± 0.43*

Tau 1/2 4.19 ± 0.18 5.29 ± 0.38* 4.44 ± 0.22

Serum parameters n = 10 n = 10 n = 10

BNP (AU) 0.16 ± 0.014 0.26 ± 0.024* 0.19 ± 0.024†

IL-1 β (AU) 127 ± 14 184 ± 12* 139 ± 11†

CRP (AU) 2667 ± 410 4231 ± 425* 2436 ± 235†

Table 1.  Effect of the inhibition of Gal-3 on cardiac parameters in IR rats. IR: ischemia reperfusion; MCP: 
modified citrus pectin; LV: Left ventricle; LVW: LV weight; BW: Body weight; HW: heart weight; HR: heart rate; 
LVESV: LV end-systolic volume; LVEDV: LV end-diastolic volume; EF: ejection fraction; SV: stroke volume; 
CO: cardiac output; SBP: systolic blood pressure; DBP: diastolic blood pressure; LVESP: LV end-systolic 
pressure; LVEDP: LV end-diastolic pressure; LVESPVR: LV end-systolic pressure-volume relation; LVEDPVR: 
LV end-diastolic pressure-volume relation; BNP: bran natriuretic peptide; IL-1 β: interleukin-1 beta; CRP: 
C-reactive protein. Data values represent mean ± SEM number of rats per group is indicated in each column. 
*p < 0.05, **p < 0.01 *** p < 0.001 vs. control group; †p < 0.05 vs. IR group. Anova plus Tukey for weight and 
functional measurements and plus Bonferroni for protein quantification.
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Discussion
The purpose of this study was to investigate the effects of Gal-3 inhibition in cardiac alterations associated to IR 
injury. This study demonstrates that pharmacological Gal-3 blockade induced cardioprotection during IR injury, 
improving LV perfusion and compliance. The improvement in cardiac function can also be seen in the mitigated 
extent of cardiac fibrosis and inflammation in the LV of rats treated with the Gal-3 inhibitor MCP. Gal-3 inhibi-
tion protects specifically against alterations in ECM without affecting cardiac hypertrophy. Thus, Gal-3 emerges 
as a new player involved in ECM alterations associated with IR injury.

Figure 1.  LV hemodynamics and perfusion measurements. (A,B) LV end-systolic pressure (LVESP) and LV 
end-diastolic pressure (LVEDP) in Sham-operated (circle, n = 8), after ischemia-reperfusion (IR) (square, 
n = 8) and in MCP-treated IR rats (triangle, n = 7). (C,D) LV end-systolic pressure-volume relation (LVESPVR 
i.e. LV contractility) and LV end-diastolic pressure-volume relation (LVEDPVR i.e. LV compliance) in Sham-
operated (circle, n = 8), after ischemia-reperfusion (IR) (square, n = 8) and in MCP-treated IR rats (triangle, 
n = 7). (E,F) Interventricular septum (Sept) and LV-free wall (LV-fw) myocardial perfusion in Sham-operated 
(circle, n = 10), after ischemia-reperfusion (IR) (square, n = 10) and in MCP-treated IR rats (triangle, n = 10). 
Histogram bars represent the mean ± SEM of each group. ***p < 0.001 vs. Sham-operated; †p < 0.05 and 
††p < 0.01 vs. IR.
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To explore novel mechanisms by which Gal-3 inhibition affords cardioprotection following acute insults, a 
model of IR injury was used. Molecular and cellular events underlying IR injury are complex, representing the 
confluence of divergent biological pathways13–16. Recently, it has been reported that Gal-3 can play a protective 
role on the myocardium following IR injury at 24 h17. In Gal-3 knockout mice subjected to IR injury, apoptosis 

Figure 2.  Myocardial cross sections of IR and IR + MCP-treated rats and quantification of Gal-3 expression. 
(A) Representative microphotographs of myocardial sections were stained with Masson trichrome and 
imaged at 4x and 40x power fields. (B) Ischemic areas were selected and quantified using computed-based 
image analysis software. (C,D) Cardiomyocyte cross sectional area was measured in myocardial sections. 
(E) Quantification of GDF-15 protein expression. (F) Quantification of Gal-3 protein levels in sham, IR and 
IR + MCP rats. (G) Representative microphotographs imaged at 40x of the ischemic zone stained for Gal-3. (H) 
Quantification of Gal-3 downstream proteins RCN-3 and fumarase. Histogram bars represent the mean ± SEM 
of each group of animals (n ≥ 12 per group) in arbitrary units or as a percentage of staining normalized to 
HPRT, 18 s and β-actin or stain-free gel for cDNA and protein respectively. *p < 0.01 vs. Sham, $, p < 0.01 vs.IR.
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was increased and the antioxidant defenses were decreased as compared to WT mice subjected to IR injury17. 
However, inflammation was decreased in IR Gal-3 knockout mice as compared to IR WT mice17. Our results 
expand these findings showing that 8 days after IR injury, pharmacological Gal-3 blockade improved cardiac 
inflammation and extracellular matrix remodeling. Interestingly, Gal-3 pharmacological blockade resulted in 
improving LV perfusion and compliance during recovery compared to IR rats. Although MRI volume meas-
urements did not allow evidencing functional benefits in MCP treated rats as early as 8 days post-IR, invasive 
hemodynamics clearly evidenced improvement of the diastolic function and MRI assessment indicated improved 
LV perfusion in comparison to untreated animals. It is likely that early improvement in LV remodeling benefited 
early improvement in LV function. Moreover, the ischemic zone was lower in rats presenting Gal-3 inhibition. 
The analysis of the LV remodeling revealed a decrease in inflammation and ECM remodeling, without modifying 
cardiac hypertrophy. These observations suggest that Gal-3 blockade directly regulates inflammatory cells content 
and fibroblast function, as it has been previously suggested17. Interestingly, these results are in accordance with 

Figure 3.  Effects of pharmacological inhibition of Gal-3 on inflammation and cardiac MMPs. (A) 
Quantification of CCL-2 and osteopontin in hearts at mRNA and (B) protein levels. (C) Representative 
microphotographs of myocardial sections stained for CCL-2, osteopontin, cd45 and cd68. (D) MMP-2 and 
MMP-9 activities were performed by zymography. (E) Quantification of MMP-2, MMP-9, TIMP-1 and TIMP-2 
in hearts from rats at protein levels. Histogram bars represent the mean ± SEM of each group of animals (n ≥ 12 
per group) in arbitrary units or as a percentage of staining normalized to HPRT, 18 s and β-actin or stain-free gel 
for cDNA and protein respectively. Magnification 40x. *p < 0.01 vs. Sham, $, p < 0.01 vs.IR.
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the fact that Gal-3 is localized at the very sites of fibrosis, co-localizing with macrophages and fibroblasts, but not 
with cardiomyocytes18. In a recent study, we confirmed these data in human myocardium showing that Gal-3 is 
mainly expressed in ECM and by cardiac fibroblasts. The fact that Gal-3 blockade did not affect cardiomyocyte 
hypertrophy has been reported in other animal models5,6,8. Interestingly, global loss of Gal-3 accelerated cardiac 

Figure 4.  Effects of pharmacological inhibition of Gal-3 on cardiac fibrosis. (A,B) Quantification of myocardial 
collagen type I and type III at mRNA and protein levels. (C,D) Quantification of TGF-β and CTGF in hearts 
from rats at mRNA and protein levels. (E,F) Quantification of cardiac fibronectin and α-SMA at mRNA levels 
and fibronectin, α-SMA and vimentin at protein levels. (G) Representative microphotographs of myocardial 
sections stained for total collagen, Masson Trichrome, collagen type I, CTGF and α-SMA. Histogram bars 
represent the mean ± SEM of each group of animals (n ≥ 12 per group) in arbitrary units or as a percentage 
of staining normalized to HPRT, 18 s and β-actin or stain-free gel for cDNA and protein respectively. 
Magnification 40x. *p < 0.01 vs. Sham, $, p < 0.01 vs.IR.
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hypertrophy, although the significance of Gal-3 expression in regulation of the biological properties of cardiomy-
ocytes remains unclear19. Improvement of cardiac remodeling and decreased LV fibrosis are likely to be linked 
to the improvement of LV compliance and diastolic function20–22. Moreover, heart perfusion occurs during the 
diastolic phase of the cardiac cycle and therefore can take advantage of improved cardiac compliance. Of note, we 
have previously shown in rodents that early improvements of cardiac remodeling, diastolic function and myo-
cardial perfusion contribute to mid-long term benefits in slowing down the progression of chronic heart failure 
post-myocardial infarction23.

According to our results, it has been previously shown that Gal-3 is increased at both transcriptional and 
translational levels in the LV in early ischemic period17,24, suggesting a role for Gal-3 in cardiac alterations 
associated with IR injury. Initially, the acute increase in Gal-3 following IR (24 h) could exert beneficial effects 
(anti-apoptotic, anti-oxidant)17; however, our results show that 8 days after IR Gal-3 promoted deleterious effects. 
Besides, Gal-3 participates in the secretion of macrophage-related chemokine, pro-inflammatory cytokines and 
reactive oxygen species production in renal IR injury25. Moreover, Gal-3 is expressed by activated microglia/
infiltrating macrophages and astrocytes in the ischemic brain and play a role in post-ischemic tissue remodeling 
by enhancing angiogenesis and neurogenesis26.

Previous studies of our group have demonstrated that Gal-3 pharmacological inhibition with MCP prevented 
cardiac dysfunction, fibrosis and inflammation in several pathophysiological conditions such as hyperaldoster-
onism5,8, obesity, hypertension6 or aortic stenosis. Similar beneficial effects of Gal-3 inhibition have been reported 
on cardiac fibrosis, remodeling and dysfunction in Gal-3 knockout mice subjected to thoracic aortic constriction 
or angiotensin II treatment27. To our knowledge, our study reports for the first time that the pharmacological 
blockade of Gal-3 is able to prevent cardiac fibrosis, inflammation and functional alterations in an animal model 
of cardiac IR injury. Thus, these results show the key role of Gal-3 in the early LV remodeling associated with IR 
injury and the beneficial effects of Gal-3 pharmacological inhibition on cardiac fibrosis and inflammation, the 
two key processes underlying the cardiac functional alterations which finally affect heart function, leading to HF.

Materials and Methods
Myocardial ischemia-reperfusion.  Experiments conformed to the 2010/63 directive of the EU and the 
Guide for Care and Use of Laboratory Animals of the US National Institute of Health (No. 85–23). All animal pro-
tocols were approved by Haute-Normandie Ethics Board (authorization no.01307.01). After ketamine/xylazine 
anesthesia (150 and 5 mg.kg−1 respectively IP), 12-week old male Wistar (Janvier Labs, Saint Berthevin, France) 
were subjected to either sham surgery or ischemia-reperfusion (IR) due to transient ischemia provoked by tem-
porary left coronary artery occlusion (45 min) followed by reperfusion, the latter being verified visually before 
closing the chest, as previously described28. Rats received Modified Citrus Pectin (MCP) (EcoNugenics) treat-
ment one day before IR and 8 days following reperfusion at the dose of 100 mg kg−1 per day in the drinking water.

Magnetic Resonance Imaging for myocardial perfusion and LV function.  Magnetic resonance 
imaging (MRI) measurements were performed 8 days after surgery. Myocardial tissue perfusion in the ‘viable’ 
part of the LV free wall and in the interventricular septum was evaluated in anesthetized rats (sodium methohex-
ital; 50 mg.kg−1, IP) using a MRI (Bruker Biospec 4.7 Tesla, France) by Arterial Spin Labeling acquisition 
sequence, as previously described29,30. For LV function, pictures were obtained by retrospective acquisition using 
‘intragate’ auto-triggered sequence under Paravision 5.1 (Brucker) that notably allows determining the Heart 
Rate. Post processing of ‘intragate’ sequence was performed in an average of 9 levels along the LV long-axis, for 
determining LV tridimensional volume in end-diastole and end-systole, LV Ejection Fraction, Stroke Volume and 
Cardiac Output (CAAS, pie medical imaging).

LV Hemodynamics.  Rats were anesthetized (sodium methohexital, 60 mg.kg−1, IP) and the carotid artery 
cannulated with a pressure-volume catheter (SPR839, Millar-Instruments, USA) to record arterial pressure 
(mmHg), after which the catheter was advanced into the LV. Pressure-volume loops were recorded at baseline, 
and during loading by gently occluding the abdominal aorta with a cotton swab, allowing the calculation with 
IOXTMsoftware (EMKA, France) of dP/dtmax, dP/dtmin max (mmHg/s), LV end-systolic and end-diastolic pressures 
(mmHg), and LV end-systolic and end-diastolic pressure-volume relations as indicators of load-independent LV 
passive compliance and contractility respectively.

Real-time reverse transcription PCR.  Total RNA was extracted with Trizol Reagent (Euromedex, 
Strasbourg, France) and purified using the RNeasy kit, according to the manufacturer’s instructions (Qiagen, 
Hilden, Alemania). First strand cDNA was synthesized according to the manufacturer’s instructions (Roche, 
Basilea, Suiza). Quantitative PCR analysis was then performed with SYBR green PCR technology (Bio-Rad, 
California, USA) (Table S1). Relative quantification was achieved with MyiQ (Bio-Rad, California, USA) soft-
ware according to the manufacturer’s instructions. Data were normalized by HPRT (Hypoxanthine Guanine 
Phosphoribosyltransferase) and β-actin levels and expressed as percentage relative to controls. All PCRs were 
performed at least in triplicate for each experimental condition.

Western blot analysis.  Aliquots of 20 µg of total proteins were prepared from cardiac homogenates, electro-
phoresed on SDS polyacrylamide gels and transferred to Hybond-c Extra nitrocellulose membranes (Amersham 
Biosciences, Little Chalfont, UK). Membranes were incubated with primary antibodies for: Gal-3 (Thermo 
Scientific, Massachusetts, USA; dilution 1/500), collagen type I (Santa Cruz, Texas, USA; dilution 1:500), col-
lagen type III (Santa Cruz, Texas, USA; dilution 1:500), connective tissue growth factor (CTGF; Torrey Pines 
Biolabs Inc., California, USA; dilution 1:1000), transforming growth factor-beta (TGF-β; Abcam, Cambridge, 
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USA; dilution 1:1000), fibronectin (Santa Cruz, Texas, USA; dilution 1:500), α-smooth muscle actin (α-SMA; 
Sigma, Missouri, USA; dilution 1:1000), vimentin (Sigma, Missouri, USA; dilution 1:1000), Chemokine Ligand 
2 (CCL2; Santa Cruz, Texas, USA; dilution 1/500), Osteopontin (OPN; Santa Cruz, Texas, USA; dilution 1:500), 
growth differentiation factor (GDF)-15 (Thermo Scientific, Massachusetts, USA; dilution 1:500). After washing, 
detection was made through incubation with peroxidase-conjugated secondary antibody, and developed using an 
ECL chemiluminescence kit (Amersham Biosciences, Little Chalfont, UK). After densitometric analyses, optical 
density values were expressed as arbitrary units. Results are expressed as an n-fold increase over the values of the 
control group in densitometric arbitrary units. All Western Blots were performed at least in triplicate for each 
experimental condition.

ELISA.  Brain natriuretic peptide (BNP) was measured in plasma samples by ELISA (Abcam, Cambridge, 
USA), as well as C-Reactive Protein (CRP), IL-1β, MMP-2, MMP-9, TIMP-1 and TIMP-2 concentrations (R&D 
Systems, Minnesota, USA) according to the manufacturer’s instructions.

Gelatin zymography.  Aliquots of 20 µg of total proteins were resolved on a 10% SDS polyacrylamide gel 
containing 0.3% gelatin. The gel was rinsed three times for 15 min with a solution of 2.5% Triton X 100 to remove 
SDS and renature the proteins, followed by incubation for 48 h at 37 °C in 1000 mmol/l Tris-HCl, pH 7.5 with 
1000 mmol/l CaCl2 and 5000 mmol/l NaCl to promote degradation of gelatin. Gels were fixed in 40% methanol 
and 10% acetic acid, and then stained for 30 min in 0.25% Coomassie blue R-250 to identify proteolytic activity 
of MMPs.

Histological and immunohistological evaluation.  Cardiac tissue samples were dehydrated, embedded 
in paraffin and cut in 5 μm-thick sections. Sections were stained with Masson trichrome and picrosirius red. The 
area of the ischemic zone was determined in Masson trichrome sections and it was expressed as a percentage 
relative to the total LV area. For cardiomyocyte cross sectional area, at least 50 cardiomyocytes per section were 
measured. The area of interstitial fibrosis was identified as the ratio of interstitial fibrosis to the total tissue area. 
For each sample, 15 to 20 fields were analyzed with a 40X objective under transmitted light microscope (Leica 
DM 2000). Quantitative analysis was performed using an analysis system (Leica LAS 4.3). Two independent 
researchers unaware of the experimental groups performed the analysis.

For immunochemistry, slides were treated with H2O2 for 10 min to block peroxidase activity. All samples 
were blocked with 5% normal goat serum in PBS for 1 h and incubated for 1 h with Gal-3 (Thermo Scientific, 
Massachusetts, USA; dilution 1:50), Collagen type I (Santa Cruz, Texas, USA; dilution 1:50), CTGF (Abcam, 
Cambridge, USA; dilution 1:50), α-SMA (Sigma, Missouri, USA; dilution 1:100), CCL2 (Santa Cruz; dilution 
1:50), OPN (Santa Cruz, Texas, USA; dilution 1:50), cd45 (Santa Cruz, Texas, USA; dilution 1:50), cd68 (Abcam, 
Cambridge, USA; dilution 1:50), and MMP-2 (Thermo Scientific, Massachusetts, USA; dilution 1:100), washed 
three times, and then incubated for 30 min with the horseradish peroxidase-labeled polymer conjugated to sec-
ondary antibodies (Dako Cytomation, Snata Clara, USA). The signal was revealed by using DAB Substrate Kit 
(BD Pharmingen, San Jose, USA). As negative controls, samples followed the same procedure described above 
but in the absence of primary antibodies.

Statistical analyses.  For animal studies, data are expressed as mean ± SEM. Normality of distributions 
was verified by means of the Kolmogorov–Smirnov test. Data were analyzed using a one-way analysis of vari-
ance, followed by a Newman-Keuls to assess specific differences among groups or conditions. Functional cardiac 
parameters were compared using one-way ANOVA followed, in case of significance, by Tukey test for multiple 
comparisons. Statistics were performed using GraphPad Software Inc. The predetermined significance level was 
P < 0.05.

Statement of Ethics.  Animal experiments conform to internationally accepted standards and have been 
approved by the appropriate institutional review body.

Data Availability
Data available on request from the authors.
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