Supporting Information

Imaging Oxygen Molecular Adsorption and Dissociation on the Ti Site of Rutile $TiO_2(110)$ Surface with Real Configuration at 78 K by Atomic Force Microscopy

Huan Fei Wen, ^{a, b} Hongqian Sang, ^c Yasuhiro Sugawara, ^{a, b} and Yan Jun Li *^b

^a Key Laboratory of Instrumentation Science and Dynamic Measurement, School of Instrument and Electronics, North University of China, Taiyuan, Shanxi 030051, China

^b Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan

^c Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China

*E-mail: liyanjun@ap.eng.osaka-u.ac.jp

Table S1. Reorientation energy (energy differences between the end-on and side-on geometries) under the influence of electric field generated by STM tip, calculated using PBE0-TC-LRC-ADMM hybrid density functionals^{1,2} implemented within code CP2K³.

Electric Field (V/Å)	-0.5	-0.1	0	0.1	0.5
Reorientation Energy ^a (eV)	0.736	0.690	0.654	0.647	0.455
Reorientation Energy ^b (eV)	unstable	1.413	1.365	1.256	0.854

The system is charged with (a) one or (b) two extra electrons. Side-on geometry is energetic more stable at all charge states, and the energy penalty in the configuration transition from side-on to end-on is significantly smaller with one extra electron compare to two electrons. Hence, the population of end-on is expected to be more noticeable when the system is singly charged.

1. M. Guidon, J. Hutter, and J. VandeVondele, Robust Periodic Hartree-Fock Exchange for Large-Scale Simulations Using Gaussian Basis Sets, J. Chem. Theory Comput. 5, 3010-3021 (2009).

 M. Guidon, J. Hutter, and J. VandeVondele, Auxiliary Density Matrix Methods for Hartree-Fock Exchange Calculations, J. Chem. Theory Comput. 6, 2348-2364 (2010).
J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, QUICKSTEP: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Wave Approach, Comput. Phys. Commun. 167, 103-128 (2005).

Figure S1. AFM images (a) before O₂ adsorption, (b) after O₂ dissociation and (c) corresponding structural models on TiO₂(110) surface. ($f_0 = 801$ kHz, Q = 19727, $\Delta f = -362$ Hz, $V_S = 1$ V, A = 500 pm, 1.3×1.3 nm²)

Figure S2. Simultaneously recorded (a) topographic images and (b) tunneling current image performed in the constant frequency shift mode.

Figure S3. (a)-(c) The transition between the bright spot and two weak bright spots with inclined side-on configuration induced by KPFS. (d)-(e) KPFS is performed on the cross site in (a)-(b). (f) The corresponding structural models. The bright spot marked by white elliptical circle can be assigned to paralleled side-on configuration.

Figure S4. Line profiles along the different charge state of O_{ad} from Figure 1