
	     

 

 
 
 
Supplementary Methods 

 

Samples 

The goal of the ASC1 is to leverage all existing and ongoing whole exome 
studies, as well as whole genome sequencing studies as they become available. The 
ASC membership continues to expand (see www.autismsequencingconsortium.org for 
an up-to-date list). Study design differs across the many datasets available to the ASC, 
however, the ASC is committed to incorporating data irrespective of design. To achieve 
our goal will require assessment of study design, such as appropriate controls (e.g., 
parents or ancestry-matched control samples), and appropriate modeling of these data. 
By accumulating massive data and by appropriate modeling, the expectation is 
enhanced power with no increase in false positive rate (see below). Moreover the ASC 
can ultimately compare the impact of ascertainment on yield of genetic findings. For 
example, we will eventually compare epidemiological samples with convenience 
samples; samples ascertained to be simplex with samples ascertained as multiplex; and 
samples receiving ADI and ADOS evaluation with ‘real-world’ clinical case series. While 
it remains an open question, ascertainment might not have as much impact as some in 
the field anticipate. Indeed the evidence to date indicates that such differences in study 
design have only modest impact on genetic yield. For example, while heritability due to 
common variation is perforce higher in multiplex families2, the yield of de novo variation 
is not significantly different3, although the sample size was small and modest differences 
cannot be ruled out; even the earliest studies showed etiological heterogeneity for rare 
high-risk alleles in multiplex families4. On important dimensions, such as IQ, our design 
and series of studies will eventually help sort out why low versus high IQ seem to have 
at most moderate effect on heritability5 yet could have a larger impact on genetic yield. A 
complete summary of samples, ascertainment and diagnostic strategy, sequencing 
approach, and associated references is found in Supplementary Table 1. As indicated in 
the references, 175 trios published in Neale et al3, 238 in Sanders et al6, 189 in O’Roak 
et al7, and 343 in Iossifov et al8 were also included. All subjects provided informed 
consent and the research was approved by institutional human subjects boards. 

Calling Variants 

DNA samples were captured and sequenced as summarized in Supplementary 
Table 1, and the publications cited therein. The majority of unpublished (and many of the 
published) samples were sequenced at Broad Institute as previously described3. Sites 
made every effort to ensure that sequencing read depth exceeded 10 for 90% of the 
exome and 20 for 80%. SNV and small indels were called with the GATK’s Unified 
Genotyper9. CNV were called with XHMM, as discussed below. Variants were annotated 
with SnpEff version 2.0.5 or 3 with GATK output format compatibility10. Samples were 
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segregated into family and case-control subsets. De novo and transmitted variants were 
called in family subsets. De novo calling is discussed below. 

PLINK/SEQ (http://atgu.mgh.harvard.edu/plinkseq/) and custom code were used 
to filter outlier samples and select transmitted and case-control variants. We combined 
multiple sample sets into PLINK projects so that rare variants could be selected. Outlier 
filtering used individual statistics obtained with the ‘pseq i-stats’ command. For each 
project we filtered all individuals more than 4 SD from the mean of all individuals in the 
PLINK project in any of the following statistics: count of alternate, minor, or heterozygous 
genotypes; number of called variants; or genotyping rate. A trio was dropped if any 
member was an outlier.  

Only alternate variants with a ‘PASS’ FILTER and 20≤MQ were considered. We 
selected loss of function (LoF) variants with SnpEff effect in {FRAME_SHIFT, 
STOP_GAINED, SPLICE_SITE_ACCEPTOR, SPLICE_SITE_DONOR}, and missense 
variants classified as probably damaging in at least one transcript by the PolyPhen-2 
HumDiv model11, which we refer to as missense3 (Mis3) variants. Multi-allelic variants 
were filtered out. 

We obtained transmitted variants from family data, selecting those with alternate 
allele frequency ≤ 0.1%, as assessed among parents. Called genotypes in parents and 
children were required to have 10 ≤ DP, and 20 ≤ PL (genotype likelihood) for all non-
called genotypes. Heterozygous calls were required to have had AB reference and AB 
alternate ≥ 0.3, and homozygous calls to have AB reference or AB alternate ≥ 0.95. A 
transmitted variant had to be present in the child and heterozygous in a parent. We 
obtained case and control variants from case-control subsets, selecting those with 
alternate allele frequency ≤ 0.1% among all passing subjects. These variants were 
required to have 10 ≤ DP and 30 ≤ GQ. 

We tallied these variants into a gene by variant-type matrix for analysis by TADA. 
Subjects in case–control and family sample sets are distinct, so they were handled 
separately. Multiple variants that hit the same gene in the same subject were counted as 
a single variant, as follows: if a case or control subject had multiple variants in the same 
gene, then only a single count of the most damaging variant was used in the TADA 
analysis. For example, if a case had two loss of function and one missense variant in a 
given gene, then they were counted as having one loss of function variant. 

In the affected children in trios we avoided multiple counting of de novo and 
transmitted variants separately from non-transmitted variants because the former are 
evidence in support of the affected gene being involved in autism and the latter support 
the hypothesis that the gene is not involved in autism. If an affected child had multiple de 
novo or transmitted variants in one gene, then a single count of the most damaging 
variant was used in the TADA analysis. In decreasing order of deleterious effect, these 
variants are a de novo loss of function, a de novo missense, a transmitted loss of 
function, and a transmitted missense. Thus, for example, if an affected child had one de 
novo missense and two transmitted loss of function variants in the same gene, then only 
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one de novo missense was counted. Similarly, the tallies of the non-transmitted variants 
counted only one of the most deleterious variant in a single gene in a single child.  

Molecular validation 

I. Validation of de novo variation 

Predicted de novo events were validated by Sanger sequencing of the genomic 
DNA extracted from peripheral blood samples of the carrier and both parents. Results 
from targeted validation of 56 events identified as of potentially medium quality were 
used to enhance the de novo caller. High-quality variants [P(de novo) > 0.95] validated 
at an extremely high rate and were highly sensitive when validation of de novo mutations 
blind to probability estimates were performed. Overall, we tested 199 variants, and 
obtained a validation rate of 98.5% (196/199 variants) and a de novo validation rate of 
97.5% (194/199 variants). 

II. Validation of splice site mutations 

Lymphoblastoid cells from carriers of CHD8 splice sites variants and their 
parents were grown in RPMI-1640 medium (Invitrogen) supplemented with 15% 
BenchMark™ Fetal Bovine Serum (Gemini Bio-Products) and 1% Penicillin-
Streptomycin (Invitrogen). Between the 3rd and 5th passages, cells were harvested, 
pelleted, washed with 1X dPBS (Invitrogen) and RNA extracted using Trizol® 
(Invitrogen). 1 µg total RNA was used for cDNA synthesis using SuperScript® III reverse 
transcriptase (Invitrogen). cDNA was amplified using exon-specific primers (exons 25 
and 30, #ENST00000557364) as follows: SDR151 5’-CGGAGGCCAGAATAAATGGC-3’ 
and SDR152 5’-GTCTCCCCTTTCCCAGGTCT-3’. PCR products were purified using 
QIAquick PCR Purification Kit (Qiagen), subcloned into TOPO® TA Cloning® Kit for 
Sequencing (Invitrogen), and subjected to Sanger sequencing. 

De novo caller 

We developed a Python application (DeNovoFinder) that expands on our 
previous method3,12 for identifying de novo mutations from exome sequencing data.  We 
first identified a relatively small set of candidate de novo mutations at highest quality 
(PASSing) sites defined by a standard GATK – VQSR pipeline where the child is called 
heterozygous and the parents both reference homozygotes.  The input to this procedure 
is a standard VCF containing calls for all family members and a simple file describing 
familial relationships between individuals in the VCF. 

To first insure that the child call is reliable, following our previous study we 
require the child PL for homozygous reference genotype is greater than 30.  PL, a 
standard component of the VCF, represents a “Phred-scale” likelihood which is equal to 
-10log10(p) – such that 30 corresponds to p=0.001 for the genotype in question. In 
addition, we made use of the strict filters used within GATK, and further required that the 
proportion of non-reference reads was greater than 20% and the depth of sequence in 
the child was at least 10% of the mean depth of the two parents. In our previous study3, 
all variants found in children matching these criteria were confirmed in validation, so we 
have extremely high confidence that these constitute genuine variable sites. 
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The major competing hypotheses amounts to comparing the likelihood that one 
parent is truly heterozygous and has been falsely called reference with the likelihood that 
this is a true de novo site. We therefore implemented a novel algorithm that uses 
population and sample allele frequency information to provide a Bayesian probability 
estimate that an apparent de novo mutation constitutes a true de novo as opposed to a 
missed heterozygous call in the parent. While the PL information from the parents 
provides an accurate picture of the p(data | genotype), the prior probability of 
heterozygous genotype must be derived from population data. To calculate this, we 
conservatively take the maximum allele frequency from two sources: the extensively 
curated NHLBI-ESP reference database and the sequenced ASC population sample 
from which the trio is drawn. Including both datasets permits use of both the accuracy 
that comes from the size of well-curated reference but insures against false low 
frequency estimates should there be an occasional variant missed in the reference 
resource but present in many copies in the current data. The probability of a site being 
present in a parent but absent from the reference data and all other samples in our data 
is simply the average number of ‘singleton’ sites unique to an individual (roughly 100) 
divided by the exome target size in bp whereas the prior probability of a de novo 
mutation is the mean number of de novo mutations (roughly 1) divided by the same 
exome size in bp. 

The probabilities of the two hypotheses are then calculated using Bayes’ theorem 
and the relative probability of p(de novo) / { p(de novo) + p(one or both parents het) } is 
reported as the probability of de novo mutation. Sites for which p(de novo) was 
estimated to be greater than .99 were considered high quality sites and constitute the 
systematic set of variants included in all analyses.  Extensive validation of sites was 
performed and confirmed that 0 out of 147 high quality sites (SNVs and indels) was 
found to be inherited upon Sanger sequencing, confirming the validity of the p > 0.99 
estimate.  We further pursued the small fraction of overall sites that had 0.99 > p(dn) > 
0.50 and found (within a set of high quality heterozygote calls in the child) 10 of 14 were 
true de novo, the remainder inherited. This further confirmed the validity of the 
probability estimate and as this constituted a small but significantly real category 
(estimated to add ~2% true events) we added these to the analysis.  

Sample specific quality control  

To identify duplicate samples, discrepancy between nominal versus genetically 
determined sex, sample contamination, and familial relationships, we first identified a set 
of SNPs that would be captured by WES for most if not all samples. These variants were 
identified as having a non-call rate < 0.005; a minor allele frequency MAF > 0.05; marker 
name starting with “rs”; and reported alleles in the set A, C, G, and T. For chromosome 
Y, markers the non-call rate was raised to < 0.05. 

To identify discrepancy between nominal versus genetically determined sex, sex 
was inferred from genotypes on chromosome X and Y. For chromosome X the option “--
sexcheck” in PLINK was used to determine the estimated homozygosity based on X 
markers. To determine sex based on chromosome Y genotypes, we determined the call 
rate of Y markers in the high quality marker set. The appropriate cut-offs to assign male 
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or female sex based on these two measures varied by dataset. Therefore plots of the 
measures were generated and cut-offs were derived empirically from these plots. 
Individuals for which the reported sex did not match sex inferred from genotypes were 
removed from the data because they are possible sample swaps. In addition, individuals 
identified as possible Klinefelter syndrome (XXY males) were removed. 

To identify possible sample contamination the inbreeding coefficient for each 
sample was calculated based on the autosomal loci using the “--het” option in PLINK. 
Extremely negative values for this variable indicate an overabundance of heterozygous 
genotype calls and this, in turn, is an indication of a mixture of DNA from different 
sources. Likely contaminated samples were removed from the analysis. 

Data were then checked for duplicate and MZ samples using the “--genome” 
option in PLINK for the autosomal markers. Based on comparison of all possible pairs 
within the data set, pairs of individuals with estimated relationship values > 0.90 were 
assumed to be duplicates and one individual of each pair was removed. In a “duplicate 
pair”, if one sample came from family data and the other from a case-control set, the 
family sample was retained; in all other scenarios the sample to delete was chosen as 
random. 

For family data, pedigree information was checked for consistency with estimated 
relationships using the “--genome --rel-check” option in PLINK. Data were checked for 
consistency with the expected p(IBD=0), p(IBD=1), and p(IBD=2). When a pair of 
samples showed an estimate deviating by more than 0.20 from expectation, the pair was 
flagged. In addition, information on Mendelian error counts (“--mendel” in PLINK) was 
used to determine which sample was causing the problem in each pair. Problem 
samples were removed from the analysis. 

 p(IBD=0) p(IBD=1) p(IBD=2) 
Unrelated 1.00 0.00 0.00 
Parent-offspring 0.00 1.00 0.00 
Full-sibs 0.25 0.50 0.25 
Half-sibs 0.50 0.50 0.00 

 

Calling copy number variation for top genes 

We screened all samples for which we had BAM files (Supplementary Data Table 
1) for potential CNV, as detected by XHMM13. We called CNV largely as outlined 
previously13. In brief, we (a) calculated read depth with GATK, (b) determined thresholds 
for per-sample read depth, per-sample standard deviation, and per-target read depth, (c) 
ran XHMM, and (d) filtered results based on per-individual CNV count and total size, 
CNV XHMM score, CNV size, exon count, and minor allele frequency.  

CNV were called in 8 separate batches, corresponding to groups of samples that 
were sequenced together as follows: ARRA Autism Sequencing Consortium case-
control, Boston Autism Consortium/Finland (combined), Germany, PAGES cases, 
Middle Eastern, Simons Simplex Collection, Central Valley of Costa Rica, and TASC. 
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Seaver Autism Center Assessment Core samples were sequenced in several batches 
along with Central Valley of Costa Rica and TASC samples, and were included with the 
appropriate batches for CNV calling. XHMM thresholds for minimum and maximum 
mean sample read depth, maximum sample standard deviation, and minimum/maximum 
mean target read depth were determined on a per-batch basis. The resulting XHMM 
calls were then merged, creating an initial master set of 55,138 CNV. All further 
processing and analysis was carried out on this merged set. 

The merged set was filtered as follows: 1) CNV with XHMM quality score SQ < 
65 were removed, as were CNV with a predicted size CNV under 1 kb, as in prior work13 
(this somewhat conservative threshold was chosen to maximize confidence in called 
CNV, at the expense of some probable false negatives); 2) Individuals with an unusually 
high number of CNV or total length of CNV were removed (we used a cutoff of 3 SD 
above the mean for both measures, removing individuals with >33 CNV or >8.46 Mb 
total CNV); and, 3) A minor allele frequency (MAF) filter of 0.1% was applied. The 
frequencies of CNV were calculated across all parents, cases, and controls, excluding 
children to avoid over-counting transmitted CNV. We identified all regions of the exome 
with CNV in >0.1% of these samples, and then removed from the full set (including 
children) all CNV that overlapped these regions by greater than 50%. 

After following the steps above, the initial set was reduced to a set of 5010 rare, 
high-confidence CNV, amongst which 34 CNV hitting 17 likely ASD genes (q < 0.3) as 
identified through the TADA analyses were chosen for further examination. 

Transmission And De novo Association test (TADA) 

He et al. (2013) recently published a statistical method, named TADA, for the 
analysis of exome sequencing data from families and case-control studies14. TADA 
performs gene-level analysis by integrating information from de novo mutations, 
inherited variants from parents and standing variants in the population in a unified 
statistical framework. We will briefly review the published TADA model and describe 
several refinements implemented in the current work.  

For a given gene, we have exome sequencing data from N parent-child trios (we 
will describe the case-control data later). All the rare variants (defined as MAF < 0.1%) 
are called for each subject. A variant in a trio is then classified as de novo, transmitted or 
non-transmitted (see Figure 2 of the TADA paper). We define variants by category such 
as loss-of-function (LoF) or missense. All rare variants from a category are collapsed 
and treated as a single variant. This collapsing step allows us to combine information 
from multiple de novo mutations and from de novo mutation and in inherited variants in 
the same gene to gain power. We can then count, for each gene, the number of de novo 
mutations (within each category of variants) in N families, and similarly the number of 
families for which the mutant allele is transmitted or non-transmitted. He et al. (2013) 
assume that these counts follow Poisson distributions14 whose rates are simple functions 
of the underlying parameters including mutation rates (µ), population frequency of the 
mutant genotype (q, note that this is about twice the mutant allele frequency) and the 
relative risk (RR) of the mutations (γ). Furthermore, the case-control data can be 
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incorporated easily: the numbers of subjects with the mutant genotype follow Poisson 
distributions, in a way that is similar to transmitted-nontransmitted data. The TADA 
model of these counts, xd for the number of de novo mutations, x1 for the number of 
transmitted mutant alleles plus the number of mutant alleles in cases and x0 for the 
number of non-transmitted mutant alleles plus the number of mutant alleles in controls, 
can be summarized as: 

1 1 0 0~ Pois(2 ),  ~ Pois( ),  ~ Pois( )dx N x qN x qNµγ γ  (0.1) 

where N is the number of trios, N1 is sum of N and the number of cases, and N0 is the 
sum of N and the number of controls. These parametric distributions allow us to perform 
likelihood-based inference. To increase the power further, we use a Bayesian strategy: 
incorporating the prior that some classes of variants may be more damaging and thus 
have higher RRs than other classes. The Bayes factor (BF) of one class of variants of a 
gene is defined as: 

1 11

0 0

( | , ) ( | ) ( | )( | )
( | ) ( | ) ( | )

P x q P H P q H d dqP x HB
P x H P x q P q H dq

γ γ γ
= = ∫

∫
 (0.2) 

where H1 and H0 stand for the alternative model (the gene is a risk gene) and the null 
model (γ=1), respectively. We will defer the discussion of the prior distributions of γ and 
q for now. The BF at the gene level is the product of the BFs from all classes of variants. 
We consider two classes in our experiments: LoF and “probably damaging” missense 
variants predicted by PolyPhen-211 (denoted as Mis3), and the LoF variants receive 
higher prior RR (thus are weighted more heavily).  

For this study, we perform three refinements of the published TADA method. We 
improve the model for RR, update our strategy for model parameterization, and 
implement a different, and much faster, way for controlling false discovery rates (FDR). 
These changes are described below.  

I. The updated TADA model 

The original TADA model assumes that for a given class of variants, e.g. LoF, a 
de novo mutation and an inherited variant in the same gene has the same RR. This is 
based on the assumption that all LoF mutations disrupt the gene function, thus should 
have a similar effect on the phenotype, regardless of the origin of the mutations. 
Nevertheless, more recent studies demonstrate that not all LoF mutations are alike: 
even a truncated protein may be partially functional, and depending on where the 
truncation events occur, some LoF mutations may be more damaging than the others15. 
Furthermore, because of alternative splicing, not all isoforms of a gene are expressed in 
a disease-related tissue (brain in our case), thus a LoF mutation in an exon not 
expressed in the tissue may not affect the protein function at all. By using a list of 
published ASD genes, we find that the estimated average RR of de novo LoF mutations 
is higher than that of inherited LoFs (see below). There is clearly an evolutionary 
argument supporting this observation: the most detrimental mutations in the population 
are likely under strong natural selection and thus tend to be eliminated, while de novo 
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mutations have not been subject to selection yet. So in the new model, we allow the RR 
of de novo mutations and that of inherited variants to be different in Equation (0.1), and 
the two are denoted as γd and γ respectively. We assume two different prior distributions 
for these two parameters, using Gamma distributions (the conjugate prior of the Poisson 
distribution):  

~ Gamma( , ),  ~ Gamma( , )d d d dγ γ β β γ γβ β  (0.3) 

where dγ  and γ  are prior average RRs for de novo and inherited (including case-

control) variants, respectively. The parameters dβ  and β control the dispersion or 

variance of the prior distributions. The values of these parameters, particularly the prior 
mean RRs, roughly correspond to the weights of a type of data in the BF. So the prior 
mean RR of the de novo mutations is higher than that of the inherited ones, and the prior 
mean RR of LoF mutations is higher than that of missense mutations.   

This change of the RR model also means we will compute the BF differently than 
in the original TADA model. The BF of one class of variants per gene can be factorized 
as the product of BFs from de novo and from inherited data:  

1 1 1 0 1

0 0 1 0 0

( | ) ( | ) ( , | )
( | ) ( | ) ( , | )

d
d i

d

P x H P x H P x x HB B B
P x H P x H P x x H

×
= = = ×

×
. (0.4) 

To compute Bd, we compute the model evidence from de novo data alone:  

0( | ) Pois( | 2 )d dP x H x Nµ=   (0.5) 

1 1
2( | ) ( | ) ( | ) NegBin( | , )
2d d d d d d d

d

NP x H P x P H x
N
µ

γ γ γ β
β µ

= =
+∫ (0.6) 

where NegBin represents the Negative Binomial distribution. The model evidence under 
H1 follows from the standard Bayesian calculation for Poisson distribution with Gamma 
prior. To compute Bi, we first write it as:  

1 0 1 0 1 1 1 0

1 0 0 0 0 1 0 0

( , | ) ( | ) ( | , )
( , | ) ( | ) ( | , )i
P x x H P x H P x H xB
P x x H P x H P x H x

= = × . (0.7) 

As we will see, this simplifies some calculations. We next define our prior 
distribution for q, the population frequency of the mutant genotype:  

| ~ Gamma( , ),  0,1j j jq H jρ ν = .  (0.8) 

Note that in theory, the prior distributions could be different for the null and 
alternative models. Here we take equal priors and then compute the terms in Equation 
(0.2):  

0
0 0 0

0

( | ) ( | ) ( | , ) NegBin( | , ),   0,1j j j j
j

NP x H P x q P q dq x j
N

ρ ν ρ
ν

= = =
+∫ , (0.9) 
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where NegBin(.) stands for the density function of Negative Binomial distribution. This 
again follows from the standard Gamma-Poisson distribution. And we have: 

1 0 1 0( | , ) ( | , ) ( | ) ( | , ) ,   0,1j j jP x H x P x q P H P q H x d dq jγ γ γ= =∫ . (0.10) 

In this equation, the first two terms in the integrand have be defined (γ=1 under H0), and 
the last term is the posterior probability of q after “seeing” the data x0, which follows 
Gamma distribution: 

0 0 0| , ~ Gamma( , )j j jq H x x Nρ ν+ +   (0.11) 

Under the null model, this can be computed analytically:  

1
1 0 0 1 0 0

0 0 1

( | , ) NegBin( | , )NP x H x x x
N N

ρ
ν

= +
+ +

. (0.12) 

Under the alternative model, the integration can only be solved numerically.  

II. The updated parameterization scheme 

For each class of variants (e.g. LoF), we have eight different parameters for the 
prior distributions: 

1 1 0 0( , , , , , , , )d dφ γ β γ β ρ ν ρ ν= .  (0.13) 

The meanings of each of these parameters have been defined above. We will 
first describe how we estimate/set the parameters related to RRs. For de novo LoF and 
Mis3 mutations, we have estimated their average RRs in He et al. (2013), and the value 
for the LoF mutations is about 20 and that of the Mis3 mutations is about 4.714. We set 
βd=1, following the results of that paper (the prior mean RR is a much more important 
parameter than β). In order to estimate the prior RR of the inherited variants, we curate a 
list of 26 published ASD genes, including 20 genes in Text S1 (see Section 8) of the 
published TADA analysis14 and six additional ones. These six genes are: NLGN316, 
SHANK217,18, SHANK319,20, SYNGAP1, DLGAP221 and EPHB222. We estimate the 
frequency difference of the LoF/Mis3 variants in these genes in cases vs. in controls. 
Over all 26 genes, the LoF variants are 2.3 fold enriched in cases compared with 
controls, so we choose 2.3γ = . We set β=4.0 so that (1) most of the probability mass 
falls in the range of values greater than 1 (if β is too small, there is a significant fraction 
of protective variants, which is unrealistic for LoF variants); (2) allow some variability of 
the RR: if β is too large, say greater than 10, then the range of RR is too narrow. 
Regardless of the choice, the results are not highly sensitive to this parameter. We did 
not find significant enrichment of Mis3 variants in cases vs. controls, so we ignore the 
Mis3 inherited variants in computing the gene-level BF.  

In He et al., we estimate the parameters related to q by an Empirical Bayes 
procedure and we allow them to be different for non-risk and risk genes14. In general, 
estimating the prior parameters under H1 is difficult because only a small fraction of 
genes are risk genes, and the risk genes are difficult to identify. In this work, we simplify 
parameter estimation by using the same prior distributions for q under H1 and H0, i.e. 
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1 0 1 0,ρ ρ ρ ν ν ν= = = = . To estimate ,ρ ν , we note that /ρ ν  is the mean prior 

frequency of q. We estimate the mean frequency across all genes (for LoF variants only, 
since we will not use inherited Mis3 variants) in the samples combining cases and 
controls, and this is about 5×10-4. Next we note that ν  reflects the strength of the prior 
distribution, or the equivalent sample size encoded in the prior. We choose ν =200 so 
that it is relatively small comparing with the actual samples for both LoF and Mis3 
variants.  

III. The updated FDR control procedure 

In the published work, we determine the p-values of the gene-level BFs by a 
sampling procedure, and determine the FDR at a given p-value threshold by the 
Benjamini-Hochberg method. This procedure of FDR control is computationally 
expensive, and in the current work, we replace it with a Bayesian FDR control that is 
sometimes called “direct posterior probability” approach23. Specifically, for each gene, 
we convert its BF (Bi) to the posterior probability that the gene is a risk gene:  

(1 )
i

i
i

Bp
B

π
π π

=
− +

  (0.14) 

where π is the prior probability of being a risk gene, or the fraction of risk genes in the 
genome. We choose π=0.06 in this study, corresponding to about 1000 ASD genes in 
17,000 human genes. This estimate has been independently made by several groups, 
including ours6,14. Once we have the posterior probabilities, we apply the Bayesian FDR 
procedure as described in23 to determine the FDR at any specified value of BF.  

IV. Simulation to assess the power of TADA 
We generate simulation data for all genes in the human genome (18,700 genes) 

using the TADA model. Specifically, at the first step, we sample an indicator variable Zi 
for each gene, which follows the Bernoulli distribution with probability of success 0.06 
(we estimate there are about 1,150 ASD genes, so the ratio of ASD genes is 
1,150/18,700=0.06). Next, we generate the counts of de novo and transmitted/ not 
transmitted events for each gene from N trios, where N varies from 1000 to 5000. 
(Alternatively we assume the sample size of cases and controls is equal to the number 
of trios and we record only de novo events from trio families, i.e., N = 1000 indicates 
1000 trios for de novo events only and 1000 cases and 1000 controls for counts of 
standing variation.) Note that we only specify below how to sample the parameters q and 
γ. Once we have these parameters, the counts from a gene are sampled from the 
Poisson distributions in Equation 0.1.  

(1) If a gene does not affect risk (Zi=0), its de novo relative risk (RR) is 1 for 
both LoF and Mis3 mutations. For the case-control data, we only generate simulated 
data for LoF variants, since Mis3 variants will not be used (see above). We sample qi, 
the frequency of LoF variants, for each gene from the prior distribution Gamma(0.66, 
1947) (see the last paragraph of this section about how these parameters were 
obtained).  
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(2) If a gene is a risk gene (Zi=1), we sample its de novo RR for LoF and 
Mis3 mutations from the prior distributions Gamma(18.0, 1) and Gamma(5.4, 1) 
respectively (18.0 and 5.4 are prior mean RRs, see the section “Transmission And De 
novo Association test (TADA)”). For the case-control data, we first sample the RR of the 
LoF variants from the distribution Gamma(2.3, 4.0), as explained in the section above 
about model parameterization. We next determine LoF qi according to the value of the 
sampled RR  instead of sampling it from the prior distribution. The motivation for this step 
is that modeling the dependency between q and RR will likely make the simulation more 
realistic. In general, we expect highly penetrant mutations to be under strong natural 
selection, thus q of such variants will be low. Specifically, if the value of the sampled RR 
is γ i, we set qi=µi/(C· γ i), where µi is the mutation rate and C is a constant. The 
assumption here is that q follows from mutation-selection balance, and the selection 
coefficient is proportional to the RR. The value of C is chosen so that the equation is 
satisfied for an “average” gene whose γ i=1, and qi, µi are equal to the genomewide 
average.  

Once we have the full simulated data from all genes, we apply TADA and a 
restricted version of TADA to the dataset. The restricted version uses only the de novo 
LoF data for the genes, and serves as a baseline to assess the performance of TADA. It 
is similar to the simple multiplicity test, which considers a gene significant if it has X or 
more de novo LoF mutations. We use this restricted form of TADA instead of the naïve 
multiplicity test because (1) unlike the multiplicity test, it does take into account the 
gene’s mutation rates, thus discounting large and highly mutable genes; and (2) we will 
have a uniform strategy for FDR control. Both TADA and the restricted TADA compute a 
BF for each gene, and we use the FDR control procedure described above to determine 
the number of genes above a certain FDR threshold (we use 0.1). This number, 
averaged over 10 simulations, will be used as a measure of the power of the methods 
(Extended Data Fig. 2). 

Estimating the prior distribution of q: when a gene is non-risk, we sample q of this 
gene (LoF) from a prior distribution and we describe how we estimate the parameters of 
this distribution. Let xi be the LoF count of the i-th gene in the controls, it follows the 
distribution Poisson(qiN0), where qi is the LoF frequency and N0 is the sample size of 
controls. As an approximation, we assume all the genes are non-risk genes, then qi 
follows the prior Gamma(ρ0,ν0). It is easy to show that the marginal distribution of xi, 
integrating out  qi, is negative binomial:  

0
0

0 0

~ NegBin( , )i
Nx
N

ρ
ν +

  (0.15) 

We thus fit the entire distribution of xi with Negative Binomial to determine the values of 
ρ0 and ν0, and this gives the values of 0.66 and 1947.0, respectively.  

Analyses of differences in mutation rates across genders 

Inherent in both the mathematics of TADA and in our conception of the biology of 
ASD is the notion that there is variation between genes in their potential to contribute to 
ASD. We propose that for a given class of variants (e.g., LoF) some genes have very 
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large OR, others smaller, and still others have no effect at all. If a variant has a very 
large OR, that variant may effectively be a Mendelian cause of ASD and necessarily 
absent from control samples (parents or controls). We see this pattern for LoF variants in 
several of our top genes (Table 1). On the other hand, mis-annotation of variants (for 
example, incorrectly calling a variant LoF because the appropriate reading frame is not 
properly identified) can cause both a loss of power to identify ASD genes and false 
positives, depending on how these mis-annotated variants are distributed among 
samples. Finally, because we do not yet know the prior distribution of potential effects 
accurately, any estimation we make from a “small” dataset has the potential to over-
estimate the effect size, i.e. show a “winner’s curse.” Here we use differences in 
mutation rates between males as females as an orthogonal approach, free from the 
above confounds, to estimating effect sizes. 

To assess differences in the mutation rates between males and females, we 
analyzed all the de novo and transmitted variants input into the TADA model. We 
calculated variant rates by gender and segregated them by likelihood of autism risk: 
genes with q<0.1, genes with q<0.3 and all genes. P values were generated by a single-
tailed test that permuted the gender labels 1,000,000 times and calculated the frequency 
of permutations that had a more extreme difference between male and female mutation 
rate than was observed.  

I. A Liability Model of ASD  

To model a qualitative trait, presence or absence of ASD, using standard 
quantitative genetics concepts, we imagine that there is an unobserved, normally 
distributed variable called “liability” that determines whether or not an individual is 
diagnosed with ASD24. We assume that liability, L, has mean 0 and variance 1 in the 
general population. Individuals with L greater than some threshold t are diagnosed with 
ASD and individuals with L < t are considered “typical”. Under this model, the prevalence 
difference between males and females is viewed as a difference in thresholds for males 
and females. For a male to be diagnosed with ASD, his liability must be larger than tm. 
For a female to be diagnosed with ASD her liability must be larger than tf. Since ASD is 
more common in males than females, we conclude that tm < tf.  For all that follows we will 
assume that the prevalence of ASD is 1 in 42 in males (implying tm ~1.98), and the 
prevalence of ASD is 1 in 189 females (implying tf ~2.56)25. 

When considering the effects of individual alleles on liability, we employ an 
elaboration to the standard quantitative genetics model which is sometimes called the 
“mixed model of inheritance”26. We assume that individual alleles make additive 
contributions to liability, so that for some allele, A1, individuals with 0 copies of the allele 
have mean	  -‐µ,	  variance 1 liability, but individuals with 1 copy have mean α−µ,	  variance 1, 
and individuals with 2 copies have mean	   2α−µ,	   variance 1 liability. Assuming Hardy-
Weinberg equilibrium for genotypes, and the frequency of A1 equaling p,	  µ	  =	  2αp2+α2pq	  
=	  2αp.	  Here µ	  is a normalizing factor to ensure the overall population has mean liability 0. 

The fundamental assumption we make for all that follows is the effect of an allele, 
α, is identical in males and females. The simple assumption that alleles have the same 
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effect on liability in males and female allows us to make substantial and sometimes 
surprising predictions concerning the relative distribution of risk alleles in males versus 
females. 

Under the liability model, the penetrance of a genotype, Pr{Disease|Genotype} 
can be easily calculated given a and the appropriate thresholds.  In particular, in males  

Pr{Disease | A1A1}  = Pm(A1A1)=  1 - Φ(tm-(2a-m)).  

Pr{Disease | A1A2} = Pm(A1A2) = 1 - Φ(tm-(a-m)).  

Pr{Disease | A2A2} = Pm(A2A2) = 1 - Φ(tm+m)). 

Similarly, in females 

Pr{Disease | A1A1} = Pf(A1A1) =  1 - Φ(tf-(2a-m)).  

Pr{Disease | A1A2} = Pf(A1A2) =  1 - Φ(tf-(a-m)).  

Pr{Disease | A2A2} = Pf(A2A2) =  1 - Φ(tf+m)), 

where Φ-1 is an cumulative normal function. With the penetrances and allele 
frequency in hand, the frequency of A1 in cases versus controls, relative risks, etc. can 
be calculated immediately in the usual fashion26.   

This model makes several, perhaps surprising, predictions for any allele that has 
the same effect on liability in males and females, because of the higher disease 
prevalence in males than females. First, the allele will have a higher penetrance in males 
than it does in females. Second, the allele will have a smaller relative risk in males than 
in females. Finally, the allele will be at a higher frequency in female cases than it is in 
male cases. The magnitude of the difference is proportional to the overall effect size α, 
where larger effects cause greater differences between males and females. The table 
below gives several illustrative examples for a rare allele (P<0.01). 

 
 As is clear from the table, for relative risks typical of GWAS discoveries (~1.1) 
male/female differences are largely insignificant. However, for extremely large effect 
alleles, this model predicts very substantial differences between male and female 
penetrances and disease allele frequencies. Given the observed frequencies of various 
classes of variation in males versus females, we can use this model to estimate average 
relative risk for each class of variation. 

Sub-exome enrichment 

Overall Odds Ratio 1.1 2 3 4 10 20 100 
Penetrance Males 0.0260 0.0446 0.0640 0.0823 0.1759 0.2932 0.6719 
Penetrance Females 0.0059 0.0115 0.0180 0.0247 0.0659 0.1314 0.4478 
Relative Risk Males 1.09 1.92 2.80 3.68 8.75 17.00 83.92 
Relative Risk Females 1.11 2.18 3.44 4.76 13.27 28.45 152.67 
Frequency Female Case 
/ Male Case 1.02 1.16 1.26 1.35 1.69 2.02 3.00 
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Enrichment analyses count the number of genes in common between two sets of 
genes, such as the set of genes with FDR < 0.3 versus a set of genes defined by a 
common functional role, to determine if there is greater overlap than expected by 
chance.  Enrichment analyses can inform on this FDR list at two levels. Rigorously 
defined statistical excesses with independently pre-defined gene sets provide both 
additional confirmation of the veracity of the ASD signal, as well as, depending on the 
nature of the gene set, provide insight into the biological origin of that signal. Our 
enrichment analyses control for size and mutability of the genes in these sets, which is 
important given the established non-randomness of such mutation rates with respect to 
functional categories of genes12. 

I. Constructing sub-exomes from the literature 

FMRP target lists containing 842 and 939 genes were extracted from Darnell et 
al27 (Table S2A), Ascano et al22 and Suhl et al28. RBFOX1/2/3 in vivo RNA interaction 
sites were extracted from Weyn-Vanhentenryck et al. 201429. More specifically, we 
created two sub-exomes from Supplementary Table 1 and Table 6. In Table 1 we took 
1048 genes mapped with significant HITS-CLIP peaks in the exon or CDS regions. In 
Table 6 we took 587 RBFOX gene targets with alternative splicing events predicted by 
their integrative model. The list of genes that are targets of both RBFOX1 and H3K4me3 
was extracted from Feng et al, Table S930 (a total of 478 genes). Human orthologues of 
mouse synaptosome (152) and PSD (1080) genes were extracted from the 
Genes2Cognition database (http://www.genes2cognition.org). Genes with de novo non-
synonymous mutations in schizophrenia were extracted from Fromer et al., 201431, also 
including previous studies32,33. Constrained genes were extracted from Samocha et al12. 
A summary is shown in Supplementary Table 4. 

II. Computing empirical P value 

For each comparison between 107 ASD genes with q < 0.3 and the sub-exome, 
we first constructed the empirical distribution by sampling the same number of genes as 
in the sub-exome from the gene pool without replacement for 10,000 times. We used all 
genes with an inferred mutation rate (as did TADA) as the gene pool, and weighted the 
sampling probability by normalized mutation rate (i.e., genes with larger mutation rates 
were more likely to be sampled). The P value was computed by counting the number of 
sampled gene lists that had at least as many overlapping genes as the original 107 ASD 
gene list, divided by the number of iterations.    

HMG and ChEA networks 

Histone modifier genes (HMG) were annotated using HIstome database34, and 
chromatin remodeling factors according to the list compiled by Huang et al35 and 
manually curated information from published literature. We used a manually curated 
transcription network to create subnetworks for TADA genes and HMGs. The 
background network consists of 92 transcription factors and 31,932 gene targets, with 
89,933 interactions extracted from 87 publications (ChEA27). Only direct interactions 
among 107 TADA genes and HMGs were kept. For the permutation test, we selected 
999 random gene sets of size 107, from the set of 18,736 background genes in the 
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TADA gene list (using the sampling procedure described above). For each random set, 
we performed the same analyses done with the original 107 TADA genes. We counted 
the number of genes in the resulting network for each analyses and calculated the P 
values based on the ranking of the original TADA list among all random draws. 

DAWN (Detecting Association With Networks)  

Based on the TADA scores14 alone, only a modest number of genes are 
significantly associated with ASD. To identify more genes associated with ASD 
additional biological information can be modeled. Using a new approach called DAWN36, 
Liu et al. (2014) model two kinds of data: rare variations from exome sequencing and 
gene co-expression in the mid-fetal prefrontal and motor-somatosensory neocortex, a 
critical nexus for risk37. Using these data, DAWN identified 160 genes that plausibly 
affect risk. 

The DAWN algorithm casts the ensemble data as a hidden Markov random field 
in which the graph structure is determined by gene co-expression. It combines these 
interrelationships with node-specific observations, namely gene identity, expression, 
genetic data and the estimated effect on risk. Here we extend the DAWN approach by 
incorporating information about gene constraint.  

I. Algorithm for network estimation 

The first step of DAWN requires an estimate of the gene network, i.e., the 
adjacency matrix.  In Liu et al. (2014) the network is estimated using a thresholded 
version of the correlation matrix36. Because the resulting network is quite dense, clusters 
of highly correlated genes are combined to create multigene nodes. When incorporating 
information about constrained genes into the model, however, it is better if each node 
represents a single gene. For this reason we modified the original DAWN algorithm to 
produce a sparse network with single-gene nodes. 

We estimate the network using a sparse regression technique to select the non-
zero partial correlations. Following Meinshausen and Buhlmann (2006)38, we apply the 
lasso to each neighborhood regression and then construct the adjacency matrix by 
aggregating the non-zero partial correlation obtained for each regression. Some 
adjustments were made to this approach to focus on key nodes in the network based on 
genetic information and pairwise correlations. 

To determine the right choice for the smoothing parameter we rely on the fact 
that many biological networks follow a power law39. 

II. The DAWN Algorithm 

Let ! = (!!,… , !!) be a binary vector indicating which genes are associated with 
ASD.   This is the “hidden state”. The original DAWN model, !!, assumes that the 
distribution of ! follows an Ising model with density 

! ! = ! ∝ exp !!′! + !!′!! .                         (1) 
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To incorporate constraint information, we propose the generalized Ising model, !!, that 
incorporates the directed network indicating which genes are constrained. The density 
function of the generalized Ising model is as follows: 

 ! ! = ! ∝ exp  (!!!! + !!!!! + !!′!)            (2) 

where ! = (ℎ!,… , ℎ!)  is the indicator of constrained genes, and ! > 0  reflects the 
enhanced probability of risk for constrained genes. 

The corresponding p-values derived from TADA is converted to Z-scores (!) to 
obtain a measure of the evidence of disease association for each gene. It follows 
immediately that each of the Z-scores under the null hypothesis ! = 0 has a standard 
normal distribution. We assume that under the alternative ! = 1  the Z-scores 
approximately follow a shifted normal distribution. To fit !!  we apply the iterative 
algorithm described in Liu et al. (2014) to estimate the parameters of the model36. Minor 
adjustments of the DAWN algorithm permit the estimation of the additional parameter ! 
in !!. 

III. Testing the Constraint Effect 

If d>0 this suggests that the constraint covariate is a predictor of risk for ASD.  To 
test whether or not d is significantly larger than zero, we compare the observed statistic 
d ̂ with d obtained under the null hypothesis of no association. We do so using a 
smoothed bootstrap simulation that involves simulating data with the same clustering of 
genetic signals, but without an association with the constraint sites. 

To simulate Z from M_0, we first simulate the hidden states I from the distribution 
(1). Initial values of I are given to each node in the simulated graph, with a proportion of r 
being 0.5. Then, we apply a Metropolis-Hasting algorithm to update I until convergence: 

• Apply the algorithm to model M_0 to obtain estimates of the model parameters. 
• Using the estimated null model, simulate I ̂ by the Metropolis Hastings algorithm, 

then simulate Z ̂. 
• Using model M_1 estimate the parameters for the simulated data. 
• Iteratively conduct step (2-3) N times, then compute the empirical p-value for d by 

comparing the realized and simulated values.  400 simulations were performed. 

IV. DAWN PPI network 

The 160 genes from DAWN were seeded in the curated high confidence protein 
protein interaction network3. 95 genes were found in the largest connected component 
and were connected with Dijkstra’s shortest path algorithm. Direct interaction between 
seed nodes as well as indirect interaction through immediate intermediates were 
recorded. The organic clustering algorithm in graph editor yEd 
(http://www.yworks.com/en/products_yed_about.html) was used to identify node 
clusters. The resulting nodes in each cluster were extracted and fed into Enrichr40 for 
enrichment analysis. Enriched terms for each cluster using Mouse Genome Informatics-
Mammalian Phenotype (MGI-MP), Kyoto Encyclopedia of Genes and Genomes (KEGG), 
and Gene Ontology (GO) terms were also visualized with Enrichr40 grid feature. 
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Nav1.2 and Cav1.3 structural domains 

The domains shown in Fig. 1c and 1d were extracted from the Protein Data Bank 
(PDB) and refer to Uniprot #Q99250 (Nav1.2) and #Q01668 (Cav1.3). The Nav1.2 EF-
hand and IQ domain were extracted from #2KAV and #2KXW, respectively. For the 
NSCaTE motif of Cav1.3 #2LQC was used. The vestigial EF-hand domain, and the pre-
IQ and IQ domains are based on Nav1.5 (PDB #2KBI) and Cav1.2 (PDB #3OXQ), and 
adapted as described previously41.   
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