Additional file 11

Exceptions of amino acid residues conserved in all Nox/Duox proteins

We identified 68 amino acid residues that were highly conserved in eukaryote Noxes and showed them in Figure 6. Possibly due to mis-sequencing of the part of the genome or to tolerance of evolutionary changes in the species, some of conserved amino acids contained rare exceptions, as indicated by asterisks in Figure 6. The residue numbers shown below correspond to the numbers that are shown in Figure 6 with asterisks. The single letter amino acid code is used. Sequences of A. thaliana rbohH and T. nigroviridis Nox5 are truncated in the C-terminus (alignment was shown in Additional file 5), and they failed to conserve many of the identified 68 amino acids (9 residues of A. thaliana rbohH and 16 residues of T. nigroviridis Nox5). Therefore, we did not list exceptions in these two sequences here.

[^0]discoideum NoxA), *13 $=\mathrm{M}($ D. rerio $\operatorname{Nox} 2), * 14=\mathrm{F}(P$. anserine NoxB, M. grisea NoxB), $* 15=\mathrm{M}($ T. nigroviridis Nox1, T. rubripes Nox1, O. latipes Nox1), $* 16=\mathrm{A}(C$. elegans Duox $1 / 2$), *17 = S (A. thaliana rbohB), *18 = Y (C. elegans Duox $1 / 2), * 19=\mathrm{R}$ (T. nigroviridis Nox5), ${ }^{*} 20=\mathrm{Q}($ T. nigroviridis Nox5), $* 21=\mathrm{A}$ (T. nigroviridis Nox5), $* 22=\mathrm{E}($ T. nigroviridis Nox5), $* 23=\mathrm{T}($ C. intestinalis $\operatorname{Nox} 4), * 24=\mathrm{S}(C$. crispus NoxD $), * 25=\mathrm{C}($ C. crispus NoxD $), * 26=\mathrm{M}($ A. thaliana rboh H and J$), * 27=\mathrm{A}(P$. yezoensis NoxD), ${ }^{*} 28=\mathrm{Y}($ O. latipes Nox 2$),{ }^{*} 29=\mathrm{L}(C$. intestinalis Nox4), $* 30=\mathrm{R}$ (O. latipes Nox 2), *31 = S (C. intestinalis Nox4), *32 = deletion (R. norvegicus Nox 2), L (O. latipes Nox 2), $* 33=\mathrm{M}($ O. latipes Nox 2$), * 34=\mathrm{M}($ C. intestinalis DuoxD), *35 $=\mathrm{T}($ T. nigroviridis, T. rubripes, D. rerio Nox 1$), * 36=\mathrm{D}($ C. familliaris Duox 2$)$, *37 $=\mathrm{M}($ S. purpuratus - Nox5B), $* 38=\mathrm{P}($ C. familliaris Duox2 $), \mathrm{Y}($ C. intestinalis Duox-D), $* 39=\mathrm{W}(F$. graminearum NoxC), $* 40=$ deletion (P. yezoensis NoxD), $* 41=$ L (D. discoideum NoxB), *42 = deletion (C. familliaris Duox2, G. gallus Duox1, C. intestinalis Duox-A), $* 43=\mathrm{D}(F$. graminearum NoxC), $* 44=$ deletion $(P$. yezoensis NoxD), $* 45=$ deletion (T. rubripes Nox4), $* 46=$ deletion (C. familliaris Duox $2, G$. gallu Duox1, C. intestinalis Duox-A), $* 47=\mathrm{Y}(F$. graminearum NoxC), $* 48=$ deletion (P. yezoensis NoxD).

[^0]: *1 $=\mathrm{L}\left(\right.$ C. elegans Duox2), ${ }^{2} 2=\mathrm{L}(C$. familliaris Duox1 and X. tropicalis Duox2), *3 $=\mathrm{A}(X$. tropicalis Nox 4$), * 4=\mathrm{I} / \mathrm{T}$ (C. elegans Duox $1 / 2$, respectively), ${ }^{5} 5=\mathrm{P}$ (G. gallus Nox1), $\mathrm{K}\left(\right.$ X. tropicalis Nox1), $* 6=\mathrm{T}\left(C\right.$. familliaris Nox4), ${ }^{*} 7=\mathrm{G}($ G. gallus Nox1), $\mathrm{M}(X$. tropicalis Nox1), $* 8=\mathrm{I}($ R. norvegicus Nox3), $* 9=$ deletion (C. familliaris Nox4), ${ }^{*} 14=\mathrm{S}(X$. tropicalis Duox2), $* 11=\mathrm{M}(X$. tropicalis $\operatorname{Nox} 2), * 12=\mathrm{T}(D$.

