Additional file 2

Supplemental Figure S2. Sequences of EF-hand motifs in Nox5, Duox, plant Nox, and NoxC

 The original alignment data are shown in Additional file 8. EF (I) to EF (IV) represent four EF-hands of Nox5. Each EF-hand domain contains a twelve residue loop that is involved in calcium-binding. The letters $\mathrm{X}, \mathrm{Y}, \mathrm{Z},-\mathrm{Y},-\mathrm{X}$, and -Z indicate the six residues that directly participate in calcium-binding, and these six residues correspond to positions $1,3,5,7,9$ and 12 . The consensus sequences of these six positions are: D at position $1, \mathrm{D} / \mathrm{N} / \mathrm{S}$ at position 3 , $\mathrm{D} / \mathrm{E} / \mathrm{N} / \mathrm{S} / \mathrm{T} / \mathrm{G}$ at position $5, \mathrm{G} / \mathrm{P}$ at position $7, \mathrm{D} / \mathrm{E} / \mathrm{N} / \mathrm{Q} / \mathrm{S} / \mathrm{T} / \mathrm{A} / \mathrm{G} / \mathrm{C}$ at position 9 , and D / E at position 12 (PROSITE documentation number PDOC00018), and the most conserved positions are 1, 3, and 12. Asterisks indicate atypical EF-hand motif that is not consistent with the consensus sequences at positions 1,3 , or 12 . Predicted T. rubripes $(\mathrm{Tr})-\mathrm{Nox} 5$ sequence was not a complete sequence; therefore the $1^{\text {st }} \mathrm{EF}$-hand motif sequence was not shown. The arrows indicate motifs that have 17 to 23 additional amino acids inserted in the indicated position. Abbreviations of species are as in Figure 2.$\frac{\text { EF-I }}{\text { X Y }}$| Z-Y-X-Z |
| :--- |

human-Hs-Nox5 α dog-Cf-Nox5 cow-Bt-Nox5 chicken-Gg-Nox5 frog-Xt-Nox5 opposum-Md-Nox5 fugu-Tr-Nox5 medaka-OI-Nox5
sea urchin-Sp-Nox5A sea urchin-Sp-Nox5B fruit fly-Dm-Nox5 mosquito-Ag-Nox5 honeybee-Am-Nox5 fungus-Mg-NoxC fungus-Fg-NoxC At-rbohF
At-rbohl
At-rbohC
At-rbohG
At-rbohA
At-rbohD
At-rbohB
At-rbohE
At-rbohH
At-rbohJ
amoeba-Dd-NoxC
mouse-Mm-Duox1
mouse-Mm-Duox2
dog-Cf-Duox1
dog-Cf-Duox1
human-Hs-Duox1
human-Hs-Duox2
rat-Rn-Duox1
rat-Rn-Duox2
chicken-Gg-Duox
frog-Xt-Duox1 frog-Xt-Duox2
fugu-Tr-Duox
tetraodon-Tn-Duox
zebrafish-Dr-Duox medaka-OI-Duox ascidian-Ci-Duox-B ascidian-Ci-Duox-A ascidian-Ci-Duox-C ascidian-Ci-Duox-D sea urchin-Sp-Duox fuit fly-Dm-Duox mosquito-Ag-Duox honeybee-Am-Duox nematode-Ce-Duox 1 nematode-Ce-Duox2

AG-EDGEISLQE* DSDRSGTITLQE AE-KDREINLQQ* DSDGSGTITLQE AG-EDGEINLQD* DSDGSGTITLQE AG-HDEEIGLEE* DVDGSGTISLAE AG-DDKEIDLEE* DSDGSGSISLDE AG-EDREIDLQE* DSDGSGTITLQE DSDGSSSISLDE AG-DDKEINLCE* DSDGSGSISLDE AG-EDRQIDEDE* DQDGSGYISLDE AG-DDNLIDLDE* DTDQSGSISLKE VG-NEQEIRREE* DKDNSGSISLQE VG-NEKEIRREE* DKDNSGSISLQE VG-NEKEIRREE* DKDNSGTISLQE
 DKDGNGYLSFRE DKDGNGYISFRE DKDGNGYLSFRE DKDGNGYLSFRE DKDGNGYLSFRE DKDGNGYLSFRE DKDGNGYLSFRE DKDGNGYISFRE DKDGNGYISFRE DKDHNGYLSFEE DEDGNGYLSFRE DKDGNGSLSFQE DKDGNGYLSFQE DKDGNGYLSFQE DTDHSGYLSFQE

EF-III

EF-IV
X Y Z-Y-X -Z DIDGSGSIDPDE DVD"GSGSIDADE DVI'GSGSIDADE dVDGSGSIDAAE DVDDGSGSIDPSE DVD'GNGSIDPDE DVDGSGSIDPDE DVQGSGSIDPDE* DVDGNGAIDHEE DVDGSGFIDFDE DIDGDGLIQHKE DLDGDGLIQHRE DIDGDGLIQLRE DHDGDGCIDYSE DHDNDGHINYEE DKNEDGRITEEE CYQLSSNLVKHI* DKDADGRLTEDE DKDSDGRLTEDE DKDSDGRLNEAE DKDEDGRVTEEE DKNLDGRITGDE DSNEDGKITREE DKNGDGKLTEEE DKDGDGKLTEEE DIYDKGFISRDD* DFDGNGLISKDE DLDGNGFLSKDE DFDGNGLISKDE DLDANGFLSKDE DFDGNGLISKDE DLDENGFLSKDE DFDGNGLISKDE DLDGNGFLSKEE DIDENGFLSKEE DVNGNGILPKEE DVDGNGFLSKEE DIGGTGSLSKGE*

DPERLGYIELWQ* APDGLYY'IELKD* DPDNIGYIMLES* DPDHMGYIMMES* DPYHYGYIMIEN* DPDNAGFIMIEN* DRDNLGYIELHN* DPENFGYIELWQ* DPDHKGYIEMWQ* DPNEQGYIEMWQ* DKNMDGYIDFEE

DIKGDGFLSKEE*
DVGGNGYLSKEE
DVDHSGEINREE
DLDKSGELSKKE
DLDKSGGLSKEE
DLNQNGSLTKQQ*
DIDRSGHLSREE
DNDRNGVIDKGE
DNDRNGVIDKGE
DKDCNGVIDKEE
DLEGKNKVLRKD*
GKNKVLR

X Y Z-Y-X -Z DADGNGAITFEE DKDCNGAITFDE DKDCSGTITFEE DQDGNGSITFQE DKDHSGSITFQE DKDHSGSITFEE DKDHSGSITFEE dTDNSGSITFEE DTDGSGAISFEE DVDGDGEVSFEE DPHNSGEITYEA* DKYNRGAITYEA* DQSNRGAITFEA*
\qquad
\square -

DLDKSGGLSKEE DLNQNGSLTKQQ* DIDRSGHLSREE DNDRNGVIDKGE DNDRNGVIDKGE DLEGKNKVLRKD* DLEGKNKVLRKD*

