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A novel scoring function to estimate protein-ligand binding affinities has been developed and implemented
as the Glide 4.0 XP scoring function and docking protocol. In addition to unique water desolvation energy
terms, protein-ligand structural motifs leading to enhanced binding affinity are included: (1) hydrophobic
enclosure where groups of lipophilic ligand atoms are enclosed on opposite faces by lipophilic protein
atoms, (2) neutral-neutral single or correlated hydrogen bonds in a hydrophobically enclosed environment,
and (3) five categories of charged-charged hydrogen bonds. The XP scoring function and docking protocol
have been developed to reproduce experimental binding affinities for a set of 198 complexes (RMSDs of
2.26 and 1.73 kcal/mol over all and well-docked ligands, respectively) and to yield quality enrichments for
a set of fifteen screens of pharmaceutical importance. Enrichment results demonstrate the importance of the
novel XP molecular recognition and water scoring in separating active and inactive ligands and avoiding
false positives.

1. Introduction

In two previous papers1,2 we have described the Glide high
throughput docking program and provided performance bench-
marks for docking and scoring capabilities. These results have
established Glide as a competitive methodology in both areas.2-5

However, it is clear from enrichment results (ref 2) that there
remains substantial room for improvement in separating “active”
from “inactive” compounds. In this paper we outline and present
results obtained from significantly enhanced sampling methods
and scoring functions, hereafter collectively referred to as “extra-
precision” (XP) Glide. The key novel features characterizing
XP Glide scoring are (1) the application of large desolvation
penalties to both ligand and protein polar and charged groups
in appropriate cases and (2) the identification of specific
structural motifs that provide exceptionally large contributions
to enhanced binding affinity. Accurate assignment of these
desolvation penalties and molecular recognition motifs requires
an expanded sampling methodology for optimal performance.
Thus, XP Glide represents a single, coherent approach in which
the sampling algorithms and the scoring function have been
optimized simultaneously.

The goal of the XP Glide methodology is to semiquantita-
tively rank the ability of candidate ligands to bind toa specified
conformation of the protein receptor.Because of the rigid
receptor approximation utilized in Glide and other high through-
put docking programs, ligands that exhibit significant steric
clashes with the specified receptor conformation cannot be
expected to achieve good scores, even if they in reality bind
effectively to an alternative conformation of the same receptor.
Such ligands may be thought of as unable to “fit” into that
specified conformation of the protein. For docking protocols to
function effectively within the rigid-receptor approximation,
some ability to deviate from the restrictions of the hard wall

van der Waals potential of the receptor conformation used in
docking must be built into the potential energy function
employed to predict the ligand binding mode. In XP and SP
Glide, this is accomplished by scaling the van der Waals radii
of nonpolar protein and/or ligand atoms; scaling the vdW radii
effectively introduces a modest “induced fit” effect. However,
it is clear that there are many cases in which a reasonable degree
of scaling will not enable the ligand to be docked correctly.
For example, a side chain in a rotamer state that is very different
from that of the native protein-ligand complex may block the
ligand atoms from occupying their preferred location in the
binding pocket. There will always be borderline situations, but
in practice we have found it possible to classify the great
majority of cases in cross-docking experiments as either “fitting”
or “not fitting”. The former are expected to be properly ranked
by XP Glide (within the limitation of noise in the scoring
function), while the latter require an induced-fit protocol6,7 to
correctly assess their binding affinity.4 In the present paper, we
focus on complexes where the ligand fits appropriately into the
receptor, as judged by two factors: (1) the ability to make key
hydrogen bonding and hydrophobic contacts and (2) the ability
to achieve a reasonable root-mean-square deviation (RMSD),
as compared to the native complex or as obtained by analogy
with the native complex of a related ligand. Comparison by
analogy is often necessary when dealing with a large dataset of
active ligands, only a few of which may have available crystal
structures.

Our discussion of XP Glide is divided into four different
sections. First, in section 2, we describe the novel terms leading
to enhanced binding affinity that have been introduced to
account for our observations with regard to protein-ligand
binding in a wide range of systems. The origin of these terms
lies in the theoretical physical chemistry of protein-ligand
interactions; however, developing heuristic mathematical rep-
resentations that can be used effectively in an empirical scoring
function, taking into account imperfections in structures due to
the rigid receptor approximation and/or limitations of the
docking algorithm, requires extensive analysis of, and fitting
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to, experimental data. Key aspects of this analysis, along with
illustrative examples, are provided in section 2 in an effort to
provide physical insight as well as formal justification for the
model. In developing XP Glide, we have attempted to identify
the principal driving forces and structural motifs for achieving
significant binding affinity contributions with specific protein-
ligand interactions, above and beyond the generic terms that
have appeared repeatedly in prior scoring functions. We have
found that a relatively small number of such motifs are dominant
over a wide range of test cases; the ability to automatically
recognize these motifs, and assign binding affinity contributions,
potentially represents an advance in the modeling of protein-
ligand interactions based on an empirical scheme.

In section 3, we evaluate the performance of our methodology
in self-docking, with regard to both the ability to generate the
correct binding mode of the complex and the prediction of
binding affinity, using docked XP structures for the complexes.
In section 4, the performance of the scoring function in
enrichment studies (ability to rank known active compounds
ahead of random database ligands) for a substantial number of
targets, containing qualitatively different types of active sites,
is investigated. Our treatment of the data differs significantly
from what has generally prevailed in previous papers in the
literature; in evaluating scoring accuracy, we distinguish cases
where there are significant errors in structural prediction, as
opposed to systems where the structural prediction is reasonably
good, but the scoring function fails to assign the appropriate
binding affinity. By using only well-docked structures to
parametrize and assess scoring functions, a way forward toward
a globally accurate method, in which multiple structures are
employed in docking and/or induced fit methods are utilized to
directly incorporate protein flexibility, is facilitated.

The parameterization of XP Glide is carried out using a large
and diverse training set comprising 15 different receptors and
between 4 and 106 well-docked ligands per receptor. A
separately developed test set incorporating four new receptors,
and additional ligands for two receptors already in the training
set, is also defined. All of the receptor and ligand data is publicly
available (as is our decoy set, which has been posted on the
Schrodinger Web site and is freely available for downloading)
and we provide extensive references documenting the origin of
each ligand. The results reported below have been obtained with
the Glide 4.0 release.

The development of data sets suitable for the analysis
described above is highly labor intensive; consequently, our
current test set is too small to draw robust conclusions, and the
results reported herein must be regarded as preliminary. While
the test set results are encouraging with regard to demonstration
of a respectable degree of transferability, a rigorous assessment
of the performance to be expected on a novel receptor will have
to be performed in future publications. Nevertheless, qualitative
and consistent improvement in the results for both training and
test set, at least as compared to the alternative scoring functions
available in Glide, is demonstrated. Finally, in the conclusion,
we summarize our results and discuss future directions.

2. Glide XP Scoring Function

The major potential contributors to protein-ligand binding
affinity can readily be enumerated as follows:

(1) Displacement of Waters by the Ligand from “Hydro-
phobic Regions” of the Protein Active Site.Displacement of
these waters into the bulk by a suitably designed ligand group
will lower the overall free energy of the system. Waters in such
regions may not be able to make the full complement of

hydrogen bonds that would be available in solution. There are
also entropic considerations; if a water molecule is restricted
in mobility in the protein cavity, release into solvent via ligand-
induced displacement will result in an entropy gain. As one
ligand releases many water molecules, this term will contribute
favorably to the free energy. Replacement of a water molecule
by a hydrophobic group of the ligand retains favorable van der
Waals interactions, while eliminating issues concerning the
availability of hydrogen bonds. Transfer of a hydrophobic
moiety on the ligand from solvent exposure to a hydrophobic
pocket can also contribute favorably to binding by withdrawing
said hydrophobic group from the bulk solution.

(2) Protein-Ligand Hydrogen-Bonding Interactions, as
well as Other Strong Electrostatic Interactions Such as Salt
Bridges. In making these interactions, the ligand displaces
waters in the protein cavity, which can lead to favorable entropic
terms of the type discussed above in (1). Contributions to
binding affinity (favorable or unfavorable) will also depend on
the quality and type of hydrogen bonds formed, net electrostatic
interaction energies (possibly including long range effects,
although these generally are considered small and typically are
neglected in empirical scoring functions), and specialized
features of the hydrogen-bonding geometry, such as bidendate
salt bridge formation by groups such as carboxylates or
guanidium ions. Finally, differences in the interactions of the
displaced waters, as compared to the ligand groups replacing
them, with the protein environment proximate to the hydrogen
bond, can have a major effect on binding affinity, as is discussed
in greater detail below.

(3) Desolvation Effects.Polar or charged groups of either
the ligand or protein that formerly were exposed to solvent may
become desolvated by being placed in contact with groups to
which they cannot hydrogen bond effectively. In contrast to the
two terms described above, such effects can only reduce binding
affinity.

(4) Entropic Effects Due to the Restriction on Binding of
the Motion of Flexible Protein or Ligand Groups. The largest
contributions are due to restriction of ligand translational/
orientational motion and protein and ligand torsions, but
modification of vibrational entropies can also contribute. As in
the case of desolvation terms, such effects will serve exclusively
to reduce binding affinity.

(5) Metal-Ligand Interactions. Specialized terms are
needed to describe the interaction of the ligand with metal ions.
We shall defer the discussion of metal-specific parameteriza-
tion to another publication, as this is a complex subject in its own
right, requiring considerable effort to treat in a robust fashion.

A large number of empirical scoring functions for predicting
protein-ligand binding affinities have been developed.8-19

While differing somewhat in detail, these scoring functions are
broadly similar. A representative example, the ChemScore8

scoring function, is discussed in our comments below, though
similar comments would apply to many of the other scoring
functions cited in refs 8-19. We briefly summarize how
ChemScore treats the first four potential contributors to the
binding affinity presented above:

(1) ChemScore8 contains a hydrophobic atom-atom pair
energy term of the form

Here,i andj refer to lipophilic atoms, generally carbon, and
f(rij) is a linear function of the interatomic distance,rij. For rij

less than the sum of the atomic vdW radii plus 0.5 Å,f is 1.0.

Ephobic•pair ) ∑
ij

f(rij) (1)

6178 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 21 Friesner et al.



Between this value and the sum of atomic vdW radii plus 3.0
Å, f ramps linearly from 1.0 to zero. Beyond the sum of atomic
vdW radii plus 3.0 Å,f is assigned a value of zero.

This term heuristically represents the displacement of waters
from hydrophobic regions by lipophilic ligand atoms. Numerous
close contacts between the lipophilic ligand and protein atoms
indicate that poorly solvated waters have been displaced by
lipophilic atoms of the ligand that themselves were previously
exposed to water. The resulting segregation of lipophilic atoms,
and concomitant release of waters from the active site, lowers
the free energy via the hydrophobic effect, which is ap-
proximately captured by the pair scoring function above. Terms
based on contact of the hydrophobic surface area of the protein
and ligand, while differing in details, essentially measure the
same free energy change and have a similar physical and
mathematical basis.

Various parameterizations of the atom-atom pair term have
been attempted, including efforts such as PLP,9 in which every
pair of atom types is assigned a different empirical pair potential.
However, it is unclear whether this more detailed parameteriza-
tion yields increased accuracy in predicting binding affinities.
A key issue is whether a correct description of the hydrophobic
effect can be achieved in all cases by using a linearly additive,
pairwise decomposable functional form.

(2) ChemScore evaluates protein-ligand hydrogen-bond
quality based on geometric criteria, but otherwise does not
distinguish between different types of hydrogen bonds or among
the differing protein environments in which those hydrogen
bonds are embedded.

(3) ChemScore does not treat desolvation effects.
(4) ChemScore uses a simple rotatable-bond term to treat

conformation entropy effects arising from restricted motion of
the ligand.

The new XP Glide scoring function starts from the “standard”
terms discussed above, though the functional form of the first
three terms have been significantly revised and the parameteriza-
tion of all terms is specific to our scoring function. In the remain-
der of this section, the functional form and physical rationale
for the novel scoring terms we have developed are described
with examples from pharmaceutically relevant test cases pro-
vided to illustrate how the various terms arise from consideration
of the underlying physical theory and experimental data.

Form of the XP Glide Scoring Function. The XP Glide
scoring function is presented in eq 2. The principal terms that
favor binding are presented in eq 3, while those that hinder
binding are presented in eq 4. A description of each of the
following terms besidesEhb•pair and Ephobic•pair, which are
standard ChemScore-like hydrogen bond and lipophilic pair
terms, respectively, follows.

Improved Model of Hydrophobic Interactions: Hydro-
phobic Enclosure (Ehyd•enclosure). The ChemScore atom-atom
pair function, Ephobic•pair described above, assigns scores to
lipophilic ligand atoms based on summation over a pair function,
each term of which depends on the interatomic distance between
a ligand atom and a neighboring lipophilic protein atom. This
clearly captures a significant component of the physics of the
hydrophobic component of ligand binding. It is assumed that

the displacement of water molecules from areas with many
proximal lipophilic protein atoms will result in lower free energy
than displacement from areas with fewer such atoms. As a crude
example, it is clear that if the ligand is placed in an active-site
cavity, as opposed to on the surface of the protein, the lipophilic
atoms of the ligand are likely to receive better scores. If they
are located in a “hydrophobic pocket” of the protein, scores
should be better than in a location surrounded primarily by polar
or charged groups. Furthermore, these improved scores are likely
to be correlated with improvements in ligand binding affinity.

However, a function dependent only on the sum of interatomic
pair functions is potentially inadequately sensitive to details of
the local geometry of the lipophilic protein atoms relative to
the ligand lipophilic atom in question. As an example, consider
the two model distributions shown in Figure 1. In one case (A),
a lipophilic ligand group is placed at a hydrophobic “wall” with
lipophilic protein atoms on only a single face of the hydrophobic
group. In the second case (B), the lipophilic ligand group is
placed into a tight pocket, with lipophilic protein atoms
contacting the two faces of the ligand group. As suggested
above, one would normally expect a larger contribution to
binding in the second case than in the first. However, this does
not fully settle the question, which at root is whether the atom-
atom pair contribution for a given ligand-atom/protein-atom
distance should be identical when the ligand atom is enclosed
by protein hydrophobic atoms, as opposed to when it is not, or
whether there can be expected to be nonadditive effects.

From a rigorous point of view, the answer depends principally
upon the free energy to be gained by displacing a water molecule
at a given location. This in turn depends on how successfully
that water molecule is able to satisfy its hydrogen-bonding
requirements at that location, while retaining orientational
flexibility. In the extreme case in which a single water molecule
is placed in a protein cavity that can accommodate only one
water molecule and is surrounded on all sides by lipophilic
atoms that cannot make hydrogen bonds, the enthalpy gain of
transferring the water to bulk solution is enormously favorable.
In such a case it is not clear that a water molecule would occupy
such a cavity in preference to leaving a vacuum, despite the
statistical terms favoring occupancy. However, this is a rare
situation not particularly relevant to the binding of a large ligand,
whereas structural motifs similar to the examples in Figure 1
are quite common.

There have been a large number of papers in the literature
studying, via molecular dynamics simulations, the behavior of

XP GlideScore) Ecoul + EvdW + Ebind + Epenalty (2)

Ebind ) Ehyd•enclosure+ Ehb•nn•motif + Ehb•cc•motif + EPI +
Ehb•pair + Ephobic•pair (3)

Epenalty) Edesolv+ Eligand•strain (4)

Figure 1. Schematic of a ligand group interacting with two distinct
hydrophobic environments: above a hydrophobic “plane” (A) and
enclosed in a hydrophobic cavity (B).
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water in contact with various types of hydrophobic structures,
including flat and curved surfaces,20-22 parallel plates,23,24

nanotubes,25 and recently more realistic systems such as the
hydrophobic surfaces of a protein or the interface between two
protein domains.26-28 There have also been attempts to develop
general theories as to how the hydrophobic effect depends on
the size and shape of the hydrophobic structure presented to
the water molecules.25,29

A number of concepts that are clearly related to the proposals
in the present paper have emerged from this work: evacuation
of water (dewetting), under the appropriate conditions, from
regions between two predominantly hydrophobic surfaces1,2,9

and a model for the curvature dependence of the hydrophobic
energy in which concave regions are argued to have greater
hydrophobicity than convex ones.29 However, while this work
provides useful ideas and general background, development of
a scoring function that can be used to quantitatively predict
protein-ligand binding in the highly heterogeneous and complex
environment of a protein active site requires direct engagement
with a critical mass of experimental data as well as extensive
parameterization and investigation of a variety of specific
functional forms. In what follows, we describe the results of
our investigations along these lines.

A large number of computational experiments involving
modifications of the hydrophobic scoring term designed to
discriminate between different geometrical protein environments
have been performed. The criterion for success in these
experiments is the ability of any proposed new term to fit a
wide range of experimental binding free energy data and yield
good predictions in enrichment studies. Key findings are
summarized as follows:

(1) Ligand hydrophobic atoms must be considered in groups,
as opposed to individually. The free energy of water molecules
in the protein cavity is adversely affected beyond the norm
primarily when placed in an enclosed hydrophobic microenvi-
ronment that extends over the dimension of several atoms. If
there are individual isolated hydrophobic contacts, the water
will typically be able to make its complement of hydrogen bonds
anyway by partnering with neighboring waters as in clathrate
structures surrounding small hydrocarbons in water.28 After
empirical experimentation, the minimum group size of connected
ligand lipophilic atoms has been set at three.

(2) When a group of lipophilic ligand atoms is enclosed on
two sides (at a 180 degree angle) by lipophilic protein atoms,
this type of structure contributes to the binding free energy
beyond what is encoded in the atom-atom pair term. We refer
to this situation ashydrophobic enclosureof the ligand. There
is some analogy here to the parallel plate, nanotube (with some
sets of parameters), and protein systems in which dewetting has
been observed, although the length scale of the region under
consideration is smaller and (likely) more heterogeneous. The
pair hydrophobic term in eq 1 is generally fit to data from a
wide range of experimental protein-ligand complexes. As such,
it represents the behavior of individual lipophilic ligand atoms
in an “average” environment. Our new terms utilize specific
molecular recognition motifs and are designed to capture
deviations from this average that lead to substantial increases
in potency for lipophilic ligand groups of types that are typically
targeted in medicinal chemistry optimization programs. That
is, placing an appropriate hydrophobic ligand group within the
specified protein region leads to substantial increases in potency.
Indeed, the data enabling development of this term was primarily
obtained from a wide range of published medicinal chemistry
efforts that provided examples of lipophilic groups that yielded

exceptional increases in potency, as well as those yielding
minimal increases. Our objective has been to explain these
results on the basis of physical chemical principles and to
develop empirical scoring terms that captured the essential
physics while rejecting false positives, even with imperfect
docking and the neglect of induced fit effects.

Calculation of the hydrophobic enclosure score,Ehyd•enclosure,
is summarized below with a more detailed description of the
algorithm provided in Supporting Information:

(1) Lipophilic protein atoms near the surface of the active
site and lipophilic ligand atoms are divided into connected
groups. There are a set of rules specifying which atoms count
as lipophilic and what delimits a group.

(2) For each atom in a group on the ligand, lipophilic protein
atoms are enumerated at various distances.

(3) For each lipophilic ligand atom, the closest lipophilic
protein atom is selected and a vector is drawn between it and
the ligand atom. This is the protein “anchor” atom for that ligand
atom. Vectors for all other suitably close lipophilic protein atoms
are drawn to the ligand atom and their angles with the anchor-
atom vector are determined. To be considered on the “opposite
side” of the anchor atom, the angle between vectors must exceed
a cutoff value that depends on the pair distance, with shorter
distances requiring that the angle be closer to 180°. If the angle
is close to zero degrees, the atom is on the “same side”, and is
at right angles to the anchor if the angle is close to 90°. When
the angle between lipophilic protein atoms is close to 180°, we
have argued this leads to an especially poor environment for
waters.

(4) Each lipophilic ligand atom is assigned a score based on
the number of total lipophilic contacts with protein atoms,
weighted by the angle term. If no protein atom is greater than
90 degrees from the anchor atom, the angle term is zero and
the atom contributes zero to the group’sEhyd•enclosureterm. The
overall score for a group is the sum over all atoms in that group
of the product of the angular factor and a distance dependent
factor.

(5) If the score for any ligand group is greater than 4.5 kcal/
mol, the penalty is capped at 4.5 kcal/mol. This was an empirical
determination based on investigating many test cases and
comparing the results with experimental data. The capping is
rationalized by arguing that if a very large region of this type
leads to a score greater than 4.5 kcal/mol, there is probably
some ability of the water molecules to compensate by interacting
with each other.

An experimentally validated example of the gain in binding
affinity from placing a large hydrophobic group in a pocket in
which lipophilic protein atoms are present on both sides of the
pocket (rings in both cases) is shown in Figure 2. Here, replacing
a phenyl substituent with a naphthyl group was shown30 to result
in a 21-fold improvement in experimentally measured affinity
(Kd). The naphthyl is required to fully occupy the hydrophobic
pocket depicted in Figure 2.

As indicated above, the surrounding of ligand lipophilic atoms
or groups by lipophilic protein atoms is referred to as hydro-
phobic enclosure. Our contention, here and in much of the
following discussion of hydrogen bonding, is that proper
treatment of hydrophobic enclosure is the key to discrimination
of highly and weakly potent binding motifs and compounds.
The underlying mathematical framework for describing enclo-
sure, discussed above, could be cast in other forms, but the
essential idea would remain unchanged. Detailed optimization
of the numerical criteria for recognizing enclosure, and assigning
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a specific contribution to the binding affinity for each motif is
vital to developing methods with predictive capability.

Improved Model of Protein-Ligand Hydrogen Bonding.
In developing a refined model of hydrogen bonding, we divide
hydrogen bonds into three types, neutral-neutral, neutral-
charged, and charged-charged. The analysis of each type of
hydrogen bonding is different due to issues associated with the
long-range solvation energy (Born energy) of charged groups.
An initial step is to assign different default values (assuming
optimal geometric features) to each of the three types of
hydrogen bonds. The default values assigned are neutral-
neutral, 1.0 kcal/mol, neutral-charged, 0.5 kcal/mol, and
charged-charged, 0.0 kcal/mol. These assignments are based
on a combination of physical reasoning and empirical observa-
tion from fitting to reported binding affinities of a wide range
of PDB complexes.

The rationale for rewarding protein-ligand hydrogen bonds
at all is subtle, because any such hydrogen bonds are replacing
hydrogen bonds that the protein and ligand make with water.
At best the net number of total hydrogen bonds on average will
remain the same in the bound complex as compared to solution.
However, the liberation of waters to the bulk can be argued to
result in an increase in entropy, and liberation of waters around
a polar protein group requires that a protein-ligand hydrogen
bond with similar strength be made for a desolvation penalty
to be avoided. This analysis is most plausible when both groups
are neutral. The formation of a salt bridge between protein and
ligand involves very different types of hydrogen bonding from
what is found in solution. The thermodynamics of salt bridge
formation in proteins has been studied extensively, both
theoretically and experimentally,31-34 and depends on many
factors such as the degree of solvent exposure of the groups
involved in the salt bridge. The default value of zero that we
assign is based on the presence of many protein-ligand
complexes in the PDB with very low binding affinities in which
solvent-exposed protein-ligand salt bridges are formed. As-
signing the contributions of these salt bridges to the binding
affinity would lead to systematically worse agreement with
experimental enrichment data. In XP scoring, certain features
of a salt bridge are required for this type of structure to
contribute to binding affinity in XP scoring. Finally, the
charged-neutral default value represents an interpolation
between the neutral-neutral and charged-charged value that
appears to be consistent with the empirical data.

Hydrogen-bond scores are diminished from their default

values as the geometry deviates from an ideal hydrogen-bonding
geometry, based on both the angles between the donor and
acceptor atoms and the distance. The function that we use to
evaluate quality is similar to that used in ChemScore.

In what follows, specialized hydrogen-bonding motifs are
described in which additional increments of binding affinity are
assigned in addition to those from the ChemScore-like pairwise
hydrogen-bond term. Our investigations indicate that these
situations can arise for neutral-neutral or charged-charged
hydrogen bonds, but not for charged-neutral hydrogen bonds.
The exclusion of charged-neutral hydrogen-bond special
rewards has principally been driven by our failure to date to
identify motifs of this type that help to improve the agreement
with experimental data. One can speculate that the lack of charge
complementarity in charged-neutral hydrogen bonding pre-
cludes such structures from being major molecular recognition
motifs, though further investigations with larger data sets will
be needed to resolve this issue.

Special Neutral-Neutral Hydrogen-Bond Motifs
(Ehb•nn•motif). In this section, neutral-neutral hydrogen-bonding
motifs are described that were identified, based on both
theoretical and empirical considerations, as making exceptional
contributions to binding affinity. Such “special” hydrogen bonds
represent key molecular recognition motifs that are found in
many if not most pharmaceutical targets. Targeting such motifs
is a central strategy in increasing the potency and specificity of
medicinal compounds. Identifying such motifs through their
incorporation in the scoring function should enable a dramatic
improvement in both qualitative and quantitative predictions.

The critical idea in our recognition of special hydrogen bonds
is to locate positions in the active-site cavity at which a water
molecule forming a hydrogen bond to the protein would have
particular difficulty in making its complement ofadditional
hydrogen bonds. Forming such a hydrogen bond imposes
nontrivial geometrical constraints on the water molecule. This
is the basis for the default hydrogen-bond score, but such
constraints become more problematic when the environment of
the water molecule is challenging with respect to making
additional hydrogen bonds such as those found in the bulk
environment.

Our previous analysis of hydrophobic interactions suggests
that the environment will be significantly more challenging if
the water molecule has hydrophobic protein atoms on two faces,
as opposed to a single face, and if few neighboring waters are
available to readjust themselves to the constrained geometry of
the protein-water hydrogen bond. Geometries of this type are
identified using a modified version of the hydrophobic enclosure
detection algorithm described previously. Replacement of such
water molecules by the ligand will be particularly favorable if
the donor or acceptor atom of the ligand achieves its full
complement of hydrogen bonds by making the single targeted
hydrogen bond with the protein group in question so that
satisfaction of additional hydrogen bonds is not an issue. An
example of a suitable group would be a planar nitrogen in an
aromatic ring binding for example to a protein N-H backbone
group. This has been observed to be essential to achieving high
potency experimentally in the 1bl7 ligand binding to p38 MAP
kinase, as shown in Figure 3. Here, the Met 109 hydrogen bond
is known to be important for potency. Analogous hydrogen
bonds have been found to be important in other kinases. In the
absence of rigorous physical chemical simulations, we have used
the experimental data from a significant number of diverse
protein-ligand complexes to guide the development of a set of
empirical rules, outlined below, for the types of ligand and

Figure 2. Boehringer active for 1kv2 bound to human p38 map kinase.
The naphthyl group receives a-4.5 kcal/mol hydrophobic enclosure
packing reward.
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receptor chemistries that receive this type of reward. These rules
will likely evolve as more data is considered, and further
simulations are undertaken.

The scoring-function term outlined above enables such
hydrogen bonds to be detected automatically in advance of
experimental measurement. Of equal importance, false positives,
which superficially share some characteristics of the required
structural motif but lack a key component, can be rejected
automatically as well. Rejection of false positives has been
optimized by running a given variant of the scoring function,
identifying high scoring database ligands with special hydrogen
bonds in locations not seen in known actives, examining the
resulting structure, and altering the recognition function to
eliminate the reward for such test cases.

In designing a detailed set of rules to implement the ideas
outlined above, we have attempted to generalize results obtained
from a wide variety of ligand-receptor systems, while at the
same time avoiding false positives and respecting the basic
physical chemistry principles that form the basis of the model.
The detailed algorithm for detecting a single hydrogen bond in
a hydrophobic environment is outlined as follows. In our
implementation, the donor or acceptor atom must be in a ring
with the exception of nitrogen, which is allowed to be a nonring
atom. If the ligand atom is in a donor group, then all other
donors of the group (e.g., the two hydrogen atoms of NH2) must
be hydrogen bonded to the protein. Only backbone protein atoms
can participate in this type of special hydrogen bond. The
unligated protein donor or acceptor must have fewer than three
first-shell solvating waters where the waters are placed as
outlined in section 3. If these criteria are met, the sum of the
angular factor of the hydrophobic enclosure packing score
described in this section is made over the hydrogen-bonded
ligand heavy atoms and the carbon atoms attached to this ligand
atom. The hydrophobic enclosure packing score used in this
sum contains only the angular weight of the score described
earlier and not the distance-based weight. If the absolute
hydrophobic enclosure packing sum is above a defined cutoff,
the hydrogen bond is considered to be in a hydrophobically
constrained environment, and a special hydrogen-bond reward
of 1.5 kcal/mol is applied to this hydrogen bond. In some
instances, it is found that a small perturbation of the ligand can
move the hydrophobic sum above the cutoff. Therefore, if the
hydrophobic sum is below the cutoff, small rigid body perturba-
tions of the ligand are made of 0.3 Å in magnitude. At each
perturbed geometry, the sum is recalculated and the reward is

applied if at some geometry the sum exceeds the cutoff. This
procedure helps to avoid discontinuities inherent in the use of
a cutoff.

The situation described above identifies a structure in which
a single hydrogen bond should be assigned a “special” reward.
A second situation occurs when there are multiple correlated
hydrogen bonds between the protein and the ligand. The physical
argument is that the organization of water molecules to
effectively solvate a structure of this type in the confined
geometry of the active site can be even more problematic than
that for the single hydrogen-bond situation described above.
However, this will occur only if the waters involved in such
solvation are in a challenging hydrophobic environment, with
hydrophobic groups on two sides. The coupling of the special
hydrogen-bond identification with the hydrophobic enclosure
motif is critical if false positives are to be rejected. Correlated
hydrogen bonds are routinely formed in docking with highly
solvent-exposed backbone pairs, but there is no evidence from
the experimental data we have examined that such structures
contribute to enhanced potency.

Pair-correlated hydrogen bonds are defined as a donor/
acceptor, donor/donor, or acceptor/acceptor pair of ligand atoms
(referred to as “ligand atom pair”) that are separated by no more
than one rotatable bond (hydroxyl groups count as nonrotatable
in this calculation). Several restrictions on the types of pairs
that can be considered are made as detailed in Table 1. If the
ligand atoms of the pair individually have zero net formal
charge, they must satisfy the following hydrophobicity criterion
to achieve a special hydrogen-bond reward. First, the ligand
atoms must be part of the same ring or be directly connected to
the same ring. Assuming the pair satisfies these restrictions,
the hydrophobicity of the hydrogen-bond region is detected in
a manner similar though not identical to that for a single special
hydrogen bond. A sum of the hydrophobic enclosure packing
score described previously is made for the pair of hydrogen-
bonding ligand heavy atoms and the ring atoms directly
connected to the ligand pair atoms. If a ligand atom of the pair
is not a ring atom but is connected to a ring, the sum includes
atoms of the ring that are nearest neighbors to the nonring ligand
atom. If the absolute hydrophobic sum is above a cutoff, the
hydrogen-bonded pair is given a special reward of 3 kcal/mol.
Note that double counting of pair and single special hydrogen
bonds is avoided by checking pairs first and excluding any
rewarded hydrogen bonds found from single hydrogen-bond
consideration.

Finally, the special hydrogen-bond rewards are linearly
reduced with the quality of the hydrogen bond. The hydrogen-

Figure 3. The 1bl7 ligand interacts with p38 MAP kinase through a
neutral-neutral hydrogen bond between the ligand’s aromatic nitrogen
and the Met 109 N-H group.

Table 1.

conditions for not applying the special pair hydrogen-bond scores

ignore poor quality hydrogen bonds (<0.05Ehb•pair)
ignore pairs involving the same neutral protein atom
ignore pairs involved in a salt bridge if the electrostic potential

at either ligand atom is above the cutoff
ignore salt bridge pairs if either protein atom is involved in a

protein-protein salt bridge
ignore ligand donor/donor pairs that come from NHx,

wherex g 2 groups, the nitrogen atom is not in a ring
and has no formal charge

ignore formally charged protein atoms with more than eight
second-shell waters in the unligated state

ignore charged-neutral hydrogen bonds unless the protein
atom is in a salt bridge

ignore pairs of different neutral acceptor atoms on the ligand
neutral hydrogen-bond pairs must satisfy ring atom and

hydrophobicity environment criteria as outlined in section 2
ignore ligand hydroxyl to protein hydrogen bonds if the protein

atom has zero formal charge
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bond quality is measured in the sense of the pair hydrogen-
bond score using the donor/acceptor distance and the angle made
by the donor-heavy-atom-H vector and the H-acceptor vector.
For ligand acceptor atoms in rings, the extent to which the
acceptor lone pair vector is aligned with the donor-heavy-
atom-H vector is evaluated. A detailed description of the
algorithm for scaling the special hydrogen-bond reward is given
in Supporting Information.

A substantial number of protein-ligand complexes in which
motifs containing correlated hydrogen bonds that satisfy the
above criteria, including the requisite hydrophobic enclosure,
have been identified. A number of examples are shown below.
Figure 4 depicts the 1aq1 structure of staurosporine bound to
human cyclin-dependent kinase (CDK2). This type of correlated
pair is also found in a number of other kinases. Some of the
CDK2 actives, such as AG12073, make three correlated
hydrogen bonds; this structure is shown in Figure 5. A second
example is streptavidin bound to the 1stp structure of biotin
(Figure 6), with three correlated hydrogen bonds in a hydro-
phobically enclosed region. To our knowledge, no empirical
scoring function has explained the exceptionally large binding
affinity of streptavidin to biotin. However, once the correlated
hydrophobically enclosed hydrogen-bonding motif is recognized
and assigned an appropriate score (a reward of 3 kcal/mol,
consistent with other examples), the deviation between calcu-

lated and experimental binding affinity, using a docked structure,
is only 0.1 kcal/mol. It should be noted that the high accuracy
of this prediction is fortuitous and is not intended to suggest an
ability to rigorously rank order compounds. Instead, the intent
is to contrast the qualitatively reasonable prediction with that
of alternative scoring functions, which typically yield results
for this complex in error by∼5-10 kcal/mol, for example, as
reported in ref 35. The triply correlated, enclosed hydrogen-
bonding motif also explains the low nanomolar binding affinity
in the binding of fidarestat to the 1ef3 structure of aldose
reductase (Figure 7) relative to a large number of ligands that
achieve similarly large lipophilic scores in the highly hydro-
phobic active site, yet have only micromolar affinity.

In our studies of various pharmaceutically relevant targets,
the combination of hydrophobic enclosure with one to three
correctly positioned hydrogen bonds is characteristic of every
“special” neutral-neutral hydrogen-bond motif that leads to an
exceptional increase in experimentally measured potency.
However, additional characteristics are required to eliminate
false positives. In particular, if the hydrogen-bond partner in
the protein is highly solvent exposed, formation of a structure
capable of solvating the group in question, while still allowing
the waters involved to form a suitable number of additional

Figure 4. Staurosporine bound to human cyclin dependent kinase
(CDK2). The pair of correlated hydrogen bonds receives a-3 kcal/
mol reward, while the central component of the ring is given a-3
kcal/mol hydrophobic enclosure packing reward.

Figure 5. AG12073 bound to human cyclin dependent kinase (CDK2).
The three correlated hydrogen bonds receive a-4.2 kcal/mol reward.

Figure 6. Biotin bound to streptavidin. The identification of a triplet
of correlated hydrogen bonds in the ring in a hydrophobically enclosed
region, and the three hydrogen bonds to the ligand carbonyl within
that ring each contribute-3 kcal/mol rewards to this tightly bound
complex (∆Gexp ) -18.3 kcal/mol, XP binding) -18.2 kcal/mol).

Figure 7. Fidarestat bound to aldose reductase. The triplet of special
hydrogen bonds to the ring contributes-5.0 kcal/mol to the binding
energy of this 9 nM inhibitor.
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hydrogen bonds, becomes easier. Thus, we require that the
protein group(s) involved in the special hydrogen bond(s) have
a limited number of waters in the first or second shell.
Determination of the number of surrounding waters is carried
out via the water addition code described later in this section.

The magnitude of the rewards associated with the special
hydrogen bonds has been determined by optimization against a
large experimental database containing a significant number of
examples of each type of structure. Values are given in Table
2. It is conceivable that finer discriminations, depending upon
the details of the donors and acceptors, hydrophobic environ-
ment, bound waters, and so on, could be developed, along with
a correspondingly more elaborate scoring scheme. However,
the present relatively simple scheme appears to work remarkably
well, at least at the level of discriminating active from inactive
compounds (as opposed to rank ordering, which we have not
yet examined in detail) in a wide variety of test cases.

Special Charged-Charged Hydrogen-Bond Motifs
(Ehb•cc•motif). We have identified the following features that
signal enhanced binding affinity from charged-charged hydro-
gen bonds:

(1) The number of waters surrounding the protein component
of the salt bridge. Charged groups that are fully exposed to
solvent are unlikely to participate in enhanced charged-charged
hydrogen bonding because the cost of displacing the solvent is
simply too large. Solvent exposure is calibrated using our water
scoring code, described later in this section (seeEdesolv), by
examining the number of waters in the first two shells
surrounding the charged protein group.

(2) The number of charged-charged hydrogen bonds made
by the charged ligand group. Three different types of salt-bridge
structures have been observed: (a) Monodentate (single hydro-
gen bond) between the ligand group and a protein group. (b)
Bidentate (two hydrogen bonds) between the ligand group and
a protein group. An example of a bidentate salt bridge occurs
in the 1ett structure of thrombin between a positively charged
amine group and a recessed Asp 189 carboxylate in the relevant
specificity pocket, as displayed in Figure 8. (c) Hydrogen bonds
of one ligand group to two different protein groups. This requires
having two like-charged protein groups in close proximity. This
structure, which presumably creates strain energy in the apo
protein, occurs with a greater frequency than might be expected.
Figure 9 presents an example showing ligand Gr217029 binding
to the tern N9 influenza virus of the neuramidase receptor (1bji)
with a distance between carboxylate oxygen atoms of only 4.5
Å.

Empirical observations, such as the unexpectedly high
potency of several neuramidase ligands including Gr217029
cited above, and physical chemical reasoning in that the electric
field from the two nonsalt-bridged, proximate carboxylates is
highly negative and interacts more favorably with a ligand
positive charge than is typical for a salt bridge suggest that (c)
provides less stabilization energy than (b), which in turn provides
less stabilization energy than (a). Similarly, one would expect
that a bidentate structure is more favorable electrostatically than
a monodentate structure. Note, however, that unless consider-
ation (1) is properly satisfied, none of the three structures is
likely to be favorable from a free energy point of view. It is the

combination of restricted water access for the protein group and
an exceptionally strong electrostatic interaction between the
ligand and protein group that creates the molecular recognition
motif.

(3) Zwitterion ligands. A principal reason that the default
value for charged-charged hydrogen bonds is set at zero is that,
in forming a salt bridge, both the protein and ligand must
surrender long-range contributions to the Born energy (i.e., those
beyond the first shell). Satisfying the first-shell complement of
hydrogen bonds is quite possible when forming a salt bridge,
but the replacement of bulk water with the protein, or bound
waters, clearly reduces the possible dielectric response to the
ion. For a monovalent ion, the unscreened Coulomb field
decreases as 1/r. Even though past the second shell dielectric
screening substantially reduces further contributions, long-range
effects make a nontrivial contribution to the total solvation-
free energy. However, for a zwitterion, the fields from the
positive and negative charges to some extent cancel at long
range, yielding a dipolar field for which the second- and higher-
shell contributions to the solvation free energy are significantly
reduced. This cancellation depends on the separation of the two
charged groups. Thus, formation of two salt bridges by the
zwitterion, particularly if the two oppositely charged moieties
in the ligand are spatially proximate, should be more favorable
than binding a single ion. An example of a zwitterion binding
in this fashion is shown in Figure 9.

Table 2. Special Hydrogen-Bond Reward Values

hydrogen-bond moiety
reward

(kcal/mol)

single bond to ring in hydrophobic environments 1.5
neutral pair in hydrophobic environments 3.0

Figure 8. The bidentate hydrogen bonds in this thrombin complex
bridge the ligand and Asp 189.

Figure 9. Gr217029 forms hydrogen bonds with two nearby Asp
residues when bound to tern N9 influenza virus neuraminidase.
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(4) Cases where the ligand is positively charged and the
protein is negatively charged are distinguished from those in
which the charge states are reversed.

(5) Strength of the electrostatic field at the ligand. An
enhanced binding affinity for a salt bridge is assigned if the
site at which the ligand charge is placed is sufficiently
electrostatically favorable. The electrostatic field at the ligand
site is summed using constant and distance-dependent dielectric
models, and cutoffs are imposed for assigning rewards based
on empirical optimization over our suite of test cases. These
cutoffs help reduce the number of false positives receiving
special charged-charged rewards.

Table 3 enumerates the various special charged-charged
rewards for motifs based on the five categories discussed above.
The numerical values have been optimized based on fitting to
our entire test suite.

Table 4 displays the XP active scores for a series of Glur2
receptors versus the experimental binding energies. Along with
neuramididase, this is a system for which electrostatic interac-
tions are particularly important. As such, it provides an important
contribution to the training set. The good agreement displayed
was achieved by using a combination of the electrostatic terms
discussed above.

Other Terms. A number of other types of specialized terms
have been investigated. These include terms rewarding pi
stacking and pi-cation interactions (EPI), rewards for halogen
atoms placed in hydrophobic regions, and an empirical correc-
tion enhancing the binding affinity of smaller ligands relative
to larger ones. These parameterizations were in many cases
performed using limited data, and we do not view them yet as
fully mature. As such, details will not be presented in the present
publication. These terms are relatively small compared to the
enclosure and charged-charged terms discussed above, but can
have a nontrivial impact in specific cases. For example, the pi-
cation term, for which a reward of 1.5 kcal/mol is assigned, is
important for the acetylcholinesterase test case discussed below.

Terms that Penalize Binding in the XP Scoring Function.
The most important physical effects that oppose binding are
strain energy of the ligand, protein, or both, loss of entropy of
ligand and protein, and desolvation of the ligand or protein.
The penalty terms developed are targeted in all three areas,
although terms addressing strain energy and entropic loss do
not necessarily represent a significant advance as compared to
previous terms described in the literature. In developing the
penalty terms, some fundamental limitations arise from the rigid-
receptor approximation and the use of empirical scoring
functions rather than full energy expressions. One consequence
is that, in our view, it is not possible to completely reject false
positives with an empirical approach. However, significant
improvements are possible as compared to previous efforts, as
we shall demonstrate below.

Water Scoring: Rapid Docking of Explicit Waters
(Edesolv). A number of approaches to incorporating desolvation
penalties into a high throughput docking code have been
presented in the literature.35,36 However, the methods in these
papers are based on continuum-solvation approaches. For
computing protein-ligand binding affinities, the role of indi-
vidual waters can be critical, and continuum models often
provide poor results in treating bound waters in a confined
cavity. Therefore, we have chosen to implement a crude explicit
water model that can be rapidly evaluated yet captures the basic
physics of solvation within the confines of the protein-ligand
complex active-site region.

The approach employed is to use a grid-based methodology
and add 2.8 Å spheres, approximating water molecules, to high-
scoring docked poses emerging from the initial round of XP
docking. In principle, this methodology is similar to that used
in the GRID program, though, algorithmic details have been
optimized to achieve speed, critical in the present application.
The CPU time for water addition to a single pose is 3-8 CPU
seconds (AMD Athelon MP 1800+ processor running Linux)
on average depending on ligand size.

Once waters have been added, statistics are tabulated with
regard to the number of waters surrounding each hydrophobic,
polar, and charged group of the ligand and active site of the
protein. When a polar or charged ligand or protein group is
judged to be inadequately solvated, an appropriate desolvation
penalty is assessed. Additionally, the environment of each active-
site water is itself probed to search for cases in which waters
make an unusual number of hydrophobic contacts. A penalty
is assigned if the number of such contacts for an individual
water molecule exceeds a given threshold. Water scoring
statistics are also used to determine whether special hydrogen-
bonding rewards should be assigned, as was discussed previ-
ously.

Contact Penalties (Elig•strain). Penalizing strain energy in
rigid-receptor docking is probably the single most difficult
component of an empirical scoring function. The problem arises
from the fact that, in a typical cross-docking situation, the ligand
has to adjust to fit into an imperfect (from its point of view)
and rigid cavity. This often requires ligands to adopt higher-
energy, nonideal torsion angles. Considering the rigid-receptor
approximation that is made, it is difficult to determine whether
strained ligand geometries would arise if induced-fit effects were
properly accounted for or whether strained ligand geometries
would be a true requirement for docking to that receptor.
Furthermore, even native ligand geometries have been found
to exhibit high strain energies.37 Given this limitation, the
function used to penalize poses with close internal contacts is
fairly lenient and only looks for severe cases of bad internal

Table 3. Electrostatic Rewards; Note that Double Counting Is Avoided

charge interaction
reward

(kcal/mol)

charged ligand atom in low electrostatic
potential environments

1.5

zwitterion configuration, range of rewards
increasing with electrostatic attraction

3.0 to 4.7

positive ligand group binding to weakly
solvated negative protein group

0.5

ligand CO2- group hydrogen bound to multiple
proximate positive protein residues

1.0

salt bridge pair in low solvation environment
(less than nine second-shell waters about
pre-ligated charge protein atom)

2.0

Table 4. 4.0 XP Binding Energies for Docking into Various GluR2
Receptors Compared to Experimenta

ligand XP score
∆Gexp

(kcal/mol)

1ftl -8.9 -8.3
1pwr -12.6 -13.0
1ftj -6.6 -8.5
1mm7 -10.7 -12.7
1mqi -11.9 -11.9
1ftm -11.3 -8.8
1n0t -6.6 -5.7
1m5b -9.3 -9.3
1m5c -9.4 -9.3
1m5e -6.4 -6.3

a These systems were used to calibrate the charged-charged hydrogen-
bond recognition motif (Ehb•cc•motif).
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contacts. One function simply counts the number of intramo-
lecular heavy atom contacts below roughly 2.2 Å and rejects a
pose entirely if there are more than three such contacts. A
second, more sophisticated function assembles the contacts into
groups and evaluates a penalty based on the size of the
contacting groups, the range of contacts, and the extent to which
the groups lie on the periphery of the molecule. Empirically, it
has been found that peripheral groups are more difficult to
penalize for intraligand contacts than are more centrally located
groups.

Implementation Issues.Application of XP penalty terms,
particularly those related to desolvation, imposes hurdles that
make it difficult for random database ligands to achieve good
scores in virtual screening. These hurdles do not exist in
alternative programs that ignore desolvation effects and strain
energy. On the other hand, if the terms are inaccurately defined,
they will adversely affect active compounds. Furthermore, a
definition that would be “accurate” for a high-resolution
structure may function poorly for docked structures, particularly
in the rigid-receptor framework, due to inaccuracies in sampling.
This issue arises routinely in practice, such as when an active
ligand could avoid a penalty by moving a few tenths of an
Angstrom in some direction but is blocked by the rigid protein.
Similarly, the sampling algorithm may simply fail to find the
superior pose.

We have found that extensive sampling to enable ligands to
avoid penalties when possible is an essential component of Glide
XP scoring. If the penalties are due to limitations in the rigid-
receptor approximation, the only solutions are (a) to adjust the
parameters so that they allow the test case in question to escape
penalization or (b) to accept that the active compound does not
“fit” into the particular version of the receptor being used and
to dock into multiple structures and/or employ induced-fit
methodologies. For many cases, however, better sampling in
the relevant phase space can locate ligand geometries that are
able to avoid the penalties. The XP Glide sampling algorithm
was explicitly designed with this objective in mind.

XP Glide Sampling Methodology. XP Glide sampling
begins with SP Glide docking, as described in refs 1 and 2, but
using a wider “docking funnel” so that a greater diversity of
docked structures is obtained. For XP docking to succeed, SP
docking must produce at least one structure in which a key
fragment of the molecule is properly docked. This has been the
case in the great majority of systems that have been investigated.

The second step in XP sampling is to assign various fragments
of the molecule as “anchors” and to attempt to build a better-
scoring pose for the ligand starting from each anchor. Typical
anchors are rings, but can be other rigid fragments as well.
Various positions of the anchors are clustered, representative
members of each cluster are chosen, and the growing of side
chains from relevant positions on the anchor is initiated.

The growing algorithm proceeds one side chain at a time,
thereby avoiding the combinatorial explosion of total molecular
conformations that occurs when all side chains are considered
together. Because the anchor fragment is already positioned in
the protein, most side-chain conformations can be trivially
rejected based on steric clashes. The Glide “rough scoring”
function is used to screen the initial side chain conformations.
Most importantly, these conformations can be grown at ex-
tremely high resolution (4 degrees for each rotatable bond)
because the total number of conformations considered at any
one time is being constantly pruned via screening and clustering
algorithms. It is this high-resolution sampling that enables

difficult cross-docking cases to be effectively addressed, and
that ultimately allows penalties to be avoided when possible.

After the individual side chains are grown, a set of candidate
complete molecules is selected by combining high-scoring
individual conformations at each position and eliminating
structures with significant steric clashes between side chains.
Candidate structures are minimized using the standard Glide
total-energy function, which employs a distance-dependent
dielectric to screen electrostatic interactions and are ranked
according to the Emodel Glide pose-selection function,1 com-
prising the molecular mechanics energy plus empirical scoring
terms. Then, the grid-based water addition technology is applied
to a subset of the top scoring structures, penalties are assessed
as discussed above, and the full XP scoring function is
computed.

At this stage, structures with the largest contributions from
terms that promote binding may have penalties of various types.
The next stage of the algorithm, critical to obtaining suitable
results, is to attempt to evade penalties by regrowing specific
side chains from such poses. The side chain that is the cause of
the penalty can be targeted and, by focusing on this region of
the ligand exclusively, a much larger number of candidate
structures covering this region of phase space can be retained
and minimized. The algorithm results in a significant increase
in the density of poses and locates penalty-free structures when
possible, despite the fact that the penalty terms are not at present
encoded in the energy gradient. Finally, a single pose is selected
based on a scoring function that combines weighted Coulomb/
van der Waals protein-ligand interaction energies, the terms
favoring binding affinity, and the various penalty terms.

XP Glide Parameterization: Philosophy and Implementa-
tion. The novel terms that we have described above have been
developed via a combination of reasoning from basic physical
chemistry principles and examining a large set of empirical data,
as discussed further below. Because the terms are calculated
via fast empirical functions (as opposed to rigorous atomistic
simulations), extensive parameterization is required to obtain
results in reasonable agreement with experiment. The large
number of parameters employed in turn necessitates the use of
a large number of examples in the training set; to avoid
overfitting, the training set must be substantially larger than the
number of parameters that are adjusted.

The total number of parameters in the current XP scoring
function is on the order of 80; this includes parameters for
desolvation penalties, hydrophobic enclosure, special neutral-
neutral and charge-charge hydrogen bonds, and pi-cation and
pi-stacking interactions. Parameters are required to convert
various geometrical criteria into specific scores. The PDB
complexes below, as well as the enrichment studies in the
training set, were used to develop the parameter values. False
positives, as well as known actives, were incorporated into the
optimization protocol, so the data in the training set exceeds
the total number of PDB complexes and known actives by a
considerable margin (although a precise calculation of the total
number of data points in the training set is very difficult to
produce, as for example not every database ligand was competi-
tive with known actives in ranking, and noncompetitive
compounds played no role in parameter optimization.

Because the scoring function contains nonlinear functional
forms, a rigorous optimization algorithm would also be nonlinear
(rather than a simple least-squares fit); furthermore, constraints
would be imposed based on physically reasonable values of the
various parameters. The present set of parameters was in fact
determined by a heuristic approach; a small number of
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paradigmatic test cases were identified for each type of term,
initial values were fit to yield reasonable results for these
parameters, and the parameter set was then tested on the entire
training set. Problem cases were then identified by these tests,
and reoptimization was carried out to improve the worst outliers.
A fully numerical optimization protocol would quite likely
improve results for the training set, but it is unclear whether a
corresponding improvement in the test set would result (note
that test set results were not generated until the current parameter
set was frozen in the Glide 4.0 release). As we develop a larger
test set, we will investigate the use of more automated
optimization algorithms, with likely quantitative improvements
in the predictive capabilities of the scoring function.

3. Structural and Binding Affinity Prediction Results for
PDB Complexes

A set of 268 complexes from the PDB, which we have
previously used to assess the docking accuracy and scoring
capabilities of Glide SP,1 have been selected, of which 198 have
reliable experimentally determined binding affinities as deter-
mined by our extensive examination of the literature for each
case. This set of complexes displays a wide range of active-
site cavities and protein-ligand interactions. The parameters
of the scoring function were simultaneously optimized to
reproduce the experimental binding affinity data and yield
quality enrichment factors/binding affinities for the database
screening tests that are discussed below.

An evaluation of the docking accuracy of Glide SP was
presented in ref 1, and the XP results from docking MMFFs38

optimized ligand structures shown in Table 5 are very similar.
This suggests that the sources of error in docking accuracy are
due to issues other than those addressed by the XP scoring-
function modifications. In some cases, near symmetry in the
ligand leads to docked poses that are functionally equivalent to
those in the crystal structure, for example in terms of protein-
ligand contacts, but that exhibit a large RMSD; such cases are
identified in Table 5. A principal source of errors in pose RMSD
appears to be the charge distribution of the ligand, which, in a
standard force field representation, may not accurately distribute
formal ionic charges and does not incorporate polarization
effects. Cho and co-workers have demonstrated that low RMSD
ligand poses can be reliably generated by utilizing more accurate
polarized charges, where the ligand charge distribution is
computed in the protein environment via QM/MM methods.39

We may incorporate this methodology into future XP Glide
releases for optional use. The quality of structural prediction
shown by XP Glide is sufficient for the great majority of ligands
to enable an adequate assessment of the scoring function to be
made.

In our optimization protocol, we employed docked protein-
ligand complexes, retaining only those with protein-ligand
contacts that predominantly agree with those in crystal struc-
tures. In this fashion, we avoid corrupting the fitting process
with irrelevant data such as would be provided by a grossly
incorrect pose, yet include a realistic level of variation in the
input structure. This is particularly critical in optimization of
the penalty terms. If the sampling algorithm cannot avoid
incorrect penalties in self-docking, it is unlikely to be able to
do so in a much more challenging cross-docking situation. By
incorporating docked poses of PDB complexes into the opti-
mization process, the penalty function can be tuned to improve
the agreement with experimental binding affinities while avoid-
ing inappropriately penalizing active compounds, keeping in
mind that there are also cases where the penalty terms are in
fact appropriate.

Before discussing binding affinity predictions, a key point
that has generally been neglected previously should be noted.
An empirical scoring function that considers only protein-ligand
interactions with no a priori information concerning the apo
structure of the protein cannot, by definition, take into account
the reorganization energy of the protein required to accom-
modate the ligand. In many cases, the protein is relatively rigid,
the ligand fits without major rearrangements, and neglect of
this term is acceptable. However, there are cases where it is
overwhelmingly likely that the induced-fit energies are sub-
stantial. The most obvious cases are those in which an allosteric
pocket is created to accommodate the ligand. This occurs, for
example, in nonnucleoside reverse transcriptase inhibitors
(NNRTIs) of HIV reverse transcriptase (HIV-RT) and is also
manifested in the large-scale motion of the activation loop in
p38 MAP kinases required to produce the DFG-out conforma-
tion to which inhibitors such as BIRB796 bind. However, there
are many more subtle cases in which side chains or backbone
groups alter their positions nontrivially, and this should introduce
some energetic cost.

The goal of an empirical scoring function should be to predict
the binding affinity of the ligand to thestructure with which it
is presented.That is, given the formal impossibility of predicting
reorganization energy in any such scheme, this value should
be removed from the experimental binding affinity. Otherwise,
one will be fitting to an incorrect experimental number, given
the goal of the exercise. A perfect scoring function of this type
will correctly rank-order candidate ligands in their ability to
bind to the structure at hand. If this structure is known to have
a low reorganization energy, compounds with good scores when
docked into that structure should yield satisfactory experimental
binding affinities. For allosteric pockets and other sites with
larger reorganization energies, one would expect that more
favorable scores would be needed to yield the desired experi-
mental binding affinity. The problem of comparing scores
between ligands docked into different conformations of the
receptor can then be treated separately. The problem is highly
nontrivial, requiring either a heuristic procedure incorporating
experimental information or the brute force ability to compare
free energies of different protein conformations.

A qualitative observation that we have made, confirmed in a
large number of examples, is that a large hydrophobic enclosure
score is a signature of significant protein rearrangement and
possibly creation of an allosteric pocket. Ligands binding tightly
to both the HIV-RT NNRTI site and p38 DFG-out conformation,
for example, generally receive maximal hydrophobic-enclosure
scores. Furthermore, the total XP scores of these ligands are
substantially higher in absolute terms than their experimental
binding affinities would mandate. This is completely consistent
with the ideas discussed above, in which the reorganization
energy of the protein must be subtracted from the empirical
binding affinity score to produce the correct experimental
binding affinity.

In the initial Glide XP parameterization with PDB cocrys-
tallized structures, systems with exceptionally large protein
reorganization energies, as predicted by large hydrophobic
enclosure contributions, have been intentionally omitted. This
omission includes allosteric sites such as the HIV-RT and p38
structures mentioned above, and complexes such as staurospo-
rine/CDK2 (PDB code 1aq1), in which the CDK2 pocket must
expand substantially to accommodate the unusually large
staurosporine ligand. If one believes that the scoring function
is accurate, the protein reorganization energy can be inferred
from the computed rigid receptor and experimental binding
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Table 5. 4.0 XP and SP Binding Scores and Heavy Atom RMS (Å) Values for Docking into PDB Entriesa

GlideScore (kcal/mol) RMS (Å) GlideScore (kcal/mol) RMS (Å)

PDB ∆Gexp XP XP-corr SP XP SP PDB ∆Gexp XP XP-corr SP XP SP

1aaq -11.5 -10.6 -10.6 -11.5 2.01 1.40 1e5i -7.4 -7.4 -11.2 0.28 0.17
1abe -8.9 -7.8 -7.8 -8.8 0.31 0.40 1eap -8.5 -12.6 -11.8 -9.2 0.65 2.38
1abf -7.4 -8.0 -8.0 -9.3 0.17 0.14 1ebg -14.8 -11.0 -11.0 -18.3 0.34 0.26
1acj -10 0 -11.4 -9.9 -8.4 2.81 4.61 1ecv -6.6 -7.4 -7.4 -9.4 0.24 0.18
1acm -10 3 -12.2 -12.2 -13.1 0.40 0.32 1eed -6.5 -12.0 -12.0 -8.3 11.29 1.58
1aco -4.9 -2.3 -2.3 -10.1 0.34 0.29 1ejn -7.7 -9.8 -7.8 -10.0 0.34 0.12
1add -9.2 -10.3 -8.3 -9.9 0.83 0.70 1ela -8.7 -8.4 -8.4 -5.1 0.39 6.01
1adf -6.2 -7.9 -7.9 -11.8 3.03 9.92 1elb -9.8 -6.3 -6.3 -7.0 5.42 4.29
1aha -7.9 -7.9 -8.2 0.36 0.11 1elc -9.4 -7.3 -7.3 -6.0 6.53 7.92
1ake -14.0 -14.0 -3.9 15.45 14.95 1eld -9.1 -6.5 -6.5 -4.8 0.32 3.94
1apb -7.9 -7.7 -7.7 -9.4 0.06 0.10 1ele -9.3 -8.0 -8.0 -6.4 0.36 0.38
1apt -12.8 -11.9 -11.9 -11.0 1.48 1.24 1epb -13.6 -11.1 -8.0 2.24 1.89
1apu -10.2 -8.7 -8.7 -7.6 0.61 1.24 1eta -3.9 -3.9 -3.5 8.69 1.85
1apv -12.3 -11.2 -11.2 -8.5 0.63 0.48 1etr -10.1 -11.7 -9.7 -9.4 0.71 0.68
1apw -10.9 -11.0 -11.0 -9.0 0.97 0.32 1ets -11.2 -13.7 -11.7 -11.7 1.32 1.44
1atl -8.6 -10.6 -10.6 -7.8 0.87 3.47 1ett -8.0 -12.6 -10.6 -9.5 0.62 0.58
1avd -16.4 -16.4 -10.4 0.82 0.55 1ezq -12.3 -11.4 -9.4 -12.6 0.75 0.21
1azm -5.1 -5.1 -6.2 1.89 2.51 1f0r -10.4 -13.3 -11.3 -10.1 2.11 0.59
1b6j -10.8 -18.3 -18.3 -15.8 2.98 0.43 1f0s -10.6 -11.3 -11.3 -9.4 2.08 0.35
1b6k -11.9 -14.8 -12.8 -13.8 1.04 1.06 1f0t -8.2 -7.7 -7.7 -9.8 0.38 0.24
1b6l -11.3 -11.1 -11.1 -8.7 0.92 1.18 1f0u -9.8 -10.8 -8.8 -10.5 1.56 1.54
1b6m -11.5 -13.9 -11.9 -11.4 0.73 3.17 1fen -12.8 -12.1 -8.4 1.10 0.40
1baf -9.5 -9.5 -8.3 1.17 1.08 1fh8 -9.4 -10.7 -10.7 -10.3 0.20 0.20
1bap -9.3 -8.2 -8.2 -9.1 0.39 0.38 1fh9 -8.8 -6.0 -6.0 -5.3 2.11 1.99
1bbp -14.3 -12.4 -11.8 5.28 5.11 1fhd -9.3 -8.1 -8.1 -8.7 5.37 0.46
1bkm -11.6 -11.6 -14.6 4.77 2.36 1fjs -13.6 -13.6 -11.6 -12.5 2.06 2.42
1bma -6.3 -7.9 -7.9 -7.5 0.68 1.94 1fkg -10.9 -13.1 -12.6 -8.4 1.21 1.33
1bra -2.5 -5.5 -3.5 -7.8 2.26 0.32 1fki -9.5 -10.2 -10.2 -7.7 1.30 1.29
1byb -19.0 -14.2 -14.2 -11.3 0.56 0.46 1fq5 -11.5 -17.0 -17.0 -14.0 1.96 2.43
1c1b -18.2 -15.7 -10.8 0.91 0.45 1fvt -13.2 -13.2 -8.4 0.88 0.88
1c3i -12.6 -12.6 -11.9 0.61 0.43 1g45 -11.8 -8.2 -8.2 -6.0 7.88 4.02
1c5p -6.4 -6.2 -6.2 -8.6 0.27 0.25 1g46 -12.1 -8.2 -8.2 -6.3 8.06 4.50
1c83 -6.6 -7.3 -7.3 -9.9 0.17 0.14 1g48 -11.5 -7.0 -7.0 -5.9 1.88 3.77
1c84 -6.8 -7.5 -7.5 -8.8 0.26 0.32 1g4j -11.9 -6.9 -6.9 -6.9 5.56 3.51
1c86 -6.4 -8.4 -8.4 -10.9 0.19 0.18 1g4o -11.3 -7.6 -7.6 -6.0 3.39 4.21
1c87 -5.7 -8.1 -8.1 -10.9 0.28 0.21 1g52 -13.0 -8.2 -8.2 -5.7 8.01 4.26
1c88 -7.2 -7.5 -7.5 -11.8 0.25 0.22 1g53 -12.3 -8.4 -8.4 -6.4 7.88 4.53
1c8k -8.1 -8.1 -7.3 3.28 5.50 1g54 -12.0 -7.2 -7.2 -5.4 8.45 5.14
1cbs -9.8 -7.5 -7.5 -7.5 0.63 0.39 1ghb -1.7 -3.2 -3.2 -9.7 0.45 0.30
1cbx -8.7 -7.8 -7.8 -13.1 0.28 0.48 1glp -4.5 -4.5 -8.1 0.75 0.32
1cde -15.2 -15.2 -11.5 1.62 1.71 1glq -6.2 -6.2 -9.7 0.46 0.32
1cdg -3.3 -2.4 -2.4 -4.8 6.48 9.83 1gsp -7.7 -7.7 -7.8 1.10 2.79
1cil -12.9 -5.4 -5.4 -6.2 3.61 3.92 1hbv -8.7 -12.1 -12.1 -5.5 2.19 2.07
1cnx -10.0 -6.8 -6.8 -7.5 6.54 6.53 1hdc -8.2 -9.8 -9.8 -8.3 0.56 0.35
1com -5.4 -7.3 -7.3 -9.0 0.55 3.74 1hdy -7.8 -4.8 -4.8 -4.2 1.65 1.70
1coy -8.7 -8.7 -9.1 0.44 0.29 1hef -12.1 -11.2 -11.2 -10.3 6.24 6.43
1ctr -5.8 -7.5 -7.5 -5.7 2.27 2.59 1hfc -7.5 -8.9 -8.9 -9.4 2.25 2.26
1ctt -6.2 -6.9 -6.9 -7.0 0.60 5.04 1hgg -3.4 -6.4 -6.4 -7.2 1.37 1.47
1d3d -12.4 -12.7 -12.7 -10.4 1.52 2.74 1hgh -3.9 -5.7 -5.7 -6.2 4.70 0.49
1d3p -8.9 -9.6 -9.6 -10.3 1.72 2.05 1hgi -3.7 -3.9 -3.9 -6.9 0.37 0.23
1d7x -7.2 -7.2 -9.1 0.58 0.44 1hgj -2.3 -4.8 -4.8 -4.0 0.64 0.34
1d8f -6.8 -6.8 -6.8 4.25 4.31 1hih -11.0 -11.8 -11.8 -11.0 1.26 1.29
1dbb -12.3 -13.2 -13.0 -10.3 0.37 0.41 1hps -12.6 -12.2 -12.2 -12 8 11.93* 2.09
1dbj -10.4 -15.9 -13.4 -9.5 0.32 0.21 1hpv -12.6 -9.3 -9.3 -10 0 1.05 0.93
1dbk -11.0 -15.2 -12.9 -9.0 0.57 0.40 1hpx -12.7 -11.5 -11.5 -13.1 3.34 3.31
1dbm -12.9 -15.3 -13.1 -9.2 1.95 1.97 1hri -5.9 -8.9 -8.9 -7.3 10.09 2.26
1dd6 -13.5 -13.5 -9.1 1.36 8.27 1hsg -12.8 -12.5 -12.5 -13.3 0.41 0.35
1dds -11.3 -10.8 -10.8 -7.4 1.75 2.38 1hsl -9.8 -8.4 -6.4 -9.4 1.31 1.31
1dhf -10.1 -8.7 -8.7 -8.5 6.31 5.62 1hte -8.6 -9.9 -9.9 -9.6 7.32* 7.36
1did -4.8 -3.8 -3.8 -6.6 3.27 4.15 1htf -9.3 -10.9 -10.9 -9.4 2.19 2.74
1die -2.9 -5.8 -5.8 -6.9 0.34 0.77 1hti -7.0 -4.5 -4.5 -5.7 4.40 1.60
1dih -7.8 -8.2 -8.2 -14.3 2.62 1.78 1hvr -13.0 -13.7 -13.7 -7.8 1.60 1.75
1dm2 -13.9 -13.9 -10.3 0.66 0.69 1hyt -8.0 -8.0 -10.7 2.65 0.43
1dog -5.5 -6.5 -6.5 -9.5 3.77 3.77 1icn -10.3 -7.8 -1.7 9.06 2.04
1dr1 -7.4 -7.6 -7.6 -7.0 0.37 1.46 1ida -11.9 -13.1 -13.1 -12.2 1.95 2.12
1dwb -4.0 -6.0 -4.0 -7.7 0.29 0.32 1igj b -9.2 -9.2 -7.0 0.72 0.46
1dwc -10.3 -9.3 -9.3 -8.8 2.06 0.89 1imb -5.7 -6.6 -6.6 -10.0 1.84 1.64
1dwd -11.4 -13.2 -11.2 -11.2 0.47 1.43 1ivb -5.2 -5.2 -7.0 3.27 0.47
1ivc -3.4 -3.4 -5.0 2.05 1.89 1wap -8.1 -8.1 -10.2 0.23 0.19
1ivd -4 3 -6.3 -6.3 -6.2 0.73 0.73 1xid -5.7 -5.7 -6.6 4.02 4.32
1ive -3.6 -3.6 -5.6 5.11 5.17 1xie -4.8 -4.8 -6.8 2.60 3.91
1ivf -7.7 -7.7 -6.8 0.61 0.59 2ack -9.3 -9.3 -7.0 1.07 0.88
1lah -10.3 -7.3 -7.3 -9.6 0.52 0.19 2ada -9.5 -9.5 -9.0 0.59 0.46
1lcp -9.1 -7.7 -7.7 -8.8 1.82 1.06 2cgr -9.9 -6.5 -6.5 -10.8 0.56 0.52
1ldm -7.4 -6.3 -6.3 -7.3 1.34 1.35 2cht -7.5 -7.7 -7.7 -11.4 0.48 0.51
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affinities. This idea could form the basis for an approach
enabling scores achieved in different protein conformations for
a given receptor to be related based on experimental calibration
of reorganization energy. Performance of the methodology when
there is substantial reorganization is addressed in a preliminary
fashion by the enrichment studies in section 4, where a number
of such ligand-receptor pairs are considered. In these cases,

knowledge of the reorganization energy of the receptor is not
necessary to rank order the binding of compounds to a particular
form of the receptor.

To address less extreme yet still nontrivial reorganization
effects present in our data set, we define “average” adjustable
parameters to convert calculated empirical scores into predicted
experimental binding affinities. In particular, we estimate the

Table 5. Continued

GlideScore (kcal/mol) RMS (Å) GlideScore (kcal/mol) RMS (Å)

PDB ∆Gexp XP XP-corr SP XP SP PDB ∆Gexp XP XP-corr SP XP SP

1lic -6.1 -6.1 -5.3 3.96 4.99 2cmd -6.2 -8.2 -8.2 -10.3 0.65 0.34
1lmo -7.6 -7.6 -6.8 8.40 0 87 2cpp -8.3 -8.2 -8.2 -6.8 0.15 3.04
1lna -6.6 -6.6 -6.8 1.50 0.90 2ctc -5.3 -7.4 -7.4 -10.1 1.43 1.58
1lst -6.1 -4.1 -7.7 0.75 0.27 2dbl -11.8 -12.2 -11.0 -8.8 2.40 0.81
1mbi -2.6 -3.9 -3.9 -4.1 1.92 1 65 2gbp -10.1 -9.0 -9.0 -12.5 0.61 0.14
1mcr -4.3 -8.3 -8.3 -7.5 5.82 4 33 2ifb -7.4 -8.7 -6.2 -2.4 2.27 1.77
1mdr -5.4 -8.2 -8.2 -9.6 1.95 0 54 2lgs -3.4 -3.4 -9.5 0.88 0.53
1mfe -7.2 -8.0 -8.0 -7.4 6.09 1.78 2mcp -7.1 -5.6 -5.6 -5.6 1.54 1.25
1mld -6.6 -6.6 -10.6 0.25 0.22 2phh -6.4 -7.9 -7.9 -8.7 0.47 0.41
1mmq -10.3 -13.8 -13.8 -11.0 0.67 0 33 2pk4 -5.9 -8.8 -6.8 -5.8 0.65 0.85
1mnc -12.3 -11.9 -11.9 -11.1 0.33 0.73 2plv -14.3 -11.8 -7.3 1.78 1.90
1mrg -7.8 -7.8 -7.8 0.15 0.12 2r04 -8.0 -10.6 -8.1 -8.9 1.44 0.75
1mrk -6.2 -11.3 -11.3 -9.4 1.21 1.17 2r07 -10.9 -8.4 -8.7 0.92 0.67
1mup -9.3 -7.6 -6.2 4.50 4 05 2sim -4.7 -7.1 -7.1 -10.5 0.82 0.94
1nco -10.6 -10.4 -10.4 -12.1 0.60 0 33 2tmn -8.0 -10.1 -10.1 -10.4 0.65 0.50
1nis -4.1 -4.0 -4.0 -7.5 0.26 0.45 2tpi -5.9 -8.6 -6.6 -9.5 0.26 1.15
1nnb -7.2 -5.5 -5.5 -8.7 1.39 0.25 2upj -14.2 -11.1 -11.1 -10.7 3.24 2.69
1nsc -4.1 -5.7 -5.7 -10.5 0.66 0.24 2xis -7.9 -4.9 -4.9 -7.3 2.05 2.40
1nsd -7.2 -6.3 -6.3 -9.0 0.74 0.22 2yhx -4.3 -4.3 -5.6 1.91 2.19
1odw -11.5 -11.5 -5.7 3.91 2 59 3cla -6.7 -6.4 -6.4 -5.4 5.09 6.06
1okl -8.2 -7.2 -7.2 -5.8 0.38 3.14 3dfr -14.0 -15.3 -13.3 -11.3 0.51 0.70
1pbd -11.4 -11.4 -9.9 0.32 0.26 3hvt -11.9 -11.4 -9.0 0.72 0.79
1pgp -7.8 -6.3 -6.3 -8.8 2.23 1 83 3mth -5.4 -5.4 -5.9 1.23 5.62
1pha -12.2 -12.2 -8.8 1.04 0 52 3ptb -6.1 -6.5 -6.5 -8.8 0.23 0.16
1phd -7.4 -7.4 -6.5 1.13 0 30 3tpi -5.9 -9.8 -7.8 -9.0 0.47 0.51
1phf -6.0 -8.2 -8.1 -6.3 1.46 1.11 4aah -7.6 -7.6 -11.0 0.25 0.24
1phg -11.8 -10.9 -10.9 -8.1 4.29 1.20 4cts -4.6 -4.6 -8.8 0.25 0.19
1poc -10.7 -8.4 -8.4 -10.1 1.44 1 52 4dfr -11.8 -10.1 -10.1 -9.3 0.92 5.17
1ppc -8.4 -11.9 -9.9 -9.8 1.40 6 31 4fab -11.0 -13.7 -12.9 -9.1 4.44 0.82
1pph -8.1 -10.5 -8.5 -10.4 0.70 0 58 4fbp -9.7 -9.7 -12.1 2.03 0.55
1ppi -16.7 -14.7 -8.5 1.01 2 80 4fxn -17.3 -17.3 -13.2 0.50 0.49
1ppk -10.4 -9.9 -9.9 -10.1 0.73 0.27 4hmg -3.5 -6.6 -6.6 -6.7 0.54 0.67
1ppl -11.7 -10.3 -10.3 -11.6 0.70 2 55 4phv -12.5 -14.5 -14.5 -11.8 0.55 4.22
1ppm -7.9 -12.5 -12.5 -11.7 0.99 0 62 4tim -2.9 -5.3 -5.3 -10.2 1.32 1.32
1pro -15.4 -15.6 -15.6 -12.7 1.50 1 51 4tln -5.1 -7.1 -7.1 -6.6 1.43 2.67
1pso -14.1 -10.9 -10.9 -9.6 5.15 6.12 4tmn -13.9 -11.9 -11.9 -12.1 1.29 0.73
1sbg -10.6 -11.1 -11.1 -10.9 0.88 0.40 4tpi -4.0 -6.6 -6.6 -8.5 0.88 0.56
1slt -5.8 -5.8 -6.2 1.03 0 57 4ts1 -6.7 -8.6 -8.6 -8.8 0.89 0.85
1snc -9.1 -9.6 -9.6 -9.8 2.06 1.12 5abp -9.1 -7.6 -7.6 -8.5 0.11 0.20
1sre -5.3 -8.9 -8.5 -10.0 0.30 0 36 5cpp -8.0 -8.2 -8.2 -6.8 0.11 2.65
1srj -13.7 -12.9 -10.0 0.47 0.49 5cts -3.2 -3.2 -8.1 0.27 0.27
1stp -18.3 -18.2 -18.2 -10.7 0.60 0 58 5p2p -9.0 -9.0 -5.4 4.95 6.18
1tdb -7.9 -7.9 -7.6 7.34 7 50 5tim -3.1 -3.2 -3.2 -7.3 1.32 0.69
1thy -7.0 -7.0 -7.2 1.98 4.21 5tln -8.7 -12.4 -12.4 -9.9 2.37 1.01
1tka -7.7 -7.7 -11.5 2.28 2.28 5tmn -11.0 -12.0 -12.0 -12.1 2.87 2.50
1tlp -10.3 -10.0 -10.0 -10.4 7.70 7 33 6abp -7.7 -7.7 -7.7 -8.8 0.33 0.36
1tmn -10.0 -10.2 -10.2 -10.4 3.65 1.90 6cpa -15.7 -10.8 -10.8 -10.8 3.93 4.29
1tng -4.0 -3.9 -3.9 -8.3 0.26 0.21 6rnt -3.2 -3.7 -3.7 -8.2 0.63 0.63
1tnh -4.6 -3.9 -3.9 -8.7 0.39 0.28 6tim -4.4 -5.9 -5.9 -8.3 0.59 0.42
1tni -5.5 -3.7 -3.7 -6.7 2.12 2 03 6tmn -6.9 -10.4 -10.4 -11.6 2.53 2.57
1tnj -2.7 -4.1 -4.1 -7.8 0.43 0 36 7abp -8.6 -8.0 -8.0 -9.4 0.15 0.17
1tnk -2.0 -3.8 -3.8 -6.9 1.17 0.98 7cpa -19.0 -13.1 -13.1 -10.5 3.91 2.87
1tnl -2.6 -4.0 -4.0 -7.4 0.54 0.24 7cpp -5.2 -6.2 -6.2 -5.7 1.99 3.23
1tph -3.1 -5.3 -5.3 -7.5 0.22 0.23 7tim -7.4 -5.4 -5.4 -7.7 0.20 0.19
1tpp -7.1 -5.1 -7.9 0.43 1 07 8abp -10.7 -7.6 -7.6 -8.4 0.10 0.21
1trk -9.6 -9.6 -11.2 1.63 2.15 8atc -10.3 -9.5 -9.5 -10.7 0.41 0.38
1tyl -5.2 -5.2 -6.7 5.20 1 08 8gch -7.9 -7.9 -9.6 0.32 0.30
1ukz -11.3 -11.3 -13.6 0.55 0.41 9abp -10.9 -7.2 -7.2 -10.4 0.23 0.13
1ulb -6.0 -6.7 -6.7 -8.7 0.34 0 35 9hvp -11.4 -11.9 -11.9 -12.9 1.44 1.47

a RMS values are computed relative to the native cocrystallized ligand. Scores are compared to available experimental binding energies,∆Gexp (in kcal/
mol). Note that the XP scores have been adjusted to cap the hydrophobic enclosure packing term at a value of-2.0 to bring this term closer to an absolute
energy scale. Larger RMS values are indicated with a (*) in cases where a nearly chemically symmetric solution was found by XP docking.b The pdbbind
dataset,42 v2002, lists a binding affinity of-13.6 kcal/mol, but this is for the entire antigen-antibody complex, whereas the structure provided is for a
fragment of the complex that appears to lack essential antigen-antibody interactions.
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hydrophobic-enclosure reorganization energy by capping the
maximum assignable enclosure energy at a value of 2.0 kcal/
mol, as compared to the maximum scoring-function value of
4.5 kcal/mol. It also appears as though the special bidentate
charged-charged reward when the ligand group is positively
charged involves some degree of protein reorganization, pre-
sumably to enable the bidentate salt bridge to be made properly.
Thus, this parameter, which normally is 2.0 kcal/mol, was set
to 1.0 kcal/mol for comparison of predicted binding affinities
to experiment. Other such average effects could be defined, but
due to the limited experimental data considered in this paper,
no further attempts were made to determine additional param-
eters.

Tables 6 and 7 present results for both 4.0 XP and 4.0 SP
Glide for structural RMSDs (taken with respect to the refined
structure of the native ligand generated by our standard protein-
preparation procedure,1,40 using heavy atoms only) and for
binding affinities of the various complexes discussed herein.
Table 6 further divides the comparison according to whether
the XP complex is roughly correctly docked, that is, has a
structural RMSD of 2.5 Å or less. Over all 198 complexes
examined, the average RMSD in predicted binding affinity for
the 4.0 XP scoring function is 2.3 kcal/mol and the average
unsigned error is 1.8 kcal/mol. When only well-docked ligands
are examined, the average RMSD for the 4.0 XP scoring
function is 1.7 kcal/mol and the average unsigned error is 1.3
kcal/mol. This is a significant improvement over the perfor-
mance of the 4.0 SP scoring function and is also an improvement
over the performances of other empirical scoring functions in
the literature of which we are aware. In only 11% (15 of 136)
of well-docked ligands were errors greater than 3 kcal/mol,
suggesting, at least when the appropriately fitting protein
structure is presented to the ligand and the ligand is well-docked,
the present scoring function has a respectable ability to

distinguish weak (mM), moderate (µM), and strong (nM)
binders. This capability is essential to the principal task in virtual
screening, yet is only marginally present in prior scoring
functions.

To improve beyond this level with regard to precision, we
believe that receptor flexibility must be introduced and an
additional level of detail with regard to the protein-ligand
interactions must be incorporated. Robustness is another matter;
new moieties and chemistries seem to emerge as additional
receptors are added to the test suite. Thus, we cannot claim to
have reached convergence in this regard with our current data
sets. On the other hand, the amount of detailed medicinal-
chemistry information incorporated into the current scoring
function is a substantial advance as compared to alternative
scoring functions in the literature.8-19

A final important point is that the accuracy cited above may
quantitatively degrade in cross-docking calculations, even when
the ligand is able to assume a qualitatively correct pose in the
receptor, as of course would the accuracy of other docking/
scoring methods, for similar reasons. The enrichment studies
presented below address this question to some extent, but at
present do not consider the relative rankings of different active
compounds. We have carried out some preliminary investiga-
tions (data not shown) that suggest qualitatively reasonable
results can be obtained in a limited number of test cases for
ranking active compounds when cross docking is required, but
these results are not yet robust across a wide range of receptors,
and the quantitative precision with which this can be done is
not yet clear.

4. Enrichment Studies

The goal of the present work is to optimize a scoring function
that will properly assign binding affinities to active compounds
if the compound is docked in a sufficiently native-like pose and
that will minimize the number of inactive database ligands that
score well. The question of what is sufficiently native-like is a
heuristic one, but we would argue that precision in drawing the
line is not critical. If a few additional compounds are included,
or excluded, this will have minimal effect on the overall
optimization process. Therefore, visual inspection has been
employed to construct data sets of active compounds that “fit”
into the particular versions of the receptors employed. Typically,
60-100% of the available active compounds per receptor fell
into this category, so the current protocol is not simply cherry-
picking of a small number of compounds. On the other hand,
the fact that poorly fitting compounds are not included in the
data set must be taken into account when comparing with other
results reported in the literature.

We have divided our data set into a training set and a test
set. The training set screens have been used in parametrizing
the XP scoring function, while the test set screens have not.
The training set contains 15 receptors and various numbers of
ligands for each receptor, as enumerated in Table 7. A large
and diverse training set is essential to address the range of
chemical motifs identified in the XP Glide scoring function, as
noted previously. Our present test set is relatively small and
less diverse than the training set with regard to the number of
new receptors considered. Therefore, the validation implied by
the results must be considered preliminary. Six receptors are
considered in the test set, four of which were not included in
the training set: vascular endothelial growth factor receptor 2
(Vegfr2), peroxisome proliferators activated receptorγ (PPARγ),
â-secretase (BACE), and blood coagulation factor VIIa (factor
VIIa). For two training set receptors, CDK2 and thrombin, we

Table 6. RMS and Average Absolute Deviations (Avg) in Predicted
Binding Affinities for the XP 4.0 and SP 4.0 Scoring Functionsa

XP 4.0 SP 4.0

comparison number RMSD avg RMSD avg

all ligands with∆Gexp 198 2.26 1.75 3.18 2.51
all well-docked ligands 136 1.73 1.34 2.80 2.23
all poorly docked ligands 62 3.02 2.49 3.70 3.11

a RMS and average absolute deviations are presented in kcal/mol. Well-
docked ligands are defined as those having an RMSD to the cocrystallized
pose of 2.5 Å or less, plus those identified in Table 5 as being docked
appropriately but in a symmetry-related orientation.

Table 7. Training Set Used to Characterize XP Virtual Screeninga

PDB
code description

no.
actives

no. well-docked
actives

1e66 acetylcholinesterase 20 20
1bji neuraminidase 9 9
1fjs factor Xa 13 8
1kv2 human p38 map kinase 10 10
1bl7 p38 map kinase 36 27
1rt1 HIV-RT 29 23
1cx2 cyclooxygenase-2 13 13
1aq1 human cyclin dep. kinase 10 6
1ett thrombin 16 15
1hpx HIV-1 protease 14 9
3ert human estrogen receptor 10 8
1qpe lck kinase 121 87
1m17 EGRF tyrosine kinase 117 106
1tmn thermolysin 6 5
1kim thymidine kinase 4 4

a All correctly docked ligands have experimental activities<10 µM
except those for neuraminidase.
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have located a significant number of additional ligands to include
as part of the test set.

Training Set Results.Table 7 lists, for the training set, the
receptors investigated, the number of known active ligands
available with affinities better than 10µM, and the number of
ligands deemed to dock correctly into the chosen receptor. There
is one exception; active neuraminidase ligands are relatively
weak binders that do not have activities better than 10µM. As
suggested above, we assume that a random database will contain
relatively few compounds with potency greater than this value.
Given the process defined above, a key objective of the paper
is to demonstrate the improvement that is obtained from
employing the new terms defined above. Comparison of version
4.0 XP Glide is made with the following:

(1) Version 4.0 SP Glide, which has been optimized using a
similar training set. The 4.0 SP Glide scoring function includes
some XP terms, but with very small coefficients. In addition to
terms such as those in ChemScore, from which SP Glide was
originally derived, this scoring function also includes contribu-
tions from the Coulomb and vdW protein-ligand interaction
energies and from Schro¨dinger’s “active-site mapping” technol-
ogy.

(2) A preliminary version of XP Glide (v2.7). This version
of XP had a nonoptimal set of penalty terms, an initial version
of the hydrophobic-enclosure term, a crude representation of
the special hydrogen-bond reward term without the crucial
coupling to the hydrophobic-enclosure term, and a sampling
methodology significantly inferior to that in Glide XP 4.0. This
comparison enables assessment of the impact of the improved
sampling and scoring methodologies used in Glide XP 4.0.

Protein and Ligand Preparation. Because the XP Glide
scoring function is based on enforcement of physical chemical
principles to a much greater degree than is employed in many
other scoring functions, appropriate protein and ligand prepara-
tion is particularly critical. In practical applications, it is often
necessary to carry out such preparation without prior knowledge
of the binding mode of the complex. However, for the present
purposes, the objective is to optimize and evaluate the scoring
function for correctly docked compounds. Therefore, we have
endeavored to use all available information in preparing ligand
and protein structures.

The most problematic aspect of protein and ligand preparation
is the assignment of protonation states of ligand and protein in
the protein active site (note that we neutralize ionizable residues
distant from the active site to mimic the effects of dielectric
screening by solvent and counterions). In the absence of
structural data, correctly making such assignments can be a very
challenging task. However, when structural data is available,
the most likely protonation states of both protein and ligand
can usually be deduced from the structure of the complex. In
cases for which we do not have a PDB structure, the correct
binding mode of the ligand can typically be inferred by analogy.
With a binding mode and solution-phase pKas of the ligand,
the correct protonation states can then be assigned. It should
be emphasized that the results shown here require accurate
protonation-state assignment, and substantial degradation can
result from incorrect assignments in unfavorable cases.

A second aspect of protein preparation is relaxation of the
receptor structure so that it at least accommodates the native
ligand. We employ the standard Schro¨dinger protein preparation
utility1,40 for this purpose. A related issue is the use of van der
Waals scaling of nonpolar ligand and protein atoms to take
minor induced-fit effects into account in an approximate fashion.
Various scalings have been examined though, with the exception

of the human estrogen receptor (3ert), which used a scaling of
0.8 on the ligand and 0.9 on the protein, the “standard” scaling
of 0.8 on the ligand and no protein scaling has been applied.
Only active ligands that succeed in 4.0 XP docking with the
chosen scaling parameters have been retained in our enrichment
studies.

Comparison Database.Our methods for generating com-
parison databases are outlined in ref 1. Molecules are selected
from a purchasable-compound library of about one million
compounds that have been filtered for predicted pharmacokinetic
properties using the QikProp program.41 Selection protocols are
then applied to ensure a distribution of rings, acceptors, donors,
molecular weight, and so on in line with averages determined
for drug-like molecules.

Computed Binding Affinities of Known Actives for a Wide
Range of Targets.As stated above, our expectation is that only
a small number of database ligands will be competitive with
active compounds whose experimental binding affinities are
better than 10µM. An ensemble of such compounds can,
therefore, be used to optimize the scoring function. Because of
the wide range of novel terms that have been incorporated, it
has been necessary to perform optimizations using a wide variety
of receptors and active compounds. The data set used to date is
far from complete in covering the range of potential binding
motifs, but is significantly larger and more diverse than any
previous data set used in the literature for this purpose.

The optimization process consists of adjusting parameters so
that as few database ligands as possible achieve better scores
than the tight-binding (better than 10µM) known actives for
the term or terms under consideration. In practice, it is not
possible to achieve perfect rank ordering in this regard, for the
reasons discussed previously. The average error in binding
affinity prediction in the PDB data set is about 1.7 kcal/mol
for properly docked ligands, with some outliers with errors of
more than 3 kcal/mol. These errors may be somewhat larger
when cross docking, rather than self-docking, is performed. On
the basis of this analysis, some database ligands with experi-
mental binding affinities in the 10-100µM range are likely to
be computed as having low micromolar or even nanomolar
binding affinity, while at the same time some of the active
compounds will be underpredicted by similar amounts. As a
result, overpredicted database ligands can score ahead of
underpredicted active compounds. The crucial goal, however,
is not to achieve perfection, but rather to eliminate systematic
errors that can lead to large numbers of false positives and little
enrichment. Neglect of special neutral-neutral hydrogen-bond
terms such as those discussed in section 2 is an example of a
systematic error of this nature. One would predict that any
method that neglects this term should exhibit poor enrichment
factors for kinases such as CDK2, where such hydrogen bonds
are a crucial component of the molecular-recognition motif. This
is because we have found that large hydrophobic compounds
with a few strategically placed polar groups can “fit” into the
active site and form structures that, based on the usual pair-
scoring terms, are highly competitive with the known actives.

Another, and perhaps the ultimate, measure of performance
of the scoring function is whether high-ranking database ligands
are in fact active. The best way to address this issue is via
experimental testing of such database ligands. We are in the
process of carrying out such tests.

Training Set Composition. Our training set, primarily
focused on pharmaceutical targets of current interest, is pre-
sented in Table 7. This suite represents a wide variety of
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different types of active sites and binding motifs. A rough
classification of these is as follows:

(1) Small hydrophobic sites: HIV-RT (1rt1) and cyclooxy-
genase-2 (Cox-2, 1cx2). The HIV-RT NNRTI site is an allosteric
pocket that opens to accommodate the ligand; the Cox-2 site
does not display as dramatic a structural rearrangement, but is
also highly hydrophobic. The dominant terms of the scoring
function are the pair hydrophobic term and the hydrophobic-
enclosure term. The hydrophobic enclosure is quite large in both
cases for known active compounds. In HIV-RT, the active
compounds typically make a single hydrogen bond to a
backbone carbonyl that receives the special single neutral-
neutral hydrogen-bond reward discussed in section 2. In Cox-
2, there is also typically a single hydrogen bond, though it does
not receive a special reward.

(2) Medium-sized sites making a single special hydrogen
bond. This category includes EGFR tyrosine kinase and the 1bl7
form of p38 MAP kinase. This motif is one of the two typical
kinase binding motifs, in which there is a special hydrogen-
bonding site in the hinge region of the kinase. These systems
allow only a single hydrogen bond in this site, typically
involving a ring nitrogen atom, whereas other kinases form a
correlated pair or triplet of hydrogen bonds, discussed in (3)
below.

(3) Sites making correlated hydrogen bonds. This category
includes thymidine kinase (TK), CDK2, and lck kinase (LCK).
TK and LCK form a pair of correlated hydrogen bonds in the
standard kinase hinge region, while CDK2 actives form either
a pair or a triplet, and neutral actives binding to aldose reductase
form a correlated triplet similar to that in the streptavidin/biotin
pair mentioned above. TK is a small, relatively polar site, with
the binding driven primarily by the special hydrogen bonding,
whereas CDK2 and LCK are medium-sized and more hydro-
phobic, binding ligands in the 400-500 molecular weight range,
although smaller ligands can bind as well.

(4) Large, buried predominantly hydrophobic sites. This
category includes the human estrogen receptor and the 1kv2
conformation of p38 MAP kinase. The estrogen receptor binds
large, flat steroid-type molecules and exhibits a medium-sized
hydrophobic enclosure term, with the binding driven by this
term and by the pair hydrophobic score. The 1kv2 active site is
created by an allosteric rearrangement of the p38 activation loop.
It has a large hydrophobic enclosure term, and many active
compounds make one to two hydrogen bonds. The most active
compound, ligand 1kv2, also makes a special hydrogen bond
in the hinge region, but binding is primarily driven by

hydrophobic terms. The p38 pocket in particular is quite large
and, in the absence of the hydrophobic enclosure term, will
display a significant number of false positives that bind
alternative motifs in the cavity in database screening.

(5) Large, open sites with relatively shallow cavities in the
active site pocket. This category includes thrombin (1ett), HIV
protease (1hpx), and factor Xa (1fjs). Active ligands in this case
are invariably large and fill multiple pockets in the active site.
HIV protease actives make a substantial number of hydrogen
bonds and derive their binding affinity from this and the
hydrophobic pair term. Remarkably, there is no contribution
from the hydrophobic enclosure. Thrombin ligands typically
form a salt bridge with a buried Asp 189 carboxylate in one of
the small available pockets and form other hydrogen bonds as
well. Hydrophobic enclosure also makes no contribution for
thrombin ligands. Factor Xa exhibits the same salt-bridge motif
but also has an unusual hydrophobic location in which a ring
moiety of the ligand is sandwiched between a number of
aromatic rings in a location near the surface of the protein. This
pocket provides some hydrophobic enclosure, although not to
the same degree as a deeply buried pocket like that in 1kv2,
1cx2, or 1rt1 and can also accommodate pi-cation and pi
stacking interactions. Discriminating false positives that display
interactions with the protein surface rather than in binding
pockets is important for these receptors, particularly factor Xa.

(6) Small hydrophilic sites in which strong electrostatic
interactions are important. This category includes the neurami-
didase (1bji) and GluR2 receptors. In neuramididase, much of
the binding affinity derives from salt bridges, and the various
ligands serve as important test cases for the rules for charged-
charged interactions laid out in section 2. In GluR2, an unusual
set of charged ligands in which charge is distributed over a ring
system, are buried in the active site. This system was used to
calibrate the use of electrostatic terms to turn off buried-charge
penalties and to assign an additional contribution to binding
affinity in exceptional cases, as discussed in section 2.

(7) The acetylcholinesterase (1e66) receptor was included to
incorporate the well-known pi-cation motif of the active
compounds in the parameterization process.

Table 8 lists the average contribution of the hydrophobic
enclosure and special hydrogen-bonding terms to the scores for
known active compounds that bind to each of the above targets,
as well as the average total score. Note that the total score cannot
be directly translated into the predicted binding affinity in all
cases because there are a number of targets where allosteric
rearrangement of the binding pocket leads to substantial protein

Table 8. Average Attractive Components of 4.0 XP Score from Eq 3 of Correctly Docked Active Ligands in the Training Seta

screen 〈Ephobic•pair〉 〈Ehb•pair〉 〈Ehb•nn•motif〉 〈Ehb•cc•motif〉 〈Ehyd•enclosure〉 〈EPI〉 〈Ebind〉

acetylcholinesterase -12.1 -0.3 0.0 -1.9 -4.4 -1.1 -20.8
neuraminidase -3.8 -0.7 -0.4 -3.6 0.0 0.0 -8.6
factor Xa -8.3 -0.8 -1.8 -1.2 -0.8 -0.8 -14.1
human p38 map kinase -10.2 -1.6 -0.3 0.0 -2.6 0.0 -14.7
p38 map kinase -7.4 -1.2 0.0 0.0 -0.9 0.0 -9.5
HIV-RT -9.1 -1.0 -1.4 0.0 -4.2 0.0 -15.7
cyclooxygenase-2 -8.9 -0.3 0.0 0.0 -3.2 0.0 -12.5
human cyclin dep. kinase -7.8 -2.1 -3.2 0.0 -1.5 0.0 -14.7
thrombin -8.4 -1.7 0.0 -3.0 -0.4 0.0 -13.1
HIV-1 protease -10.2 -2.6 -0.2 0.0 0.0 0.0 -13.1
human estrogen receptor -10.6 -1.2 -0.5 0.0 -2.0 0.0 -14.3
lck kinase -8.1 -1.4 -1.3 0.0 0.0 0.0 -10.8
EGRF tyrosine kinase -6.7 -1.3 -1.5 0.0 0.0 0.0 -9.5
thermolysin -8.7 -2.3 0.0 -0.3 -0.1 0.0 -11.4
thymidine kinase -5.5 -2.3 -3.0 0.0 -1.4 0.0 -12.6

a Ephobic•pair is the pair lipophilic term (eq 1),Ehb•pair is the Chemscore-like pair hydrogen-bond term,Ehb•nn•motif is the term for neutral-neutral hydrogen
bonds in a hydrophobically enclosed environment,Ehb•cc•motif is the term for special charged-charged hydrogen bonds,Ehyd•enclosureis the hydrophobic
enclosure reward,EPI is the pi-stacking/pi-cation reward, andEbind is the sum of all terms in eq 3 that account for favorable binding affinities.
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reorganization energy. Figures 2-13 provide illustrative ex-
amples of a “typical” active ligand binding to the various

receptors illustrating features that contribute to the specialized
scoring-function terms as appropriate.

Results of Training Set Enrichment Studies.Table 9 reports
a measure of enrichment defined as the average number of
database ligands outranking the active compounds in the
database. Specifically, the number of database ligands with a
GlideScore that is superior to each active is tabulated, these
values are summed, and the result is then divided by the total
number of active compounds in the data set. We believe that
this metric is superior to standard definitions of enrichment,
which punish active ligands when they are outranked by other
active ligands; this is a particularly serious problem when the
active test suite contains a large number of compounds. A
“perfect” score based on this metric would thus be zero (no
database ligands outranking any active compounds), and smaller
numbers are better. These values are also presented for the older
2.7 XP and 4.0 SP Glide results. As noted previously, only active
ligands that successfully docked in 4.0 XP Glide were consid-
ered. In a small number of cases, active ligands failed to dock
with 4.0 SP or 2.7 XP. For a calculation of the number of
outranking decoy ligands, such ligands were ranked lower than
all successfully docked active and decoy ligands.

Table 10 is the corresponding table constructed using a more
standard definition of enrichment that we have employed

Figure 10. SCX-001 bound to cyclooxygenase-2. The three phenyl
rings obtain a 3.7 kcal/mol hydrophobic enclosure packing reward for
occupying the large hydrophobic pocket.

Figure 11. The 1lpk ligand bound to factor Xa. A special salt bridge
pair with ASP 189, analogous to that in thrombin (Figure 8), is
observed. A hydrophobic enclosure packing reward of-0.8 kcal/mol
is achieved by the phenyl ring occupying the Tyr 99/Trp 215/Phe 174
pocket. Also, a pi-cation interaction is received by the charged end of
the ligand.

Figure 12. The 1hpx ligand bound to HIV-1 protease. Hydrophobic
groups of the ligand are not hydrophobically enclosed and do not receive
a hydrophobic enclosure packing reward. For example, the phenyl ring
faces hydrophobic residues on only one face.

Figure 13. 4-Hydroxytamoxifen bound to the human estrogen receptor.
Hydrophobic enclosure about the phenoxy group is illustrated by
displaying lipophilic protein atoms as green spheres.

Table 9. Average Enrichments Defined as the Average Number of
Outranking Decoy Ligands over Correctly Docked Actives in the
Training Seta

avg number of outranking decoys

screen v4.0 XP v2.7 XP v4.0 SP

acetylcholinesterase 111 580 344
neuramididase 25 411 37
factor Xa 1 196 187
human p38 map kinase 26 30 57
p38 map kinase 7 93 183
HIV-RT 11 26 83
cyclooxygenase-2 24 12 22
human cyclin dep. kinase 3 77 216
thrombin 2 57 70
HIV-1 protease 16 60 167
human estrogen receptor 14 2 23
lck kinase 13 157
EGRF tyrosine kinase 41 411 279
thermolysin 9 107 32
thymidine kinase 0 1 29

a Active ligands have at least 10µM activity except those for neuramini-
dase, as described in Section 4.
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previously.2 The results in Table 10 include the same sets of
active ligands as in Table 9, that is, those whose activities are
better than 10µM and have been judged to fit more or less
correctly into the specified conformation of the receptor. Table
11 presents results using all active compounds with binding
affinities better than 10µM, whether the binding mode is judged
to be correct. Results are presented for recovering 40, 70, and
100% of the considered active ligands in each case. This type
of analysis corresponds to the approach taken by us in ref 2, as
well as to other work in the literature. While we believe that
the analysis in Table 9 is the appropriate one to use in assessing
the quality of a scoring function to be used in rigid-receptor
docking, the results presented in Table 11 enable a direct
connection to be made with alternative viewpoints. In what
follows, our discussion is focused on the results in Table 9 for
the reasons given above.

The XP 4.0 results are nearly uniformly comparable to or
better than those of either SP 4.0 or XP 2.7 and, in many cases,
are significantly better, as is manifested with particular clarity
using the new definition of enrichment. There is a slight
degradation for the estrogen receptor from XP 4.0 for cyclooxy-
genase-2 relative to both XP 2.7 and SP 4.0, but all of the results
for these test cases are very good. The real question with regard
to scoring-function effectiveness is the ability to prevent false
positives from ranking ahead of active compounds. XP 4.0
displays an ability to reduce the average number of false
positives ranking ahead of actives in many cases by an order
of magnitude and in some cases by nearly 2 orders of magnitude,
as compared to both 2.7 XP and 4.0 SP. This same effect is
also reflected in the more common definition of enrichment
factor (Table 10), but the improvement is quantitatively obscured
by the definition of enrichment employed, particularly for the
data sets containing larger numbers of actives. For example, in
EFGR kinase the number of actives is greater than 10% of the
random database, and standard enrichment measures that
effectively penalize active compounds for having other active
compounds ranking ahead of other actives can yield enrichment
factors of at most 10.3 for Table 10 and 9.5 for Table 11.

The results shown in Table 9 are not perfect. However, until
intrinsic RMS fluctuations in the scoring function can be reduced
from the present average of 1.7 kcal/mol for well-docked
ligands, the scoring function seems unlikely to systematically
perform significantly better without overfitting. The number of
high-scoring database ligands reflected in this table is consistent
with the estimated experimental population of low micromolar

hits in a 1000 molecule random database of drug-like molecules.
The acetylcholinesterase receptor appears to manifest the largest
systematic errors. This is likely due to our inability to optimize
the pi-cation and pi-stacking scoring function terms with high
precision because we lack sufficiently diverse examples mani-
festing these terms. There also remain some difficulties associ-
ated with smaller, highly hydrophobic sites, such as Cox-2 and
in medium-sized sites with a single special hydrogen bond, such
as EGFR. Overall though, the results are reasonably robust
across the entire data set and clearly represent a major advance
over the results obtained using 4.0 SP or 2.7 XP. Direct
comparisons with other codes would require using the same
sets of actives and database ligands. Based on anecdotal reports
from various sources and from comparison with published data,1

Glide SP has generally performed at least as well in enrichment
studies as, if not better than, alternatives such as GOLD and
FlexX. One would therefore expect 4.0 XP to outperform these
methods by a margin similar to that seen in Table 9 for 4.0 SP.

Results of Test Set Enrichment Studies.A summary of key
data for our test set, including the receptor crystal structures
used, and the number of known and well-docked actives again
restricted to ligands with experimental binding affinities better
than 10µM are presented in Table 12. The test set includes
two kinases (CDK2, Vegfr2), three proteases (thrombin, BACE,
factor VIIa), and one nuclear hormone receptor (PPARγ) and,
hence, is reasonably diverse with regard to function; all of the
receptors in the test set are drug targets of current or recent
interest. There is less diversity with regard to active site size
and hydrophobicity than in the training set. As discussed above,
validation with a larger test set will be addressed in future
publications. All test set calculations were performed with the
released versions of Glide 4.0 XP and SP, with no parameter
adjustment being made to improve results for any targets.

For two of the receptors (Vegfr2 and PPARγ) we utilize two
different forms of the receptor structures. These are highly
flexible active sites, and a significant fraction of ligands in both
cases can be divided into groups that clearly fit better into one
version of the receptor or the other. For PPARγ, for example,
one class of ligands requires opening of an allosteric pocket
(primarily via motion of a phenylalanine residue), while the
second class is smaller and does not protrude into this pocket.
Comparing scores of these two ligand classes using a single
receptor structure does not make sense. If the pocket is closed,
the larger ligands will not fit at all, whereas if the pocket is
open, the larger ligands will unfairly score better, as the
reorganization energy of the receptor required to engender the
needed side chain motion will not have been included. There is
no overlap between the ligands associated with the two receptor
forms. This partitioning is meant as an introductory exploration
of enrichment studies using multiple receptor conformations, a
topic we intend to pursue more intensively in the future.

Enrichment metrics to recover well-docked active ligands
based on number of outranking decoys and standard enrichment
measures (as for the training set) are presented in Tables 13
and 14, respectively. For all known active ligands, standard
enrichment measures are presented in Table 15. The same
comparison database of 1000 decoy ligands employed in training
set enrichment studies has been used. As expected, there is some
quantitative degradation of the XP results from the training set,
but overall the results are qualitatively comparable to the training
set results using the outranking decoy metric (which we have
argued is the most meaningful for our purposes), and the
improvements as compared to SP Glide are, on average,
significant. For PPARγ, both methods do reasonably well; this

Table 10. Standard Enrichment Factors for Recovering 40% of the
Correctly Docked Active Ligands in the Training Seta

enrichment factors

screen v4.0 XP v2.7 XP v4.0 SP

acetylcholinesterase 37 1 2
neuramididase 64 2 112
factor Xa 126 42 63
human p38 map kinase 81 58 51
p38 map kinase 35 18 11
HIV-RT 36 14 18
cyclooxygenase-2 35 56 78
human cyclin dep. kinase 168 168 8
thrombin 68 58 12
HIV-1 protease 90 32 112
human estrogen receptor 126 126 126
lck kinase 12 6
EGRF tyrosine kinase 6 1 2
thermolysin 50 134 201
thymidine kinase 251 251 17

a Active ligands have at least 10µM activity, except those for
neuraminidase, as described in section 4.
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is a case where SP scoring performs unexpectedly well, as
opposed to suggesting a particular problem with the XP scoring
function.

A number of caveats should be emphasized with regard to
these results. The test set is small, and there are almost certainly
cases where enrichment performance will not be as good as
that indicated in Tables 13 and 14. Furthermore, high enrichment
with few false positives can only be expected when the active
ligands are properly docked. The fact that a significant fraction
of actives are not well-docked, even when two receptor
conformations are used, indicates that if a diverse set of active
compounds is to be robustly separated from a random database
without false positives or false negatives, significant work needs
to be done to better treat receptor flexibility and ensure reliable
docking accuracy. However, we believe that the attempt in this

paper to separate scoring function accuracy, docking accuracy,
and reorganization energy effects is an essential starting point
if truly robust approaches are to be developed.

5. Conclusions

We have described a novel scoring function and an enhanced
sampling algorithm, the combination of which constitutes the
Glide 4.0 XP docking methodology. The methodology has been
tested with a diverse set of ligands and receptors, and has
produced large improvements in binding affinity prediction and
database enrichment as compared to other scoring functions
within Glide.

The potential for providing physical insight into the origins
of enhanced binding affinity is, in our view, as important as
quantitative improvement of enrichment factors. Visualization
of XP Glide terms, as is presented in the Figures of the present
paper, can be utilized by modelers and medicinal chemists in
the design of new inhibitors. The success of design efforts along
these lines in the context of lead optimization would provide

Table 11. Standard Enrichment Factors for Recovering 40, 70, and 100% of Known Active Ligands in the Training Set,Including Misdocked Cases

enrichment factors

v4.0 XP v2.7 XP v4.0 SP

screen 40% 70% 100% 40% 70% 100% 40% 70% 100%

acetylcholinesterase 37 19 1 1 1 1 2 2 1
neuramididase 64 34 6 2 1 1 112 23 4
factor Xa 78 58 3 10 1 1 22 9 1
human p38 map kinase 81 59 4 58 11 9 51 21 3
p38 map kinase 27 14 1 13 3 1 3 2 2
HIV-RT 27 19 3 12 12 0 11 6 0
cyclooxygenase-2 35 29 7 56 29 0 78 58 9
human cyclin dep. kinase 81 20 2 51 4 2 5 3 2
thrombin 64 64 2 54 7 0 11 10 3
HIV-1 protease 72 32 14 27 16 2 72 60 1
human estrogen receptor 101 101 2 101 88 2 101 17 2
lck kinase 9 8 2 4 3 1
EGRF tyrosine kinase 5 6 1 1 1 1 2 2 1
thermolysin 42 52 23 112 37 2 168 34 7
thymidine kinase 251 251 201 251 188 201 17 24 17

Table 12. Test Set Used to Validate XP Virtual Screeninga

PDB
code description

no.
actives

No. well-docked
actives

1m4h BACE 77 34
1dan factor VIIa 93 40
1fm6 PPARγ (closed form) 93b 32c

1fm9 PPARγ (open form) 93b 25c

1y6b Vegfr2 (closed form) 111b 21c

1ywn Vegfr2 (open form) 111b 26c

1aq1 human cyclin dep. kinase 253 143
1ett thrombin 40 15

a All correctly docked ligands have experimental activities<10 µM.
b When multiple forms of a receptor are utilized, the number of actives
reported here is all known actives with affinities<10 µM. c Ligands are
assessed as optimally fitting into either the open or closed form of the
receptor. For example, in PPARγ, 61% of known active ligands (57 of the
93) were assessed as fitting into either the open or the closed form of the
receptor.

Table 13. Average Enrichments Defined as the Average Number of
Outranking Decoy Ligands over Correctly Docked Actives in the Test
Seta

avg no. of outranking decoys

screen v4.0 XP v4.0 SP

BACE 35 342
factor VIIa 30 75
PPARγ (closed form) 45 48
PPARγ (open form) 44 76
Vegfr2 (closed form) 52 222
Vegfr2 (open form) 69 310
human cyclin dep. kinase 25 206
thrombin 9 52

a Active ligands have at least 10µM activity.

Table 14. Standard Enrichment Factors for Recovering 40% of the
Correctly Docked Active Ligands in the Test Seta

enrichment factors

screen v4.0 XP v4.0 SP

BACE 30 25
factor VIIa 19 15
PPARγ (closed form) 9 19
PPARγ (open form) 14 40
Vegfr2 (closed form) 25 10
Vegfr2 (open form) 11 2
human cyclin dep. kinase 8 5
thrombin 64 25

a Active ligands have at least 10µM activity.

Table 15. Standard Enrichment Factors for Recovering 40 and 70% of
Known Active Ligands in the Test Set,Including Misdocked Cases

enrichment factors

v4.0 XP v4.0 SP

screen 40% 70% 40% 70%

BACE 12 3 11 0
factor VIIa 10 6 7 5
PPARγ (closed form) 5 2 7 4
PPARγ (open form) 3 3 11 7
Vegfr2 (closed form) 2 1 1 1
Vegfr2 (open form) 3 2 1 1
human cyclin dep. kinase 4 3 2 2
thrombin 19 3 11 6
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the most convincing evidence that the underlying model of
molecular recognition proposed herein has substantial validity.
Our hope is that the present paper will facilitate work along
these lines by describing in considerable detail the theory that
underlies the XP Glide implementation.
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Supporting Information Available: Detailed descriptions of
the algorithms used in hydrophobic enclosure scoring and in scaling
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Internet at http://pubs.acs.org.
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