Volume 101, Issue 2 p. 173-179
Mini Review

Strategies for profiling native S-nitrosylation

Jaimeen D. Majmudar

Jaimeen D. Majmudar

Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109

Search for more papers by this author
Brent R. Martin

Corresponding Author

Brent R. Martin

Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109

Correspondence to: Brent R. Martin; e-mail: [email protected]Search for more papers by this author
First published: 05 July 2013
Citations: 10

This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at [email protected]

ABSTRACT

Cysteine is a uniquely reactive amino acid, capable of undergoing both nucleophlilic and oxidative post-translational modifications. One such oxidation reaction involves the covalent modification of cysteine via the gaseous second messenger nitric oxide (NO), termed S-nitrosylation (SNO). This dynamic post-translational modification is involved in the redox regulation of proteins across all phylogenic kingdoms. In mammals, calcium-dependent activation of NO synthase triggers the local release of NO, which activates nearby guanylyl cyclases and cGMP-dependent pathways. In parallel, diffusible NO can locally modify redox active cellular thiols, functionally modulating many redox sensitive enzymes. Aberrant SNO is implicated in the pathology of many diseases, including neurodegeneration, inflammation, and stroke. In this review, we discuss current methods to label sites of SNO for biochemical analysis. The most popular method involves a series of biochemical steps to mask free thiols followed by selective nitrosothiol reduction and capture. Other emerging methods include mechanism-based phosphine probes and mercury enrichment chemistry. By bridging new enrichment approaches with high-resolution mass spectrometry, large-scale analysis of protein nitrosylation has highlighted new pathways of oxidative regulation. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 173–179, 2014.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.