Skip to main content

Diffusion and Transport of Reactive Species Across Cell Membranes

  • Chapter
  • First Online:
Bioactive Lipids in Health and Disease

Abstract

This chapter includes an overview of the structure of cell membranes and a review of the permeability of membranes to biologically relevant oxygen and nitrogen reactive species, namely oxygen, singlet oxygen, superoxide, hydrogen peroxide, hydroxyl radical, nitric oxide, nitrogen dioxide, peroxynitrite and also hydrogen sulfide. Physical interactions of these species with cellular membranes are discussed extensively, but also their relevance to chemical reactions such as lipid peroxidation. Most of these species are involved in different cellular redox processes ranging from physiological pathways to damaging reactions against biomolecules. Cell membranes separate and compartmentalize different processes, inside or outside cells, and in different organelles within cells. The permeability of these membranes to reactive species varies according to the physicochemical properties of each molecule. Some of them, such as nitric oxide and oxygen, are small and hydrophobic and can traverse cellular membranes virtually unhindered. Nitrogen dioxide and hydrogen sulfide find a slightly higher barrier to permeation, but still their diffusion is largely unimpeded by cellular membranes. In contrast, the permeability of cellular membranes to the more polar hydrogen peroxide, is up to five orders of magnitude lower, allowing the formation of concentration gradients, directionality and effective compartmentalization of its actions which can be further regulated by specific aquaporins that facilitate its diffusion through membranes. The compartmentalizing effect on anionic species such as superoxide and peroxynitrite is even more accentuated because of the large energetic barrier that the hydrophobic interior of membranes presents to ions that may be overcome by protonation or the use of anion channels. The large difference in cell membrane permeability for different reactive species indicates that compartmentalization is possible for some but not all of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  2. Gennis RB (1989) Biomembranes. Molecular structure and function. Springer, New York/Harrisonbourg

    Google Scholar 

  3. Goñi FM (2014) The basic structure and dynamics of cell membranes: an update of the Singer–Nicolson model. Biochimica et Biophysica Acta (BBA)-Biomembranes 1838:1467–1476

    Article  CAS  Google Scholar 

  4. Varki A (2017) Biological roles of glycans. Glycobiology 27:3–49

    Article  CAS  PubMed  Google Scholar 

  5. Möller MN, Li Q, Chinnaraj M, Cheung HC, Lancaster JR Jr, Denicola A (2016) Solubility and diffusion of oxygen in phospholipid membranes. Biochim Biophys Acta Biomembr 1858:2923–2930

    Article  CAS  Google Scholar 

  6. Glatz JF, Luiken JJ (2017) From fat to FAT (CD36/SR-B2): understanding the regulation of cellular fatty acid uptake. Biochimie 136:21–26

    Article  CAS  PubMed  Google Scholar 

  7. Denicola A, Souza JM, Radi R (1998) Diffusion of peroxynitrite across erythrocyte membranes. Proc Natl Acad Sci 95:3566–3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Missner A, Pohl P (2009) 110 years of the Meyer–Overton rule: predicting membrane permeability of gases and other small compounds. ChemPhysChem 10:1405–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walter A, Gutknecht J (1986) Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol 90:207–217

    Article  CAS  PubMed  Google Scholar 

  10. Lieb WR, Stein WD (1986) Simple diffusion across the membrane bilayer. In: Stein WD (ed) Transport and diffusion across cell membranes. Academic, Orlando, pp 69–112

    Google Scholar 

  11. Xiang TX, Anderson BD (1998) Influence of chain ordering on the selectivity of dipalmitoylphosphatidylcholine bilayer membranes for permeant size and shape. Biophys J 75:2658–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lieb WR, Stein WD (1986) Non-Stokesian nature of transverse diffusion within human red cell membranes. J Membr Biol 92:111–119

    Article  CAS  PubMed  Google Scholar 

  13. Cordeiro RM (2014) Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation. Biochimica et Biophysica Acta (BBA)-Biomembranes 1838:438–444

    Article  CAS  Google Scholar 

  14. Marrink SJ, Berendsen HJC (1996) Permeation process of small molecules across lipid membranes studied by molecular dynamics simulations. J Phys Chem 100:16729–16738

    Article  CAS  Google Scholar 

  15. Möller MN, Lancaster JR Jr, Denicola A (2008) The interaction of reactive oxygen and nitrogen species with membranes. In: Matalon S (ed) Free radical effects on membranes, vol 61. Academic, Amsterdam, pp 23–43

    Chapter  Google Scholar 

  16. Möller MN, Denicola A (2018) Diffusion of nitric oxide and oxygen in lipoproteins and membranes studied by pyrene fluorescence quenching. Free Radic Biol Med 128:137–143

    Article  PubMed  CAS  Google Scholar 

  17. Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100:14–31

    Article  CAS  PubMed  Google Scholar 

  18. Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77:219–262

    Article  CAS  Google Scholar 

  19. Signorelli S, Moller MN, Coitino EL, Denicola A (2011) Nitrogen dioxide solubility and permeation in lipid membranes. Arch Biochem Biophys 512:190–196

    Article  CAS  PubMed  Google Scholar 

  20. Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111:5944–5972

    Article  CAS  PubMed  Google Scholar 

  21. Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 338:668–676

    Article  CAS  PubMed  Google Scholar 

  22. Fischkoff S, Vanderkooi JM (1975) Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene. J Gen Physiol 65:663–676

    Article  CAS  PubMed  Google Scholar 

  23. Subczynski WK, Hyde JS, Kusumi A (1991) Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes: a pulse ESR spin labeling study. Biochemistry 30:8578–8590

    Article  CAS  PubMed  Google Scholar 

  24. Al-Abdul-Wahid MS, Evanics F, Prosser RS (2011) Dioxygen transmembrane distributions and partitioning thermodynamics in lipid bilayers and micelles. Biochemistry 50:3975–3983

    Article  CAS  PubMed  Google Scholar 

  25. Smotkin ES, Moy FT, Plachy WZ (1991) Dioxygen solubility in aqueous phosphatidylcholine dispersions. Biochim Biophys Acta Biomembr 1061:33–38

    Article  CAS  Google Scholar 

  26. Subczynski WK, Hyde JS (1983) Concentration of oxygen in lipid bilayers using a spin-label method. Biophys J 41:283–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Möller M, Botti H, Batthyany C, Rubbo H, Radi R, Denicola A (2005) Direct measurement of nitric oxide and oxygen partitioning into liposomes and low density lipoprotein. J Biol Chem 280:8850–8854

    Article  PubMed  CAS  Google Scholar 

  28. Dotson RJ, Smith CR, Bueche K, Angles G, Pias SC (2017) Influence of cholesterol on the oxygen permeability of membranes: insight from atomistic simulations. Biophys J 112:2336–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Borden MA, Longo ML (2004) Oxygen permeability of fully condensed lipid monolayers. J Phys Chem B 108:6009–6016

    Article  CAS  Google Scholar 

  30. Girotti AW (2001) Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. J Photochem Photobiol B Biol 63:103–113

    Article  CAS  Google Scholar 

  31. Min D, Boff J (2002) Chemistry and reaction of singlet oxygen in foods. Compr Rev Food Sci Food Saf 1:58–72

    Article  CAS  PubMed  Google Scholar 

  32. Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305:761–770

    Article  CAS  PubMed  Google Scholar 

  33. Möller MaN, Hatch DM, Kim H-YH, Porter NA (2012) Superoxide reaction with tyrosyl radicals generates para-hydroperoxy and para-hydroxy derivatives of tyrosine. J Am Chem Soc 134:16773–16780

    Article  PubMed  CAS  Google Scholar 

  34. Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538

    Article  PubMed  Google Scholar 

  35. Stratton SP, Liebler DC (1997) Determination of singlet oxygen-specific versus radical-mediated lipid peroxidation in photosensitized oxidation of lipid bilayers: effect of β-carotene and α-tocopherol. Biochemistry 36:12911–12920

    Article  CAS  PubMed  Google Scholar 

  36. Murad F (2006) Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med 355:2003–2011

    Article  CAS  PubMed  Google Scholar 

  37. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Phys Cell Phys 271:C1424–C1437

    Article  CAS  Google Scholar 

  38. Lide DR (2004) In: Lide DR (ed) Permittivity (dielectric constant) of gases. CRC Press, Boca Raton, p 174

    Google Scholar 

  39. Zacharia IG, Deen WM (2005) Diffusivity and solubility of nitric oxide in water and saline. Ann Biomed Eng 33:214–222

    Article  PubMed  Google Scholar 

  40. Shaw AW, Vosper AJ (1976) Solubility of nitric oxide in aqueous and nonaqueous solvents. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 8:1239–1244

    Google Scholar 

  41. Denicola A, Souza JM, Radi R, Lissi E (1996) Nitric oxide diffusion in membranes determined by fluorescence quenching. Arch Biochem Biophys 328:208–212

    Article  CAS  PubMed  Google Scholar 

  42. Subczynski WK, Lomnicka M, Hyde JS (1996) Permeability of nitric oxide through lipid bilayer membranes. Free Radic Res 24:343–349

    Article  CAS  PubMed  Google Scholar 

  43. Möller MN, Li Q, Lancaster JR Jr, Denicola A (2007) Acceleration of nitric oxide autoxidation and nitrosation by membranes. IUBMB Life 59:243–248

    Article  PubMed  CAS  Google Scholar 

  44. Möller MN, Li Q, Vitturi DA, Robinson JM, Lancaster JRJ, Denicola A (2007) Membrane “lens” effect: focusing the formation of reactive nitrogen oxides from the NO/O2 reaction. Chem Res Toxicol 20:709–714

    Article  PubMed  CAS  Google Scholar 

  45. Rubbo H, Radi R, Anselmi D, Kirk M, Barnes S, Butler J, Eiserich JP, Freeman BA (2000) Nitric oxide reaction with lipid peroxyl radicals spares α-tocopherol during lipid peroxidation. J Biol Chem 275:10812–10818

    Article  CAS  PubMed  Google Scholar 

  46. Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M, Freeman BA (1994) Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 269:26066–26075

    CAS  PubMed  Google Scholar 

  47. Hogg N, Kalyanaraman B, Joseph J, Struck A, Parthasarathy S (1993) Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis. FEBS Lett 334:170–174

    Article  CAS  PubMed  Google Scholar 

  48. Padmaja S, Huie RE (1993) The reaction of nitric oxide with organic peroxyl radicals. Biochem Biophys Res Commun 195:539–544

    Article  CAS  PubMed  Google Scholar 

  49. Freeman BA, Pekarova M, Rubbo H, Trostchansky A (2017) Chapter 16 – Electrophilic nitro-fatty acids: nitric oxide and nitrite-derived metabolic and inflammatory signaling mediators. In: Ignarro LJ, Freeman BA (eds) Nitric oxide, 3rd edn. Academic, Amsterdam, pp 213–229

    Chapter  Google Scholar 

  50. Augusto O, Bonini MG, Amanso AM, Linares E, Santos CCX, De Menezes SIL (2002) Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. Free Radic Biol Med 32:841–859

    Article  CAS  PubMed  Google Scholar 

  51. Byun J, Mueller DM, Fabjan JS, Heinecke JW (1999) Nitrogen dioxide radical generated by the mieloperoxidase-hydrogen peroxide-nitrite system promotes lipid peroxidation of low density lipoprotein. FEBS Lett 455:243–246

    Article  CAS  PubMed  Google Scholar 

  52. Razzokov J, Yusupov M, Cordeiro RM, Bogaerts A (2018) Atomic scale understanding of the permeation of plasma species across native and oxidized membranes. J Phys D Appl Phys 51:365203

    Article  CAS  Google Scholar 

  53. Huie RE (1994) The reaction kinetics of NO2(.). Toxicology 89:193–216

    Article  CAS  PubMed  Google Scholar 

  54. Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R (2018) Biochemistry of peroxynitrite and protein tyrosine nitration. Chem Rev 118:1338–1408

    Article  CAS  PubMed  Google Scholar 

  55. O’Donnell VB, Eiserich JP, Bloodsworth A, Chumley PH, Kirk M, Barnes S, Darley-Usmar VM, Freeman BA (1999) [47] Nitration of unsaturated fatty acids by nitric oxide-derived reactive species In: Methods in enzymology, vol 301. Academic, San Diego, pp 454–470

    Google Scholar 

  56. Gray P, Yoffe A (1955) The reactivity and structure of nitrogen dioxide. Chem Rev 55:1069–1154

    Article  CAS  Google Scholar 

  57. Lee Y, Schwartz S (1981) Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure. J Phys Chem 85:840–848

    Article  CAS  Google Scholar 

  58. Cheung J, Li Y, Boniface J, Shi Q, Davidovits P, Worsnop D, Jayne J, Kolb C (2000) Heterogeneous interactions of NO2 with aqueous surfaces. Chem A Eur J 104:2655–2662

    CAS  Google Scholar 

  59. Squadrito GL, Postlethwait EM (2009) On the hydrophobicity of nitrogen dioxide: could there be a “lens” effect for NO2 reaction kinetics? Nitric Oxide 21:104–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khairutdinov RF, Coddington JW, Hurst JK (2000) Permeation of phospholipid membranes by peroxynitrite. Biochemistry 39:14238–14249

    Article  CAS  PubMed  Google Scholar 

  61. Cordeiro RM (2018) Reactive oxygen and nitrogen species at phospholipid bilayers: peroxynitrous acid and its homolysis products. J Phys Chem B

    Google Scholar 

  62. Olson KR, Straub KD (2016) The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology (Bethesda) 31:60–72

    CAS  Google Scholar 

  63. Nicholls P, Marshall DC, Cooper CE, Wilson MT (2013) Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochem Soc Trans 41:1312–1316

    Article  CAS  PubMed  Google Scholar 

  64. Vitvitsky V, Kabil O, Banerjee R (2012) High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations. Antioxid Redox Signal 17:22–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hildebrandt TM, Grieshaber MK (2008) Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275:3352–3361

    Article  CAS  PubMed  Google Scholar 

  66. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531

    Article  CAS  PubMed  Google Scholar 

  68. Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, Kimura H, Chow C-W, Lefer DJ (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104:15560–15565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blackstone E, Morrison M, Roth MB (2005) H2S induces a suspended animation-like state in mice. Science (New York) 308:518

    Article  CAS  PubMed  Google Scholar 

  70. Cuevasanta E, Möller MN, Alvarez B (2017) Biological chemistry of hydrogen sulfide and persulfides. Arch Biochem Biophys 617:9–25

    Article  CAS  PubMed  Google Scholar 

  71. Riahi S, Rowley CN (2014) Solvation of hydrogen sulfide in liquid water and at the water-vapor interface using a polarizable force field. J Phys Chem B 118:1373–1380

    Article  CAS  PubMed  Google Scholar 

  72. Filipovic MR, Zivanovic J, Alvarez B, Banerjee R (2018) Chemical biology of H2S signaling through persulfidation. Chem Rev 118:1253–1337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Carballal S, Trujillo M, Cuevasanta E, Bartesaghi S, Möller MN, Folkes LK, García-Bereguiaín MA, Gutiérrez-Merino C, Wardman P, Denicola A, Radi R, Alvarez B (2011) Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. Free Radic Biol Med 50:196–205

    Article  CAS  PubMed  Google Scholar 

  74. Cuevasanta E, Zeida A, Carballal S, Wedmann R, Morzan UN, Trujillo M, Radi R, Estrin DA, Filipovic MR, Alvarez B (2015) Insights into the mechanism of the reaction between hydrogen sulfide and peroxynitrite. Free Radic Biol Med 80:93–100

    Article  CAS  PubMed  Google Scholar 

  75. Nagy P, Winterbourn CC (2010) Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem Res Toxicol 23:1541–1543

    Article  CAS  PubMed  Google Scholar 

  76. Cuevasanta E, Lange M, Bonanata J, Coitiño EL, Ferrer-Sueta G, Filipovic MR, Alvarez B (2015) Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide. J Biol Chem 290:26866–26880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cuevasanta E, Denicola A, Alvarez B, Möller MN (2012) Solubility and permeation of hydrogen sulfide in lipid membranes. PLoS One 7:e34562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mathai JC, Missner A, Kügler P, Saparov SM, Zeidel ML, Lee JK, Pohl P (2009) No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci 106:16633–16638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Riahi S, Rowley CN (2014) Why can hydrogen sulfide permeate cell membranes? J Am Chem Soc 136:15111–15113

    Article  CAS  PubMed  Google Scholar 

  80. Ferrer-Sueta G, Radi R (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4:161–177

    Article  CAS  PubMed  Google Scholar 

  81. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487

    Article  CAS  PubMed  Google Scholar 

  82. Rubbo H, Trostchansky A, O’Donnell VB (2009) Peroxynitrite-mediated lipid oxidation and nitration: mechanisms and consequences. Arch Biochem Biophys 484:167–172

    Article  CAS  PubMed  Google Scholar 

  83. Marla SS, Lee J, Groves JT (1997) Peroxynitrite rapidly permeates phospholipid membranes. Proc Natl Acad Sci 94:14243–14248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Holmström KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411

    Article  PubMed  CAS  Google Scholar 

  85. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    Article  CAS  PubMed  Google Scholar 

  86. Kellogg EW, Fridovich I (1975) Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J Biol Chem 250:8812–8817

    CAS  PubMed  Google Scholar 

  87. Lynch RE, Fridovich I (1978) Effects of superoxide on the erythrocyte membrane. J Biol Chem 253:1838–1845

    CAS  PubMed  Google Scholar 

  88. Gus’kova RA, Ivanov II, Kol'tover VK, Akhobadze VV, Rubin AB (1984) Permeability of bilayer lipid membranes for superoxide (O2−) radicals. Biochimica et Biophysica Acta (BBA)-Biomembranes 778:579–585

    Article  Google Scholar 

  89. Lynch RE, Fridovich I (1978) Permeation of the erythrocyte stroma by superoxide radical. J Biol Chem 253:4697–4699

    CAS  PubMed  Google Scholar 

  90. Van der Paal J, Verheyen C, Neyts EC, Bogaerts A (2017) Hampering effect of cholesterol on the permeation of reactive oxygen species through phospholipids bilayer: possible explanation for plasma cancer selectivity. Sci Rep 7:39526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Breton-Romero R, Lamas S (2014) Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol 2:529–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Winterbourn CC (2013) The biological chemistry of hydrogen peroxide. In: Methods in enzymology, vol 528. Elsevier, Amsterdam, pp 3–25

    Google Scholar 

  93. Orrico F, Möller MN, Cassina A, Denicola A, Thomson L (2018) Kinetic and stoichiometric constraints determine the pathway of H2O2 consumption by red blood cells. Free Radic Biol Med 121:231–239

    Article  CAS  PubMed  Google Scholar 

  94. Manta B, Hugo M, Ortiz C, Ferrer-Sueta G, Trujillo M, Denicola A (2009) The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch Biochem Biophys 484:146–154

    Article  CAS  PubMed  Google Scholar 

  95. Randall LM, Ferrer-Sueta G, Denicola A (2013) Chapter three – Peroxiredoxins as preferential targets in H2O2-induced signaling. In: Cadenas E, Packer L (eds) Methods in enzymology, vol 527. Academic, San Diego, pp 41–63

    Google Scholar 

  96. Stöcker S, Van Laer K, Mijuskovic A, Dick TP (2018) The conundrum of hydrogen peroxide signaling and the emerging role of peroxiredoxins as redox relay hubs. Antioxid Redox Signal 28:558–573

    Article  PubMed  CAS  Google Scholar 

  97. Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57:715S–725S

    Article  CAS  PubMed  Google Scholar 

  98. Clayton RK (1959) Permeability barriers and the assay of catalase in intact cells. Biochim Biophys Acta 36:35–39

    Article  CAS  PubMed  Google Scholar 

  99. Nicholls P (1965) Activity of catalase in the red cell. Biochimica et Biophysica Acta (BBA)-Enzymology and Biological Oxidation 99:286–297

    CAS  Google Scholar 

  100. Antunes F, Cadenas E (2000) Estimation of H2O2 gradients across biomembranes. FEBS Lett 475:121–126

    Article  CAS  PubMed  Google Scholar 

  101. Branco MR, Marinho HS, Cyrne L, Antunes F (2004) Decrease of H2O2 plasma membrane permeability during adaptation to H2O2 in Saccharomyces cerevisiae. J Biol Chem 279:6501–6506

    Article  CAS  PubMed  Google Scholar 

  102. Seaver LC, Imlay JA (2001) Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol 183:7182–7189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mathai JC, Sitaramam V (1994) Stretch sensitivity of transmembrane mobility of hydrogen peroxide through voids in the bilayer. Role of cardiolipin. J Biol Chem 269:17784–17793

    CAS  PubMed  Google Scholar 

  104. Sitaramam V, Mathai JC, Rao N, Block LH (1989) Hydrogen peroxide permeation across liposomal membranes: a novel method to assess structural flaws in liposomes. Mol Cell Biochem 91:91–97

    Article  CAS  PubMed  Google Scholar 

  105. Abuin E, Lissi E, Ahumada M (2012) Diffusion of hydrogen peroxide across DPPC large unilamellar liposomes. Chem Phys Lipids 165:656–661

    Article  CAS  PubMed  Google Scholar 

  106. Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta Gen Sub 1840:1596–1604

    Article  CAS  Google Scholar 

  107. Henzler T, Steudle E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J Exp Bot 51:2053–2066

    Article  CAS  PubMed  Google Scholar 

  108. Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  109. Almasalmeh A, Krenc D, Wu B, Beitz E (2014) Structural determinants of the hydrogen peroxide permeability of aquaporins. FEBS J 281:647–656

    Article  CAS  PubMed  Google Scholar 

  110. Dynowski M, Schaaf G, Loque D, Moran O, Ludewig U (2008) Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem J 414:53–61

    Article  CAS  PubMed  Google Scholar 

  111. Cordeiro RM (2015) Molecular dynamics simulations of the transport of reactive oxygen species by mammalian and plant aquaporins. Biochim Biophys Acta Gen Sub 1850:1786–1794

    Article  CAS  Google Scholar 

  112. Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci 107:15681–15686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hara-Chikuma M, Satooka H, Watanabe S, Honda T, Miyachi Y, Watanabe T, Verkman AS (2015) Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nat Commun 6:7454

    Article  CAS  PubMed  Google Scholar 

  114. Dalla Sega FV, Zambonin L, Fiorentini D, Rizzo B, Caliceti C, Landi L, Hrelia S, Prata C (2014) Specific aquaporins facilitate Nox-produced hydrogen peroxide transport through plasma membrane in leukaemia cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1843:806–814

    Article  CAS  Google Scholar 

  115. Amen F, Machin A, Touriño C, Rodríguez I, Denicola A, Thomson L (2017) N-acetylcysteine improves the quality of red blood cells stored for transfusion. Arch Biochem Biophys 621:31–37

    Article  CAS  PubMed  Google Scholar 

  116. Koppenol WH (2017) Hydrogen peroxide, a molecule with a Janus face: its history, chemistry, and biology. In: Hydrogen peroxide metabolism in health and disease, Boca Raton : CRC Press pp 3–16

    Chapter  Google Scholar 

  117. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (· OH/· O−) in aqueous solution, J Phys Chem Ref Data 17:513–886

    Article  CAS  Google Scholar 

  118. Subczynski WK, Hyde JS, Kusumi A (1989) Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc Natl Acad Sci 86:4474–4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Widomska J, Raguz M, Subczynski WK (2007) Oxygen permeability of the lipid bilayer membrane made of calf lens lipids. Biochim Biophys Acta Biomembr 1768:2635–2645

    Article  CAS  Google Scholar 

  120. Subczynski WK, Hopwood LE, Hyde JS (1992) Is the mammalian cell plasma membrane a barrier to oxygen transport? J Gen Physiol 100:69–87

    Article  CAS  PubMed  Google Scholar 

  121. Fettiplace R, Haydon DA (1980) Water permeability of lipid membranes. Physiol Rev 60:510–550

    Article  CAS  PubMed  Google Scholar 

  122. De Duve C (1965) The separation and characterization of subcellular particles. Harvey Lect 59:49–87

    PubMed  Google Scholar 

  123. Makino N, Sasaki K, Hashida K, Sakakura Y (2004) A metabolic model describing the H2O2 elimination by mammalian cells including H2O2 permeation through cytoplasmic and peroxisomal membranes: comparison with experimental data. Biochim Biophys Acta Gen Subj 1673:149–159

    Article  CAS  Google Scholar 

  124. Lim JB, Langford TF, Huang BK, Deen WM, Sikes HD (2016) A reaction-diffusion model of cytosolic hydrogen peroxide. Free Radic Biol Med 90:85–90

    Article  CAS  PubMed  Google Scholar 

  125. Takahashi M-A, Asada K (1983) Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch Biochem Biophys 226:558–566

    Article  CAS  PubMed  Google Scholar 

  126. Liu X, Miller MJ, Joshi MS, Sadowska-Krowicka H, Clark DA, Lancaster JR (1998) Diffusion-limited reaction of free nitric oxide with erythrocytes. J Biol Chem 273:18709–18713

    Article  CAS  PubMed  Google Scholar 

  127. Liu X, Samouilov A, Lancaster JR, Zweier JL (2002) Nitric oxide uptake by erythrocytes is primarily limited by extracellular diffusion not membrane resistance. J Biol Chem 277:26194–26199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Gerardo Ferrer-Sueta and Dr. Beatriz Alvarez for excellent suggestions and critical discussions.

This work was partially supported by grants C38–432 from Comisión Sectorial de Investigación Científica from Universidad de la República (CSIC, UdelaR) to AD, FCE_1_2017_1_136043 Fondo Clemente Estable from Agencia Nacional de Investigación e Innovación (ANII) to LT and MNM and Fondo Vaz Ferreira from Ministerio de Educación y Cultura to EC. MNM, LT, EC and AD also acknowledge Sistema Nacional de Investigadores and Programa de Desarrollo de las Ciencias Básicas. EC is a research fellow of Comisión Académica de Posgrado from Universidad de la República (CAP, UdelaR), FO is a graduate fellow of CAP, and ACL from ANII.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matias N. Möller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Möller, M.N., Cuevasanta, E., Orrico, F., Lopez, A.C., Thomson, L., Denicola, A. (2019). Diffusion and Transport of Reactive Species Across Cell Membranes. In: Trostchansky, A., Rubbo, H. (eds) Bioactive Lipids in Health and Disease. Advances in Experimental Medicine and Biology, vol 1127. Springer, Cham. https://doi.org/10.1007/978-3-030-11488-6_1

Download citation

Publish with us

Policies and ethics