Skip to main content
Log in

Dopamine as a Potent Inducer of Cellular Glutathione and NAD(P)H:Quinone Oxidoreductase 1 in PC12 Neuronal Cells: A Potential Adaptive Mechanism for Dopaminergic Neuroprotection

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Dopamine auto-oxidation and the consequent formation of reactive oxygen species and electrophilic quinone molecules have been implicated in dopaminergic neuronal cell death in Parkinson’s disease. We reported here that in PC12 dopaminergic neuronal cells dopamine at noncytotoxic concentrations (50–150 μM) potently induced cellular glutathione (GSH) and the phase 2 enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1), two critical cellular defenses in detoxification of ROS and electrophilic quinone molecules. Incubation of PC12 cells with dopamine also led to a marked increase in the mRNA levels for γ-glutamylcysteine ligase catalytic subunit (GCLC) and NQO1. In addition, treatment of PC12 cells with dopamine resulted in a significant elevation of GSH content in the mitochondrial compartment. To determine whether treatment with dopamine at noncytotoxic concentrations, which upregulated the cellular defenses could protect the neuronal cells against subsequent lethal oxidative and electrophilic injury, PC12 cells were pretreated with dopamine (150 μM) for 24 h and then exposed to various cytotoxic concentrations of dopamine or 6-hydroxydopamine (6-OHDA). We found that pretreatment of PC12 cells with dopamine at a noncytotoxic concentration led to a remarkable protection against cytotoxicity caused by dopamine or 6-OHDA at lethal concentrations, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. In view of the critical roles of GSH and NQO1 in protecting against dopaminergic neuron degeneration, the above findings implicate that upregulation of both GSH and NQO1 by dopamine at noncytotoxic concentrations may serve as an important adaptive mechanism for dopaminergic neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CDNB:

1-Chloro-2,4-dinitrobenzene

DCIP:

2,6-Dichloroindophenol

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

GAPD:

Hglyceraldehyde-3-phosphate dehydrogenase

GCLC:

γ-Glutamylcysteine ligase catalytic subunit

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized form of glutathione

GST:

Glutathione S-transferase

MTT:

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium

NQO1:

NAD(P)H:quinone oxidoreductase 1

Nrf2:

Nuclear factor E2-related factor 2

6-OHDA:

6-Hydroxydopamine

PD:

Parkinson’s disease

PBS:

Phosphate buffered saline

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  1. Beal MF (2003) Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann NY Acad Sci 991:120–131

    PubMed  CAS  Google Scholar 

  2. Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc Natl Acad Sci USA 86:1398–1400

    Article  PubMed  CAS  Google Scholar 

  3. Grunblatt E, Mandel S, Youdim MB (2000) Neuroprotective strategies in Parkinson’s disease using the models of 6-hydroxydopamine and MPTP. Ann NY Acad Sci 899:262–273

    PubMed  CAS  Google Scholar 

  4. Storey KB (1996) Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 29:1715–1733

    PubMed  CAS  Google Scholar 

  5. Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D (2000) NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact 129:77–97

    Article  PubMed  CAS  Google Scholar 

  6. Spencer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B (1998) Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem 71:2112–2122

    Article  PubMed  CAS  Google Scholar 

  7. Shimizu E, Hashimoto K, Komatsu N, Iyo M (2002) Roles of endogenous glutathione levels on 6-hydroxydopamine-induced apoptotic neuronal cell death in human neuroblastoma SK-N-SH cells. Neuropharmacology 43:434–443

    Article  PubMed  CAS  Google Scholar 

  8. Tirmenstein MA, Hu CX, Scicchitano MS, Narayanan PK, McFarland DC, Thomas HC, Schwartz LW (2005) Effects of 6-hydroxydopamine on mitochondrial function and glutathione status in SH-SY5Y human neuroblastoma cells. Toxicol In Vitro 19:471–479

    Article  PubMed  CAS  Google Scholar 

  9. Zhang J, Hu J, Ding JH, Yao HH, Hu G (2005) 6-Hydroxydopamine-induced glutathione alteration occurs via glutathione enzyme system in primary cultured astrocytes. Acta Pharmacol Sin 26:799–805

    Article  PubMed  CAS  Google Scholar 

  10. Li Y, Zhu H, Trush MA (1999) Detection of mitochondria-derived reactive oxygen species production by the chemilumigenic probes lucigenin and luminol. Biochim Biophys Acta 1428:1–12

    PubMed  CAS  Google Scholar 

  11. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  PubMed  CAS  Google Scholar 

  12. Jia Z, Hallur S, Zhu H, Li Y, Misra HP (2008) Potent upregulation of glutathione and NAD(P)H:quinone oxidoreductase 1 by alpha-lipoic acid in human neuroblastoma SH-SY5Y cells: protection against neurotoxicant-elicited cytotoxicity. Neurochem Res 33:790–800

    Article  PubMed  CAS  Google Scholar 

  13. Benson AM, Hunkeler MJ, Talalay P (1980) Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci USA 77:5216–5220

    Article  PubMed  CAS  Google Scholar 

  14. Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y (2005) Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett 579:3029–3036

    Article  PubMed  CAS  Google Scholar 

  15. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  16. Wheeler CR, Salzman JA, Elsayed NM, Omaye ST, Korte DW Jr (1990) Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Biochem 184:193–199

    Article  PubMed  CAS  Google Scholar 

  17. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  CAS  Google Scholar 

  18. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  19. Cao Z, Hardej D, Trombetta LD, Trush MA, Li Y (2003) Induction of cellular glutathione and glutathione S-transferase by 3H-1,2-dithiole-3-thione in rat aortic smooth muscle A10 cells: protection against acrolein-induced toxicity. Atherosclerosis 166:291–301

    Article  PubMed  CAS  Google Scholar 

  20. Merad-Boudia M, Nicole A, Santiard-Baron D, Saille C, Ceballos-Picot I (1998) Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson’s disease. Biochem Pharmacol 56:645–655

    Article  PubMed  CAS  Google Scholar 

  21. Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137

    Article  PubMed  CAS  Google Scholar 

  22. Ross D (2004) Quinone reductases multitasking in the metabolic world. Drug Metab Rev 36:639–654

    Article  PubMed  CAS  Google Scholar 

  23. Munch G, Gerlach M, Sian J, Wong A, Riederer P (1998) Advanced glycation end products in neurodegeneration: more than early markers of oxidative stress? Ann Neurol 44:S85–S88

    PubMed  CAS  Google Scholar 

  24. Andrew R, Watson DG, Best SA, Midgley JM, Wenlong H, Petty RK (1993) The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem Res 18:1175–1177

    Article  PubMed  CAS  Google Scholar 

  25. Siegel D, Bolton EM, Burr JA, Liebler DC, Ross D (1997) The reduction of alpha-tocopherolquinone by human NAD(P)H:quinone oxidoreductase: the role of alpha-tocopherolhydroquinone as a cellular antioxidant. Mol Pharmacol 52:300–305

    PubMed  CAS  Google Scholar 

  26. Perry TL, Yong VW (1986) Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 67:269–274

    Article  PubMed  CAS  Google Scholar 

  27. Anderson ME (1998) Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 111–112:1–14

    Article  PubMed  Google Scholar 

  28. Kobayashi M, Yamamoto M (2006) Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul 46:113–140

    Article  PubMed  CAS  Google Scholar 

  29. Zhu H, Zhang L, Itoh K, Yamamoto M, Ross D, Trush MA, Zweier JL, Li Y (2006) Nrf2 controls bone marrow stromal cell susceptibility to oxidative and electrophilic stress. Free Radic Biol Med 41:132–143

    Article  PubMed  CAS  Google Scholar 

  30. Fernandez-Checa JC, Yi JR, Garcia Ruiz C, Ookhtens M, Kaplowitz N (1996) Plasma membrane and mitochondrial transport of hepatic reduced glutathione. Semin Liver Dis 16:147–158

    Article  PubMed  CAS  Google Scholar 

  31. Park JW, Youn YC, Kwon OS, Jang YY, Han ES, Lee CS (2002) Protective effect of serotonin on 6-hydroxydopamine- and dopamine-induced oxidative damage of brain mitochondria and synaptosomes and PC12 cells. Neurochem Int 40:223–233

    Article  PubMed  CAS  Google Scholar 

  32. Hastings TG, Lewis DA, Zigmond MJ (1996) Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci USA 93:1956–1961

    Article  PubMed  CAS  Google Scholar 

  33. Fong CS, Wu RM, Shieh JC, Chao YT, Fu YP, Kuao CL, Cheng CW (2007) Pesticide exposure on southwestern Taiwanese with MnSOD and NQO1 polymorphisms is associated with increased risk of Parkinson’s disease. Clin Chim Acta 378:136–141

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grant HL71190 (Y.L.), and a grant from Harvey Peters Research Foundation (H.P.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunbo Li or Hara P. Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Z., Zhu, H., Misra, B.R. et al. Dopamine as a Potent Inducer of Cellular Glutathione and NAD(P)H:Quinone Oxidoreductase 1 in PC12 Neuronal Cells: A Potential Adaptive Mechanism for Dopaminergic Neuroprotection. Neurochem Res 33, 2197–2205 (2008). https://doi.org/10.1007/s11064-008-9670-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9670-4

Keywords

Navigation