ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

A New Class of HIV-1 Integrase Inhibitors:  The 3,3,3‘,3‘-Tetramethyl-1,1‘-spirobi(indan)-5,5‘,6,6‘-tetrol Family

View Author Information
Department of Chemistry, University of California, San Diego, La Jolla, California 92093-0358, and Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
Cite this: J. Med. Chem. 2000, 43, 10, 2031–2039
Publication Date (Web):May 2, 2000
https://doi.org/10.1021/jm990600c
Copyright © 2000 American Chemical Society

    Article Views

    1372

    Altmetric

    -

    Citations

    50
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Integration is a required step in HIV replication, but as yet no inhibitors of the integration step have been developed for clinical use. Many inhibitors have been identified that are active against purified viral-encoded integrase protein; of these, many contain a catechol moiety. Though this substructure contributes potency in inhibitors, it is associated with toxicity and so the utility of catechol-containing inhibitors has been questioned. We have synthesized and tested a systematic series of derivatives of a catechol-containing inhibitor (1) with the goal of identifying catechol isosteres that support inhibition. We find that different patterns of substitution on the aromatic ring suffice for inhibition when Mn2+ is used as a cofactor. Importantly, the efficiency is different when Mg2+, the more likely in vivo cofactor, is used. These data emphasize the importance of assays with Mg2+ and offer new catechol isosteres for use in integrase inhibitors.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     University of California, San Diego.

     The Salk Institute for Biological Studies.

    *

     To whom correspondence should be addressed. J. S. Siegel:  tel, 858-534-5659; fax, 858-822-0386; e-mail, [email protected].

    Cited By

    This article is cited by 50 publications.

    1. Tao Lei, Sebastian Graf, Christopher Schöll, Felix Krätzschmar, Bernhard Gregori, Theresa Appleson, Alexander Breder. Asymmetric Photoaerobic Lactonization and Aza-Wacker Cyclization of Alkenes Enabled by Ternary Selenium–Sulfur Multicatalysis. ACS Catalysis 2023, 13 (24) , 16240-16248. https://doi.org/10.1021/acscatal.3c04443
    2. Jett T. Janetzki, Maxim G. Chegerev, Gemma K. Gransbury, Robert W. Gable, Jack K. Clegg, Roger J. Mulder, Guy N. L. Jameson, Alyona A. Starikova, Colette Boskovic. Controlling Spin Crossover in a Family of Dinuclear Fe(III) Complexes via the Bis(catecholate) Bridging Ligand. Inorganic Chemistry 2023, 62 (38) , 15719-15735. https://doi.org/10.1021/acs.inorgchem.3c02598
    3. Weicong Guo, Xingying Pang, Jijun Jiang, Jun Wang. Chiral 3,3,3′,3′-Tetramethyl-1,1′-Spirobiindanyl Cyclopentadienyl (TMSCp) Ligands: Design, Synthesis, and Applications. Organic Letters 2023, 25 (21) , 3823-3828. https://doi.org/10.1021/acs.orglett.3c00941
    4. Zhen Yang, Peiyuan Li, Hongjian Lu, Guigen Li. Copper-Catalyzed Asymmetric Borylacylation of Styrene and Indene Derivatives. The Journal of Organic Chemistry 2021, 86 (6) , 4616-4624. https://doi.org/10.1021/acs.joc.1c00031
    5. Weiye Sun, Haorui Gu, Xufeng Lin. Synthesis and Application of Hexamethyl-1,1′-spirobiindane-Based Phosphine-Oxazoline Ligands in Ni-Catalyzed Asymmetric Arylation of Cyclic Aldimines. The Journal of Organic Chemistry 2018, 83 (7) , 4034-4043. https://doi.org/10.1021/acs.joc.8b00422
    6. Swapnadeep Jalal, Kartick Paul, and Umasish Jana . Iron-Catalyzed 1,5-Enyne Cycloisomerization via 5-Endo-Dig Cyclization for the Synthesis of 3-(Inden-1-yl)indole Derivatives. Organic Letters 2016, 18 (24) , 6512-6515. https://doi.org/10.1021/acs.orglett.6b03544
    7. Seetharaman Manojveer and Rengarajan Balamurugan . In Situ Formed Acetal-Facilitated Synthesis of Substituted Indene Derivatives from o-Alkenylbenzaldehydes. Organic Letters 2015, 17 (14) , 3600-3603. https://doi.org/10.1021/acs.orglett.5b01695
    8. Dattatraya H. Dethe and Ganesh Murhade . FeCl3 Catalyzed Prins-Type Cyclization for the Synthesis of Highly Substituted Indenes: Application to the Total Synthesis of (±)-Jungianol and epi-Jungianol. Organic Letters 2013, 15 (3) , 429-431. https://doi.org/10.1021/ol3032347
    9. Mariolino Carta, Kadhum J. Msayib, Peter M. Budd and Neil B. McKeown. Novel Spirobisindanes for Use as Precursors to Polymers of Intrinsic Microporosity. Organic Letters 2008, 10 (13) , 2641-2643. https://doi.org/10.1021/ol800573m
    10. Laurent El Kaim,, Laurence Grimaud, and, Emilie Vieu. From Simple Ugi Adducts to Indanes and δ-Amidomalonates:  New Manganese(III)-Induced Radical Cascades. Organic Letters 2007, 9 (21) , 4171-4173. https://doi.org/10.1021/ol701678d
    11. Pranjal K. Baruah,, Rajesh Gonnade,, P. R. Rajamohanan,, Hans-Jörg Hofmann, and, Gangadhar J. Sanjayan. BINOL-Based FoldamersAccess to Oligomers with Diverse Structural Architectures. The Journal of Organic Chemistry 2007, 72 (14) , 5077-5084. https://doi.org/10.1021/jo070396y
    12. D. Christopher Meadows,, Timothy B. Mathews,, Thomas W. North,, Michael J. Hadd,, Chih Lin Kuo,, Nouri Neamati, and, Jacquelyn Gervay-Hague. Synthesis and Biological Evaluation of Geminal Disulfones as HIV-1 Integrase Inhibitors. Journal of Medicinal Chemistry 2005, 48 (14) , 4526-4534. https://doi.org/10.1021/jm049171v
    13. Christoph A. Sotriffer,, Haihong Ni, and, J. Andrew McCammon. Active Site Binding Modes of HIV-1 Integrase Inhibitors. Journal of Medicinal Chemistry 2000, 43 (22) , 4109-4117. https://doi.org/10.1021/jm000194t
    14. Abhisek Midya, Laxman Devidas Khalse, Prasanta Ghorai. Organocatalytic Enantioselective Intramolecular Michael Addition by In Situ Generated Aminoisobenzofulvenes: Construction of Spiro Quaternary Carbon Stereocenters. Chemistry – A European Journal 2023, 29 (59) https://doi.org/10.1002/chem.202301563
    15. Peng Xiao, Xiaojie He, Feng Zheng, Qinghua Lu. Super-heat resistant, transparent and low dielectric polyimides based on spirocyclic bisbenzoxazole diamines with T g > 450 °C. Polymer Chemistry 2022, 13 (24) , 3660-3669. https://doi.org/10.1039/D2PY00513A
    16. Mithun Chakraborty, Gaddam Mahesh, Omkar R. Nakel, Gautamee Chavda, Susarla Anusha, Gangarajula Sudhakar. A Facile Approach to Access Multi‐Substituted Indenes via Nazarov Cyclisation of Aryl, Vinyl, and Alkyl/Aryl Carbinols. ChemistrySelect 2021, 6 (48) , 13842-13850. https://doi.org/10.1002/slct.202103141
    17. Achille Antenucci, Stefano Dughera, Polyssena Renzi. Green Chemistry Meets Asymmetric Organocatalysis: A Critical Overview on Catalysts Synthesis. ChemSusChem 2021, 14 (14) , 2785-2853. https://doi.org/10.1002/cssc.202100573
    18. Bing Liu, Haile Qiu, Xiaofeng Chen, Wenbo Li, Junliang Zhang. Copper-catalyzed asymmetric tandem borylative addition and aldol cyclization. Organic Chemistry Frontiers 2020, 7 (17) , 2492-2498. https://doi.org/10.1039/D0QO00654H
    19. Vikas Kumar, Shyambo Chatterjee, Pragati Sharma, Suman Chakrabarty, Chilukuri V. Avadhani, Swaminathan Sivaram. Soluble polybenzimidazoles with intrinsic porosity: Synthesis, structure, properties and processability. Journal of Polymer Science Part A: Polymer Chemistry 2018, 56 (10) , 1046-1057. https://doi.org/10.1002/pola.28979
    20. Shirui Chang, Lei Wang, Xufeng Lin. Synthesis and application of a new hexamethyl-1,1′-spirobiindane-based chiral bisphosphine (HMSI-PHOS) ligand in asymmetric allylic alkylation. Organic & Biomolecular Chemistry 2018, 16 (13) , 2239-2247. https://doi.org/10.1039/C8OB00279G
    21. Bo-Sheng Zhang, Hui-Liang Hua, Lu-Yao Gao, Ce Liu, Yi-Feng Qiu, Ping-Xin Zhou, Zhao-Zhao Zhou, Jia-Hui Zhao, Yong-Min Liang. Palladium-catalyzed arene C–H activation/ketone C–H functionalization reaction: route to spirodihydroindenones. Organic Chemistry Frontiers 2017, 4 (7) , 1376-1379. https://doi.org/10.1039/C7QO00164A
    22. Pablo D. Legarda, Alfonso García‐Rubia, Ramón Gómez Arrayás, Juan C. Carretero. Palladium‐Catalyzed Remote ortho ‐CH Alkenylation of Alkyl Aryl Sulfones: Access to Densely Functionalized Indane Derivatives. Advanced Synthesis & Catalysis 2016, 358 (7) , 1065-1072. https://doi.org/10.1002/adsc.201501129
    23. Olivier Delelis, Eric Deprez. Interplay Between DNA-Binding/Catalytic Functions and Oligomerization of Retroviral Integrases Studied by a Combination of Time-Resolved Fluorescence Anisotropy, Fluorescence Correlation Spectroscopy and Resonance Energy Transfer. 2016, 301-336. https://doi.org/10.1007/978-3-319-24609-3_12
    24. Ben Ma, Ziang Wu, Ben Huang, Lu Liu, Junliang Zhang. Gold-catalysed facile access to indene scaffolds via sequential C–H functionalization and 5-endo-dig carbocyclization. Chemical Communications 2016, 52 (60) , 9351-9354. https://doi.org/10.1039/C6CC04034A
    25. Dattatraya H. Dethe, Raghavender Boda, Ganesh M. Murhade. Lewis acid catalyzed Nazarov type cyclization for the synthesis of a substituted indane framework: total synthesis of (±)-mutisianthol. Organic Chemistry Frontiers 2015, 2 (6) , 645-648. https://doi.org/10.1039/C5QO00005J
    26. Jee Soo Choi, Sang-Hyun Ahn, Kang Hyuck Lee, Young Moo Lee, Kee-Jung Lee. Practical Multigram Synthesis of 3,3,3',3'-Tetramethyl-1,1'-spirobisindane-5,5'-diamino-6,6'-diol. Bulletin of the Korean Chemical Society 2013, 34 (12) , 3888-3890. https://doi.org/10.5012/bkcs.2013.34.12.3888
    27. Rajendran Suresh, Shanmugam Muthusubramanian, Muthusamy Boominathan, Govindaswamy Manickam. Acid controlled generation of indanes and oxazolines from β-hydroxyarylethanamide. Tetrahedron Letters 2013, 54 (19) , 2315-2320. https://doi.org/10.1016/j.tetlet.2013.02.033
    28. Dattatraya H. Dethe, Ganesh M. Murhade. FeCl3 mediated intramolecular olefin-cation cyclization of cinnamates for the synthesis of highly substituted indenes. Chemical Communications 2013, 49 (73) , 8051. https://doi.org/10.1039/c3cc43159b
    29. Shailesh V. Jain, Lalit V. Sonawane, Ravindra R. Patil, Sanjaykumar B. Bari. Pharmacophore modeling of some novel indole β-diketo acid and coumarin-based derivatives as HIV integrase inhibitors. Medicinal Chemistry Research 2012, 21 (2) , 165-173. https://doi.org/10.1007/s00044-010-9520-1
    30. Giorgio Giorgi, Francisco J. Arroyo, Pilar López-Alvarado, J. Carlos Menéndez. Two chemodivergent anionic domino processes from cyclic α-nitroketones and aromatic aldehydes. Tetrahedron 2011, 67 (31) , 5582-5589. https://doi.org/10.1016/j.tet.2011.05.115
    31. A. Stephen K. Hashmi, Tobias Häffner, Matthias Rudolph, Frank Rominger. Gold Catalysis: Domino Reaction of En‐Diynes to Highly Substituted Phenols. Chemistry – A European Journal 2011, 17 (29) , 8195-8201. https://doi.org/10.1002/chem.201100305
    32. Kevin Carayon, Hervé Leh, Etienne Henry, Françoise Simon, Jean-François Mouscadet, Eric Deprez. A cooperative and specific DNA-binding mode of HIV-1 integrase depends on the nature of the metallic cofactor and involves the zinc-containing N-terminal domain. Nucleic Acids Research 2010, 38 (11) , 3692-3708. https://doi.org/10.1093/nar/gkq087
    33. Yi-Sheng Xu, Cheng-Chu Zeng, Zi-Guo Jiao, Li-Ming Hu, Ru-gang Zhong. Design, Synthesis and Anti-HIV Integrase Evaluation of 4-Oxo-4H-quinolizine-3-carboxylic Acid Derivatives. Molecules 2009, 14 (2) , 868-883. https://doi.org/10.3390/molecules14020868
    34. Daria J. Hazuda. Resistance to Inhibitors of Human Immunodeficiency Virus Type I Integration. 2009, 507-517. https://doi.org/10.1007/978-1-59745-180-2_36
    35. Frauke Pfeiffer, Nelson M. Felix, Christian Neuber, Christopher K. Ober, Hans-Werner Schmidt. Towards environmentally friendly, dry deposited, water developable molecular glass photoresists. Phys. Chem. Chem. Phys. 2008, 10 (9) , 1257-1262. https://doi.org/10.1039/B715819J
    36. Amol M. Kendhale, Rajesh Gonnade, Pattuparambil R. Rajamohanan, Hans-Jörg Hofmann, Gangadhar J. Sanjayan. Foldamers with unusual structural architecture from spirobi(indane) building blocks. Chemical Communications 2008, 31 (22) , 2541. https://doi.org/10.1039/b800825f
    37. Meenakshi Sharma, S.M. Ray. Aromatic amide derivatives of 5,6-dimethoxy-2,3-dihydro-1H-inden(-1-yl)acetic acid as anti-inflammatory agents free of ulcerogenic liability. Bioorganic & Medicinal Chemistry Letters 2007, 17 (24) , 6790-6796. https://doi.org/10.1016/j.bmcl.2007.10.037
    38. Sonal Dubey, Y.D. Satyanarayana, Harshita Lavania. Development of integrase inhibitors for treatment of AIDS: An overview. European Journal of Medicinal Chemistry 2007, 42 (9) , 1159-1168. https://doi.org/10.1016/j.ejmech.2007.01.024
    39. Daria J Hazuda. Inhibitors of human immunodeficiency virus type I integration. Current Opinion in HIV and AIDS 2006, 1 (3) , 212-217. https://doi.org/10.1097/01.COH.0000221594.57035.55
    40. Fabrice Bailly, Clémence Queffelec, Gladys Mbemba, Jean-François Mouscadet, Philippe Cotelle. Synthesis and HIV-1 integrase inhibitory activities of caffeic acid dimers derived from Salvia officinalis. Bioorganic & Medicinal Chemistry Letters 2005, 15 (22) , 5053-5056. https://doi.org/10.1016/j.bmcl.2005.07.091
    41. Shizuko Sei. Peptide nucleic acids as epigenetic inhibitors of HIV-1. International Journal of Peptide Research and Therapeutics 2005, 10 (3) , 269-286. https://doi.org/10.1007/s10989-005-4925-2
    42. Hongbin Yuan, Abby Parrill. Cluster analysis and three-dimensional QSAR studies of HIV-1 integrase inhibitors. Journal of Molecular Graphics and Modelling 2005, 23 (4) , 317-328. https://doi.org/10.1016/j.jmgm.2004.10.003
    43. Mingbao Zhang, Lei Zhu, Xin Ma. An efficient enantioselective synthesis of an indane acetic acid derivative: methyl (2S)-2-[(1S)-5-hydroxy-2,3-dihydro-1H-inden-1-yl]butanoate. Tetrahedron: Asymmetry 2003, 14 (22) , 3447-3453. https://doi.org/10.1016/j.tetasy.2003.07.021
    44. Shizuko Sei. Peptide nucleic acids as epigenetic inhibitors of HIV-1. International Journal of Peptide Research and Therapeutics 2003, 10 (3-4) , 269-286. https://doi.org/10.1007/s10989-004-4925-7
    45. Shizuko Sei. Peptide nucleic acids as epigenetic inhibitors of HIV-1. Letters in Peptide Science 2003, 10 (3-4) , 269-286. https://doi.org/10.1007/BF02484563
    46. Hongbin Yuan, Abby L Parrill. QSAR studies of HIV-1 integrase inhibition. Bioorganic & Medicinal Chemistry 2002, 10 (12) , 4169-4183. https://doi.org/10.1016/S0968-0896(02)00332-2
    47. Romain Dupont, Laurence Jeanson, Jean-François Mouscadet, Philippe Cotelle. Synthesis and hiv-1 integrase inhibitory activities of catechol and bis-Catechol derivatives. Bioorganic & Medicinal Chemistry Letters 2001, 11 (24) , 3175-3178. https://doi.org/10.1016/S0960-894X(01)00658-8
    48. Eric Deprez, Patrick Tauc, Hervé Leh, Jean-François Mouscadet, Christian Auclair, Mary E. Hawkins, Jean-Claude Brochon. DNA binding induces dissociation of the multimeric form of HIV-1 integrase: A time-resolved fluorescence anisotropy study. Proceedings of the National Academy of Sciences 2001, 98 (18) , 10090-10095. https://doi.org/10.1073/pnas.181024498
    49. Valentina Molteni, Denise Rhodes, Kathleen Rubins, Mark Hansen, Frederic D. Bushman, Jay S. Siegel. ChemInform Abstract: A New Class of HIV‐1 Integrase Inhibitors: The 3,3,3′,3′‐Tetramethyl‐1,1′‐spirobi(indan)‐5,5′,6,6′‐tetrol Family.. ChemInform 2000, 31 (33) https://doi.org/10.1002/chin.200033097
    50. Shizuko Sei. Peptide Nucleic Acids as Epigenetic Inhibitors of HIV-1. , 151-170. https://doi.org/10.1007/0-387-32956-0_9

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect