ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Nanogold: A Quantitative Phase Map

View Author Information
CSIRO Materials Science & Engineering, Clayton, 3168, Australia
Department of Materials, University of Oxford Parks Road, Oxford, OX1 3PH, U.K.
§ Kavli Institute of Nanoscience, Delft University of Technology Lorentzweg 1, 2628 CJ Delft, The Netherlands
Department of Geology and Geophysics, and Materials Science Program University of Wisconsin—Madison, Madison, Wisconsin 53706
* Address correspondence to [email protected]
Cite this: ACS Nano 2009, 3, 6, 1431–1436
Publication Date (Web):June 2, 2009
https://doi.org/10.1021/nn900220k
Copyright © 2009 American Chemical Society

    Article Views

    5492

    Altmetric

    -

    Citations

    224
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The development of the next generation of nanotechnologies requires precise control of the size, shape, and structure of individual components in a variety of chemical and engineering environments. This includes synthesis, storage, operational environments and, since these products will ultimately be discarded, their interaction with natural ecosystems. Much of the important information that determines these properties is contained within nanoscale phase diagrams, but quantitative phase maps that include surface effects and critical diameter (along with temperature and pressure) remain elusive. Here we present the first quantitative equilibrium phase map for gold nanoparticles together with experimental verification, based on relativistic ab initio thermodynamics and in situ high-resolution electron microscopy at elevated temperatures.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Theoretical modeling, computations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 224 publications.

    1. Ryosuke Ohnuki, Yukikazu Takeoka, Shinya Yoshioka. Structural and Optical Characterization of Decahedral-Type Spherical Colloidal Clusters. Chemistry of Materials 2024, 36 (6) , 2953-2962. https://doi.org/10.1021/acs.chemmater.3c03306
    2. Nikita V. Ter-Oganessian, Yuri V. Rusalev, Alexey V. Motseyko, Alexander A. Guda, Alexander V. Soldatov. Stability and Phase Transformations in Au–Pd Nanoparticles Studied by Means of Combined Monte Carlo and Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2024, 128 (7) , 3054-3063. https://doi.org/10.1021/acs.jpcc.3c07824
    3. Veronica D. Pawlik, Xiaohuan Zhao, Marc Figueras-Valls, Trenton J. Wolter, Zachary D. Hood, Yong Ding, Jingyue Liu, Miaofang Chi, Manos Mavrikakis, Younan Xia. Thermal Stability of Au Rhombic Dodecahedral Nanocrystals Can Be Greatly Enhanced by Coating Their Surface with an Ultrathin Shell of Pt. Nano Letters 2024, 24 (2) , 549-556. https://doi.org/10.1021/acs.nanolett.3c02680
    4. Kenji Iida, Takashi Takeuchi, Ryota Katsumi, Takashi Yatsui. Variations in the Photoexcitation Mechanism of an Adsorbed Molecule on a Gold Nanocluster Governed by Interfacial Contact. The Journal of Physical Chemistry A 2023, 127 (37) , 7718-7726. https://doi.org/10.1021/acs.jpca.3c03775
    5. Regaputra S. Janitra, Wanda Destiarani, Ari Hardianto, Umi Baroroh, Fauzian G. Rohmatulloh, Rustaman, Toto Subroto, Rukiah, Muhammad Yusuf. Multilayer Model of Gold Nanoparticles (AuNPs) and Its Application in the Classical Molecular Dynamics Simulation of Citrate-Capped AuNPs. The Journal of Physical Chemistry B 2023, 127 (32) , 7103-7110. https://doi.org/10.1021/acs.jpcb.3c00771
    6. Francis M. Alcorn, Renske M. van der Veen, Prashant K. Jain. In Situ Electron Microscopy of Transformations of Copper Nanoparticles under Plasmonic Excitation. Nano Letters 2023, 23 (14) , 6520-6527. https://doi.org/10.1021/acs.nanolett.3c01474
    7. James P. Horwath, Colin Lehman-Chong, Aleksandra Vojvodic, Eric A. Stach. Surface Rearrangement and Sublimation Kinetics of Supported Gold Nanoparticle Catalysts. ACS Nano 2023, 17 (9) , 8098-8107. https://doi.org/10.1021/acsnano.2c10523
    8. Zhiheng Lyu, Lehan Yao, Wenxiang Chen, Falon C. Kalutantirige, Qian Chen. Electron Microscopy Studies of Soft Nanomaterials. Chemical Reviews 2023, 123 (7) , 4051-4145. https://doi.org/10.1021/acs.chemrev.2c00461
    9. Quynh N. Nguyen, Chenxiao Wang, Yuxin Shang, Annemieke Janssen, Younan Xia. Colloidal Synthesis of Metal Nanocrystals: From Asymmetrical Growth to Symmetry Breaking. Chemical Reviews 2023, 123 (7) , 3693-3760. https://doi.org/10.1021/acs.chemrev.2c00468
    10. Paul Z. Chen, Arianna Skirzynska, Tiange Yuan, Oleksandr Voznyy, Frank X. Gu. Asymmetric Interfacet Adatom Migration as a Mode of Anisotropic Nanocrystal Growth. Journal of the American Chemical Society 2022, 144 (42) , 19417-19429. https://doi.org/10.1021/jacs.2c07423
    11. Siyu Zhou, Chenxiao Wang, Younan Xia. Polyol Synthesis of Pd Icosahedral Nanocrystals: Insights into the Growth Mechanism and Size Control. Chemistry of Materials 2022, 34 (11) , 5065-5073. https://doi.org/10.1021/acs.chemmater.2c00397
    12. Kenji Iida. Role of Hydration in Photoexcited Electron Transfer between a Gold Nanocluster and a Water Molecule. The Journal of Physical Chemistry C 2022, 126 (17) , 7492-7499. https://doi.org/10.1021/acs.jpcc.1c10756
    13. Hao Zheng, Alexander Weismann, Richard Berndt. Observation of a Shockley Surface State on Gold Nanoparticles with Sizes Down to 5 nm. The Journal of Physical Chemistry C 2021, 125 (45) , 25327-25331. https://doi.org/10.1021/acs.jpcc.1c08061
    14. Yoshiro Imura, Motoki Maniwa, Kazuki Iida, Haruna Saito, Clara Morita-Imura, Takeshi Kawai. Preparing Alumina-Supported Gold Nanowires for Alcohol Oxidation. ACS Omega 2021, 6 (24) , 16043-16048. https://doi.org/10.1021/acsomega.1c01895
    15. Jessi E. S. van der Hoeven, Hio Tong Ngan, Austin Taylor, Nathaniel M. Eagan, Joanna Aizenberg, Philippe Sautet, Robert J. Madix, Cynthia M. Friend. Entropic Control of HD Exchange Rates over Dilute Pd-in-Au Alloy Nanoparticle Catalysts. ACS Catalysis 2021, 11 (12) , 6971-6981. https://doi.org/10.1021/acscatal.1c01400
    16. Quynh N. Nguyen, Ruhui Chen, Zhiheng Lyu, Younan Xia. Using Reduction Kinetics to Control and Predict the Outcome of a Colloidal Synthesis of Noble-Metal Nanocrystals. Inorganic Chemistry 2021, 60 (7) , 4182-4197. https://doi.org/10.1021/acs.inorgchem.0c03576
    17. Yifeng Shi, Zhiheng Lyu, Ming Zhao, Ruhui Chen, Quynh N. Nguyen, Younan Xia. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chemical Reviews 2021, 121 (2) , 649-735. https://doi.org/10.1021/acs.chemrev.0c00454
    18. Seungyeol Lee, Huifang Xu, Jenelle Wempner, Hongwu Xu, Jianguo Wen. Discovery of Gold Nanoparticles in Marcellus Shale. ACS Earth and Space Chemistry 2021, 5 (1) , 129-135. https://doi.org/10.1021/acsearthspacechem.0c00240
    19. KoczkurKallum M.Assistant Research Professor at the Institute for MicromanufacturingSkrabalakSara E.James H. Rudy Professor in the Department of ChemistryMichelle L. Personick, Professor, Wesleyan University. Metal Nanocrystals. 2020https://doi.org/10.1021/acs.infocus.7e4003
    20. Yoshiro Imura, Ryota Kan, Ryota Akiyama, Haruna Saito, Clara Morita-Imura, Takeshi Kawai. Magnetic Fe3O4-Supported Gold Nanoflowers with Lattice-Selected Surfaces: Preparation and Catalytic Performance. ACS Omega 2020, 5 (25) , 15755-15760. https://doi.org/10.1021/acsomega.0c02340
    21. Hoduk Cho, Jae Won Shin, Ryong Ryoo. Atomic Scale Mechanisms Underlying Thermal Reshaping of Anisotropic Gold Nanocrystals Revealed by in Situ Electron Microscopy. The Journal of Physical Chemistry C 2020, 124 (23) , 12855-12863. https://doi.org/10.1021/acs.jpcc.0c04281
    22. Andrew R. Salmon, Marie-Elena Kleemann, Junyang Huang, William M Deacon, Cloudy Carnegie, Marlous Kamp, Bart de Nijs, Angela Demetriadou, Jeremy J. Baumberg. Light-Induced Coalescence of Plasmonic Dimers and Clusters. ACS Nano 2020, 14 (4) , 4982-4987. https://doi.org/10.1021/acsnano.0c01213
    23. Q. Yang, M. Danaie, N. Young, V. Broadley, D. E. Joyce, T. L. Martin, E. Marceau, M. P. Moody, P. A. J. Bagot. Atom Probe Tomography of Au–Cu Bimetallic Nanoparticles Synthesized by Inert Gas Condensation. The Journal of Physical Chemistry C 2019, 123 (43) , 26481-26489. https://doi.org/10.1021/acs.jpcc.9b09340
    24. King C. Lai, Xun Zha, James W. Evans, Alex Travesset. Structure of Polydisperse fcc Nanocrystals: Implications for Crystal Fractionalization. The Journal of Physical Chemistry C 2019, 123 (14) , 9528-9537. https://doi.org/10.1021/acs.jpcc.9b00146
    25. Jun Hee Yoon, Florian Selbach, Ludmilla Schumacher, Jesil Jose, Sebastian Schlücker. Surface Plasmon Coupling in Dimers of Gold Nanoparticles: Experiment and Theory for Ideal (Spherical) and Nonideal (Faceted) Building Blocks. ACS Photonics 2019, 6 (3) , 642-648. https://doi.org/10.1021/acsphotonics.8b01424
    26. Lucas D. Germano, Valeria S. Marangoni, Naga V. V. Mogili, Leandro Seixas, Camila M. Maroneze. Ultrasmall (<2 nm) Au@Pt Nanostructures: Tuning the Surface Electronic States for Electrocatalysis. ACS Applied Materials & Interfaces 2019, 11 (6) , 5661-5667. https://doi.org/10.1021/acsami.8b12712
    27. Olga A. Perfilieva, Dmitrii V. Pyshnyi, Alexander A. Lomzov. Molecular Dynamics Simulation of Polarizable Gold Nanoparticles Interacting with Sodium Citrate. Journal of Chemical Theory and Computation 2019, 15 (2) , 1278-1292. https://doi.org/10.1021/acs.jctc.8b00362
    28. Rebecca Dinkel, Jurij Jakobi, Anna Rosa Ziefuß, Stephan Barcikowski, Björn Braunschweig, Wolfgang Peukert. Role of Citrate and NaBr at the Surface of Colloidal Gold Nanoparticles during Functionalization. The Journal of Physical Chemistry C 2018, 122 (48) , 27383-27391. https://doi.org/10.1021/acs.jpcc.8b07897
    29. Sandra Vergara, Ulises Santiago, Chanaka Kumara, Diego Alducin, Robert L. Whetten, Miguel Jose Yacaman, Amala Dass, Arturo Ponce. Synthesis, Mass Spectrometry, and Atomic Structural Analysis of Au∼2000(SR)∼290 Nanoparticles. The Journal of Physical Chemistry C 2018, 122 (46) , 26733-26738. https://doi.org/10.1021/acs.jpcc.8b08531
    30. Thomas Vasileiadis, Lutz Waldecker, Dawn Foster, Alessandra Da Silva, Daniela Zahn, Roman Bertoni, Richard E. Palmer, Ralph Ernstorfer. Ultrafast Heat Flow in Heterostructures of Au Nanoclusters on Thin Films: Atomic Disorder Induced by Hot Electrons. ACS Nano 2018, 12 (8) , 7710-7720. https://doi.org/10.1021/acsnano.8b01423
    31. Hong Dong, Deborah A. Sarkes, Jeffrey J. Rice, Margaret M. Hurley, Adele J. Fu, Dimitra N. Stratis-Cullum. Living Bacteria–Nanoparticle Hybrids Mediated through Surface-Displayed Peptides. Langmuir 2018, 34 (20) , 5837-5848. https://doi.org/10.1021/acs.langmuir.8b00114
    32. Agampodi S. De Silva Indrasekara, Sean F. Johnson, Ren A. Odion, and Tuan Vo-Dinh . Manipulation of the Geometry and Modulation of the Optical Response of Surfactant-Free Gold Nanostars: A Systematic Bottom-Up Synthesis. ACS Omega 2018, 3 (2) , 2202-2210. https://doi.org/10.1021/acsomega.7b01700
    33. J. Magnus Rahm and Paul Erhart . Beyond Magic Numbers: Atomic Scale Equilibrium Nanoparticle Shapes for Any Size. Nano Letters 2017, 17 (9) , 5775-5781. https://doi.org/10.1021/acs.nanolett.7b02761
    34. Nabeel Ahmad, Guillaume Wang, Jaysen Nelayah, Christian Ricolleau, and Damien Alloyeau . Exploring the Formation of Symmetric Gold Nanostars by Liquid-Cell Transmission Electron Microscopy. Nano Letters 2017, 17 (7) , 4194-4201. https://doi.org/10.1021/acs.nanolett.7b01013
    35. Kyle D. Gilroy, Ahmed O. Elnabawy, Tung-Han Yang, Luke T. Roling, Jane Howe, Manos Mavrikakis, and Younan Xia . Thermal Stability of Metal Nanocrystals: An Investigation of the Surface and Bulk Reconstructions of Pd Concave Icosahedra. Nano Letters 2017, 17 (6) , 3655-3661. https://doi.org/10.1021/acs.nanolett.7b00844
    36. Aleksey Ruditskiy, Ming Zhao, Kyle D. Gilroy, Madeline Vara, and Younan Xia . Toward a Quantitative Understanding of the Sulfate-Mediated Synthesis of Pd Decahedral Nanocrystals with High Conversion and Morphology Yields. Chemistry of Materials 2016, 28 (23) , 8800-8806. https://doi.org/10.1021/acs.chemmater.6b04528
    37. Qu Chen, Kuang He, Alex W. Robertson, Angus I. Kirkland, and Jamie H. Warner . Atomic Structure and Dynamics of Epitaxial 2D Crystalline Gold on Graphene at Elevated Temperatures. ACS Nano 2016, 10 (11) , 10418-10427. https://doi.org/10.1021/acsnano.6b06274
    38. Kyle D. Gilroy, Aleksey Ruditskiy, Hsin-Chieh Peng, Dong Qin, and Younan Xia . Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chemical Reviews 2016, 116 (18) , 10414-10472. https://doi.org/10.1021/acs.chemrev.6b00211
    39. Weihong Qi . Nanoscopic Thermodynamics. Accounts of Chemical Research 2016, 49 (9) , 1587-1595. https://doi.org/10.1021/acs.accounts.6b00205
    40. Marek Grzelczak, Ana Sánchez-Iglesias, Hamed Heidari, Sara Bals, Isabel Pastoriza-Santos, Jorge Pérez-Juste, and Luis M. Liz-Marzán . Silver Ions Direct Twin-Plane Formation during the Overgrowth of Single-Crystal Gold Nanoparticles. ACS Omega 2016, 1 (2) , 177-181. https://doi.org/10.1021/acsomega.6b00066
    41. Rickard Frost, Carl Wadell, Anders Hellman, Sverker Molander, Sofia Svedhem, Michael Persson, and Christoph Langhammer . Core–Shell Nanoplasmonic Sensing for Characterization of Biocorona Formation and Nanoparticle Surface Interactions. ACS Sensors 2016, 1 (6) , 798-806. https://doi.org/10.1021/acssensors.6b00156
    42. John Watt, Bradley G. Hance, Rachel S. Anderson, and Dale L. Huber . Effect of Seed Age on Gold Nanorod Formation: A Microfluidic, Real-Time Investigation. Chemistry of Materials 2015, 27 (18) , 6442-6449. https://doi.org/10.1021/acs.chemmater.5b02675
    43. Blaise Fleury, Robinson Cortes-Huerto, Olivier Taché, Fabienne Testard, Nicolas Menguy, and Olivier Spalla . Gold Nanoparticle Internal Structure and Symmetry Probed by Unified Small-Angle X-ray Scattering and X-ray Diffraction Coupled with Molecular Dynamics Analysis. Nano Letters 2015, 15 (9) , 6088-6094. https://doi.org/10.1021/acs.nanolett.5b02924
    44. Marco Salvalaglio, Rainer Backofen, Roberto Bergamaschini, Francesco Montalenti, and Axel Voigt . Faceting of Equilibrium and Metastable Nanostructures: A Phase-Field Model of Surface Diffusion Tackling Realistic Shapes. Crystal Growth & Design 2015, 15 (6) , 2787-2794. https://doi.org/10.1021/acs.cgd.5b00165
    45. Nan Jian and Richard E. Palmer . Variation of the Core Atomic Structure of Thiolated (AuxAg1–x)312±55 Nanoclusters with Composition from Aberration-Corrected HAADF STEM. The Journal of Physical Chemistry C 2015, 119 (20) , 11114-11119. https://doi.org/10.1021/jp5119103
    46. Michael J. Walsh, Steven J. Barrow, Wenming Tong, Alison M. Funston, and Joanne Etheridge . Symmetry Breaking and Silver in Gold Nanorod Growth. ACS Nano 2015, 9 (1) , 715-724. https://doi.org/10.1021/nn506155r
    47. Kenji Iida, Masashi Noda, Kazuya Ishimura, and Katsuyuki Nobusada . First-Principles Computational Visualization of Localized Surface Plasmon Resonance in Gold Nanoclusters. The Journal of Physical Chemistry A 2014, 118 (47) , 11317-11322. https://doi.org/10.1021/jp5088042
    48. Grégory Guisbiers, Sergio Mejia-Rosales, Subarna Khanal, Francisco Ruiz-Zepeda, Robert L. Whetten, and Miguel José-Yacaman . Gold–Copper Nano-Alloy, “Tumbaga”, in the Era of Nano: Phase Diagram and Segregation. Nano Letters 2014, 14 (11) , 6718-6726. https://doi.org/10.1021/nl503584q
    49. Sandor Balog, Laura Rodriguez-Lorenzo, Christophe A. Monnier, Benjamin Michen, Marc Obiols-Rabasa, Lucia Casal-Dujat, Barbara Rothen-Rutishauser, Alke Petri-Fink, and Peter Schurtenberger . Dynamic Depolarized Light Scattering of Small Round Plasmonic Nanoparticles: When Imperfection is Only Perfect. The Journal of Physical Chemistry C 2014, 118 (31) , 17968-17974. https://doi.org/10.1021/jp504264f
    50. Simon R. Plant, Lu Cao, and Richard E. Palmer . Atomic Structure Control of Size-Selected Gold Nanoclusters during Formation. Journal of the American Chemical Society 2014, 136 (21) , 7559-7562. https://doi.org/10.1021/ja502769v
    51. Warren C. W. Chan (Associate Editor). A Call for Clinical Studies. ACS Nano 2014, 8 (5) , 4055-4057. https://doi.org/10.1021/nn5026466
    52. A. L. González, Cecilia Noguez, J. Beránek, and A. S. Barnard . Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles. The Journal of Physical Chemistry C 2014, 118 (17) , 9128-9136. https://doi.org/10.1021/jp5018168
    53. Jong-Won Park and Jennifer S. Shumaker-Parry . Structural Study of Citrate Layers on Gold Nanoparticles: Role of Intermolecular Interactions in Stabilizing Nanoparticles. Journal of the American Chemical Society 2014, 136 (5) , 1907-1921. https://doi.org/10.1021/ja4097384
    54. Amanda S. Barnard . Modeling the Impact of Alkanethiol SAMs on the Morphology of Gold Nanocrystals. Crystal Growth & Design 2013, 13 (12) , 5433-5441. https://doi.org/10.1021/cg401397y
    55. Julio C. Azcárate, Gastón Corthey, Evangelina Pensa, Carolina Vericat, Mariano H. Fonticelli, Roberto C. Salvarezza, and Pilar Carro . Understanding the Surface Chemistry of Thiolate-Protected Metallic Nanoparticles. The Journal of Physical Chemistry Letters 2013, 4 (18) , 3127-3138. https://doi.org/10.1021/jz401526y
    56. Emilie Ringe, Richard P. Van Duyne, and Laurence D. Marks . Kinetic and Thermodynamic Modified Wulff Constructions for Twinned Nanoparticles. The Journal of Physical Chemistry C 2013, 117 (31) , 15859-15870. https://doi.org/10.1021/jp401566m
    57. Michael B. Cortie, Michael J. Coutts, Cuong Ton-That, Annette Dowd, Vicki J. Keast, and Andrew M. McDonagh . On the Coalescence of Nanoparticulate Gold Sinter Ink. The Journal of Physical Chemistry C 2013, 117 (21) , 11377-11384. https://doi.org/10.1021/jp401815b
    58. Amanda S. Barnard . Direct Comparison of Kinetic and Thermodynamic Influences on Gold Nanomorphology. Accounts of Chemical Research 2012, 45 (10) , 1688-1697. https://doi.org/10.1021/ar3000184
    59. Marcel Manheller, Silvia Karthäuser, Rainer Waser, Kerstin Blech, and Ulrich Simon . Electrical Transport through Single Nanoparticles and Nanoparticle Arrays. The Journal of Physical Chemistry C 2012, 116 (39) , 20657-20665. https://doi.org/10.1021/jp3020029
    60. A. L. González, C. Noguez, and A. S. Barnard . Map of the Structural and Optical Properties of Gold Nanoparticles at Thermal Equilibrium. The Journal of Physical Chemistry C 2012, 116 (26) , 14170-14175. https://doi.org/10.1021/jp3047906
    61. Shery L. Y. Chang, Amanda S. Barnard, Christian Dwyer, Thomas W. Hansen, Jakob B. Wagner, Rafal E. Dunin-Borkowski, Matthew Weyland, Hiromi Konishi, and Huifang Xu . Stability of Porous Platinum Nanoparticles: Combined In Situ TEM and Theoretical Study. The Journal of Physical Chemistry Letters 2012, 3 (9) , 1106-1110. https://doi.org/10.1021/jz3001823
    62. Gilberto Casillas, J. Jesús Velázquez-Salazar, and Miguel Jose-Yacaman . A New Mechanism of Stabilization of Large Decahedral Nanoparticles. The Journal of Physical Chemistry C 2012, 116 (15) , 8844-8848. https://doi.org/10.1021/jp3011475
    63. Michael J. Walsh, Kenta Yoshida, Akihide Kuwabara, Mungo L. Pay, Pratibha L. Gai, and Edward D. Boyes . On the Structural Origin of the Catalytic Properties of Inherently Strained Ultrasmall Decahedral Gold Nanoparticles. Nano Letters 2012, 12 (4) , 2027-2031. https://doi.org/10.1021/nl300067q
    64. Jonathan A. Edgar, Andrew M. McDonagh, and Michael B. Cortie . Formation of Gold Nanorods by a Stochastic “Popcorn” Mechanism. ACS Nano 2012, 6 (2) , 1116-1125. https://doi.org/10.1021/nn203586j
    65. Xiulan Hu, Sung-Pyo Cho, Osamu Takai, and Nagahiro Saito . Rapid Synthesis and Structural Characterization of Well-Defined Gold Clusters by Solution Plasma Sputtering. Crystal Growth & Design 2012, 12 (1) , 119-123. https://doi.org/10.1021/cg2008528
    66. Frederic Sansoz . Surface Faceting Dependence of Thermal Transport in Silicon Nanowires. Nano Letters 2011, 11 (12) , 5378-5382. https://doi.org/10.1021/nl2029688
    67. Benedikt Westenfelder, Jannik C. Meyer, Johannes Biskupek, Simon Kurasch, Ferdinand Scholz, Carl E. Krill, III, and Ute Kaiser . Transformations of Carbon Adsorbates on Graphene Substrates under Extreme Heat. Nano Letters 2011, 11 (12) , 5123-5127. https://doi.org/10.1021/nl203224z
    68. Marijn A. van Huis, Albert Figuerola, Changming Fang, Armand Béché, Henny W. Zandbergen, and Liberato Manna . Chemical Transformation of Au-Tipped CdS Nanorods into AuS/Cd Core/Shell Particles by Electron Beam Irradiation. Nano Letters 2011, 11 (11) , 4555-4561. https://doi.org/10.1021/nl2030823
    69. Amanda S. Barnard and Lan Y. Chang . Thermodynamic Cartography and Structure/Property Mapping of Commercial Platinum Catalysts. ACS Catalysis 2011, 1 (2) , 76-81. https://doi.org/10.1021/cs100025y
    70. Alireza Seyed-Razavi, Ian K. Snook, and Amanda S. Barnard . Surface Area Limited Model for Predicting Anisotropic Coarsening of Faceted Nanoparticles. Crystal Growth & Design 2011, 11 (1) , 158-165. https://doi.org/10.1021/cg101088d
    71. Shaunak Mukherjee, Heidar Sobhani, J. Britt Lassiter, Rizia Bardhan, Peter Nordlander and Naomi J. Halas . Fanoshells: Nanoparticles with Built-in Fano Resonances. Nano Letters 2010, 10 (7) , 2694-2701. https://doi.org/10.1021/nl1016392
    72. Eduardo Pérez-Tijerina, Sergio Mejía-Rosales, Hiromi Inada and Miguel José-Yacamán. Effect of Temperature on AuPd Nanoparticles Produced by Inert Gas Condensation. The Journal of Physical Chemistry C 2010, 114 (15) , 6999-7003. https://doi.org/10.1021/jp101003g
    73. Philipp Schapotschnikow and Thijs J. H. Vlugt. Soft Hedgehogs on Coarse Carpets: A Molecular Simulation Study of Capped Nanocrystals Interacting with Self-Assembled Monolayers of Alkylthiols on a Gold (111) Surface. The Journal of Physical Chemistry C 2010, 114 (6) , 2531-2537. https://doi.org/10.1021/jp910554e
    74. Sara M. Rupich, Elena V. Shevchenko, Maryna I. Bodnarchuk, Byeongdu Lee and Dmitri V. Talapin . Size-Dependent Multiple Twinning in Nanocrystal Superlattices. Journal of the American Chemical Society 2010, 132 (1) , 289-296. https://doi.org/10.1021/ja9074425
    75. Chun Mao, Lan-Cao Jiang, Wen-Ping Luo, Hong-Ke Liu, Jian-Chun Bao, Xiao-Hua Huang and Jian Shen . Novel Blood-Compatible Polyurethane Ionomer Nanoparticles. Macromolecules 2009, 42 (23) , 9366-9368. https://doi.org/10.1021/ma901907t
    76. Lehan Yao, Zhiheng Lyu, Jiahui Li, Qian Chen. No ground truth needed: unsupervised sinogram inpainting for nanoparticle electron tomography (UsiNet) to correct missing wedges. npj Computational Materials 2024, 10 (1) https://doi.org/10.1038/s41524-024-01204-x
    77. . Normal and Novel Nanoplates for Understanding Growth Mechanism. 2024, 225-266. https://doi.org/10.1002/9783527840854.ch6
    78. . Core–Shell and Porous Nanorods with Hot Spots. 2024, 129-184. https://doi.org/10.1002/9783527840854.ch4
    79. Quentin Gromoff, Patrizio Benzo, Wissam A. Saidi, Christopher M. Andolina, Marie-José Casanove, Teresa Hungria, Sophie Barre, Magali Benoit, Julien Lam. Exploring the formation of gold/silver nanoalloys with gas-phase synthesis and machine-learning assisted simulations. Nanoscale 2024, 108 https://doi.org/10.1039/D3NR04471H
    80. Malcolm Dearg, Sean Lethbridge, James McCormack, Richard E. Palmer, Thomas J. A. Slater. Characterisation of the morphology of surface-assembled Au nanoclusters on amorphous carbon. Nanoscale 2024, 7 https://doi.org/10.1039/D4NR00978A
    81. Yu Zhang, Shaobo Han, Shangqian Zhu, Ruhui Chen, Tiehuai Li, Zhiheng Lyu, Ming Zhao, Meng Gu, Minhua Shao, Younan Xia. Slowly Removing Surface Ligand by Aging Enhances the Stability of Pd Nanosheets toward Electron Beam Irradiation and Electrocatalysis. Angewandte Chemie 2023, 135 (52) https://doi.org/10.1002/ange.202314634
    82. Yu Zhang, Shaobo Han, Shangqian Zhu, Ruhui Chen, Tiehuai Li, Zhiheng Lyu, Ming Zhao, Meng Gu, Minhua Shao, Younan Xia. Slowly Removing Surface Ligand by Aging Enhances the Stability of Pd Nanosheets toward Electron Beam Irradiation and Electrocatalysis. Angewandte Chemie International Edition 2023, 62 (52) https://doi.org/10.1002/anie.202314634
    83. Longfei Guo, Tao Jin, Shuang Shan, Quan Tang, Zhen Li, Chongyang Wang, Junpeng Wang, Bowei Pan, Qiao Wang, Fuyi Chen. Structural transformations in single-crystalline AgPd nanoalloys from multiscale deep potential molecular dynamics. The Journal of Chemical Physics 2023, 159 (2) https://doi.org/10.1063/5.0158918
    84. Qi Sun, Loukya Boddapati, Linan Wang, Junjie Li, Francis Leonard Deepak. In Situ Observations Reveal the Five-fold Twin-Involved Growth of Gold Nanorods by Particle Attachment. Nanomaterials 2023, 13 (5) , 796. https://doi.org/10.3390/nano13050796
    85. Sachin, Brijesh Kumar Pandey, Ratan Lal Jaiswal. Dimensional effect on cohesive energy, melting temperature and Debye temperature of metallic nanoparticles. Physica B: Condensed Matter 2023, 651 , 414602. https://doi.org/10.1016/j.physb.2022.414602
    86. Stefan Neumann, Azita Rezvani, Matthäus Barasinski, Georg Garnweitner, Doris Segets, David Rafaja. Statistical Determination of Atomic-Scale Characteristics of Au Nanocrystals Based on Correlative Multiscale Transmission Electron Microscopy. Microscopy and Microanalysis 2023, 29 (1) , 118-130. https://doi.org/10.1093/micmic/ozac027
    87. Laurence. D. Marks. Shape, thermodynamics and kinetics of nanoparticles. 2023, 383-417. https://doi.org/10.1016/B978-0-12-822425-0.00082-8
    88. Yoshiro Imura, Masami Tanaka, Asuka Kasuga, Ryota Akiyama, Daisuke Ogawa, Hirokazu Sugimori, Clara Morita-Imura, Takeshi Kawai. Nanoarchitectonics and Catalytic Performance of Au-Pd Nanoflowers Supported on Fe2O3. Journal of Oleo Science 2023, 72 (11) , 1055-1061. https://doi.org/10.5650/jos.ess23125
    89. Sachin, Brijesh Kumar Pandey, Ratan Lal Jaiswal. Electrical conductivity of semiconducting nanoparticles. Physica B: Condensed Matter 2022, 646 , 414279. https://doi.org/10.1016/j.physb.2022.414279
    90. Marc Ledendecker, Paul Paciok, Wojciech T. Osowiecki, Marc Pander, Marc Heggen, Daniel Göhl, Gaurav A. Kamat, Andreas Erbe, Karl J. J. Mayrhofer, A. Paul Alivisatos. Engineering gold-platinum core-shell nanoparticles by self-limitation in solution. Communications Chemistry 2022, 5 (1) https://doi.org/10.1038/s42004-022-00680-w
    91. Yuan Ni, Caixia Kan, Juan Xu. Optimized plasmonic performances and derivate applications of Au nanobipyramids. Physical Chemistry Chemical Physics 2022, 24 (36) , 21522-21537. https://doi.org/10.1039/D2CP02811E
    92. Jan Kloppenburg, Andreas Pedersen, Kari Laasonen, Miguel A. Caro, Hannes Jónsson. Reassignment of magic numbers for icosahedral Au clusters: 310, 564, 928 and 1426. Nanoscale 2022, 14 (25) , 9053-9060. https://doi.org/10.1039/D2NR01763F
    93. I. Brian Becerril‐Castro, Irene Calderon, Nicolas Pazos‐Perez, Luca Guerrini, Florian Schulz, Neus Feliu, Indranath Chakraborty, Vincenzo Giannini, Wolfgang J. Parak, Ramon A. Alvarez‐Puebla. Gold Nanostars: Synthesis, Optical and SERS Analytical Properties. Analysis & Sensing 2022, 2 (3) https://doi.org/10.1002/anse.202200005
    94. Sungho Jeon, Sang-Yeon Hwang, Jim Ciston, Karen C. Bustillo, Bryan W. Reed, Sukjoon Hong, Alex Zettl, Woo Youn Kim, Peter Ercius, Jungwon Park, Won Chul Lee. Response to Comment on “Reversible disorder-order transitions in atomic crystal nucleation”. Science 2022, 375 (6587) https://doi.org/10.1126/science.abj3683
    95. Maciej Zielinski, Wojciech Juszczyk, Zbigniew Kaszkur. Studies of adsorption of α,β-unsaturated carbonyl compounds on heterogeneous Au/CeO 2 , Au/TiO 2 and Au/SiO 2 catalysts during reduction by hydrogen. RSC Advances 2022, 12 (9) , 5312-5323. https://doi.org/10.1039/D1RA09434C
    96. Chen Liang, Jun Young Cheong, Gabriel Sitaru, Sabine Rosenfeldt, Anna S. Schenk, Stephan Gekle, II‐Doo Kim, Andreas Greiner. Size‐Dependent Catalytic Behavior of Gold Nanoparticles. Advanced Materials Interfaces 2022, 9 (4) https://doi.org/10.1002/admi.202100867
    97. Jessi E. S. van der Hoeven, Stephan Krämer, Simone Dussi, Tanya Shirman, Kyoo‐Chul K. Park, Chris H. Rycroft, David C. Bell, Cynthia M. Friend, Joanna Aizenberg. On the Origin of Sinter‐Resistance and Catalyst Accessibility in Raspberry‐Colloid‐Templated Catalyst Design. Advanced Functional Materials 2021, 31 (49) https://doi.org/10.1002/adfm.202106876
    98. Satoshi Teraji, Sadaki Samitsu, Qui Tran‐Cong‐Miyata, Tomohisa Norisuye, Hideyuki Nakanishi. Metastable Nanoporous Palladium Evolving from Palladium Nanocrystals. ChemNanoMat 2021, 7 (10) , 1099-1103. https://doi.org/10.1002/cnma.202100299
    99. Ryan Stocks, Amanda S Barnard. Enhancing classical gold nanoparticle simulations with electronic corrections and machine learning. Journal of Physics: Condensed Matter 2021, 33 (32) , 324003. https://doi.org/10.1088/1361-648X/ac0751
    100. David Holec, Lukas Löfler, Gerald A. Zickler, Dieter Vollath, Franz Dieter Fischer. Surface stress of gold nanoparticles revisited. International Journal of Solids and Structures 2021, 224 , 111044. https://doi.org/10.1016/j.ijsolstr.2021.111044
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect