ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Lipid Peroxyl Radicals Mediate Tyrosine Dimerization and Nitration in Membranes

View Author Information
Departamento de Histología y Embriología, Departamento de Bioquímica, and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay, and Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226
* To whom correspondence should be addressed. Tel: +598-2-9249561. Fax: +598-2-9249563. E-mail: [email protected]
†Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República.
‡Departamento de Bioquímica, Facultad de Medicina, Universidad de la República.
§Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República.
∥Medical College of Wisconsin.
Cite this: Chem. Res. Toxicol. 2010, 23, 4, 821–835
Publication Date (Web):February 19, 2010
https://doi.org/10.1021/tx900446r
Copyright © 2010 American Chemical Society

    Article Views

    1262

    Altmetric

    -

    Citations

    61
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Protein tyrosine dimerization and nitration by biologically relevant oxidants usually depend on the intermediate formation of tyrosyl radical (Tyr). In the case of tyrosine oxidation in proteins associated with hydrophobic biocompartments, the participation of unsaturated fatty acids in the process must be considered since they typically constitute preferential targets for the initial oxidative attack. Thus, we postulate that lipid-derived radicals mediate the one-electron oxidation of tyrosine to Tyr, which can afterward react with another Tyr or with nitrogen dioxide (NO2) to yield 3,3′-dityrosine or 3-nitrotyrosine within the hydrophobic structure, respectively. To test this hypothesis, we have studied tyrosine oxidation in saturated and unsaturated fatty acid-containing phosphatidylcholine (PC) liposomes with an incorporated hydrophobic tyrosine analogue BTBE (N-t-BOC l-tyrosine tert-butyl ester) and its relationship with lipid peroxidation promoted by three oxidation systems, namely, peroxynitrite, hemin, and 2,2′-azobis (2-amidinopropane) hydrochloride. In all cases, significant tyrosine (BTBE) oxidation was seen in unsaturated PC liposomes, in a way that was largely decreased at low oxygen concentrations. Tyrosine oxidation levels paralleled those of lipid peroxidation (i.e., malondialdehyde and lipid hydroperoxides), lipid-derived radicals and BTBE phenoxyl radicals were simultaneously detected by electron spin resonance spin trapping, supporting an association between the two processes. Indeed, α-tocopherol, a known reactant with lipid peroxyl radicals (LOO), inhibited both tyrosine oxidation and lipid peroxidation induced by all three oxidation systems. Moreover, oxidant-stimulated liposomal oxygen consumption was dose dependently inhibited by BTBE but not by its phenylalanine analogue, BPBE (N-t-BOC l-phenylalanine tert-butyl ester), providing direct evidence for the reaction between LOO and the phenol moiety in BTBE, with an estimated second-order rate constant of 4.8 × 103 M−1 s−1. In summary, the data presented herein demonstrate that LOO mediates tyrosine oxidation processes in hydrophobic biocompartments and provide a new mechanistic insight to understand protein oxidation and nitration in lipoproteins and biomembranes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 61 publications.

    1. Gerardo Ferrer-Sueta, Nicolás Campolo, Madia Trujillo, Silvina Bartesaghi, Sebastián Carballal, Natalia Romero, Beatriz Alvarez, and Rafael Radi . Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chemical Reviews 2018, 118 (3) , 1338-1408. https://doi.org/10.1021/acs.chemrev.7b00568
    2. Luciana Hannibal, Florencia Tomasina, Daiana A. Capdevila, Verónica Demicheli, Verónica Tórtora, Damián Alvarez-Paggi, Ronald Jemmerson, Daniel H. Murgida, and Rafael Radi . Alternative Conformations of Cytochrome c: Structure, Function, and Detection. Biochemistry 2016, 55 (3) , 407-428. https://doi.org/10.1021/acs.biochem.5b01385
    3. Thiago C. Genaro-Mattos, Raphael F. Queiroz, Daniela Cunha, Patricia P. Appolinario, Paolo Di Mascio, Iseli L. Nantes, Ohara Augusto, and Sayuri Miyamoto . Cytochrome c Reacts with Cholesterol Hydroperoxides To Produce Lipid- and Protein-Derived Radicals. Biochemistry 2015, 54 (18) , 2841-2850. https://doi.org/10.1021/bi501409d
    4. N. Subelzu S. Bartesaghi A. de Bem R. Radi . Oxidative Inactivation of Nitric Oxide and Peroxynitrite Formation in the Vasculature. 2015, 91-145. https://doi.org/10.1021/bk-2015-1200.ch004
    5. L. Sandhiya, P. Kolandaivel, and K. Senthilkumar . Oxidation and Nitration of Tyrosine by Ozone and Nitrogen Dioxide: Reaction Mechanisms and Biological and Atmospheric Implications. The Journal of Physical Chemistry B 2014, 118 (13) , 3479-3490. https://doi.org/10.1021/jp4106037
    6. Rafael Radi . Protein Tyrosine Nitration: Biochemical Mechanisms and Structural Basis of Functional Effects. Accounts of Chemical Research 2013, 46 (2) , 550-559. https://doi.org/10.1021/ar300234c
    7. Roman Shchepin, Matias N. Möller, Hye-young H. Kim, Duane M. Hatch, Silvina Bartesaghi, Balaraman Kalyanaraman, Rafael Radi, and Ned A. Porter . Tyrosine−Lipid Peroxide Adducts from Radical Termination: Para Coupling and Intramolecular Diels−Alder Cyclization. Journal of the American Chemical Society 2010, 132 (49) , 17490-17500. https://doi.org/10.1021/ja106503a
    8. Natalia Rios, Adrián Aicardo, Cecilia Chavarría, Rodrigo Ivagnes, Mauricio Mastrogiovanni, Rafael Radi, José M. Souza. Photochemically-induced protein tyrosine nitration in vitro and in cellula by 5-methyl-1,4-dinitro-1H-imidazole (DNI): synthesis and biochemical characterization. Free Radical Biology and Medicine 2023, 209 , 116-126. https://doi.org/10.1016/j.freeradbiomed.2023.09.038
    9. Joses G. Nathanael, Bing Yuan, Christopher R. Hall, Trevor A. Smith, Uta Wille. Damage of amino acids by aliphatic peroxyl radicals: a kinetic and computational study. Organic & Biomolecular Chemistry 2023, 21 (11) , 2390-2397. https://doi.org/10.1039/D2OB02302D
    10. Nicolás Campolo, Mauricio Mastrogiovanni, Michele Mariotti, Federico M. Issoglio, Darío Estrin, Per Hägglund, Tilman Grune, Michael J. Davies, Silvina Bartesaghi, Rafael Radi. Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation. Journal of Biological Chemistry 2023, 299 (3) , 102941. https://doi.org/10.1016/j.jbc.2023.102941
    11. Parvana Hajieva, Roman Abrosimov, Sascha Kunath, Bernd Moosmann. Antioxidant and prooxidant modulation of lipid peroxidation by integral membrane proteins. Free Radical Research 2023, 57 (2) , 105-114. https://doi.org/10.1080/10715762.2023.2201391
    12. Gloria Dávila-Ortiz, Erick Damian Castañeda-Reyes, Carlos Ignacio Juárez-Palomo, María de Jesús Perea-Flores, Ricardo Pérez-Pastén-Borja, Yazmín Karina Márquez-Flores, Elvira González de Mejía. Liposomes Containing Amaranth Unsaponifiable Matter and Soybean Lunasin Suppress ROS Production in Fibroblasts and Reduced Interleukin Production in Macrophages. International Journal of Environmental Research and Public Health 2022, 19 (18) , 11678. https://doi.org/10.3390/ijerph191811678
    13. Thibault Chautrand, Djouhar Souak, Sylvie Chevalier, Cécile Duclairoir-Poc. Gram-Negative Bacterial Envelope Homeostasis under Oxidative and Nitrosative Stress. Microorganisms 2022, 10 (5) , 924. https://doi.org/10.3390/microorganisms10050924
    14. Shengping Zhang, Luis M. De Leon Rodriguez, Freda F. Li, Renjie Huang, Ivanhoe K. H. Leung, Paul W. R. Harris, Margaret A. Brimble. A novel tyrosine hyperoxidation enables selective peptide cleavage. Chemical Science 2022, 13 (9) , 2753-2763. https://doi.org/10.1039/D1SC06216F
    15. Lisa K. Folkes, Silvina Bartesaghi, Madia Trujillo, Peter Wardman, Rafael Radi. Radiolysis Studies of Oxidation and Nitration of Tyrosine and Some Other Biological Targets by Peroxynitrite-Derived Radicals. International Journal of Molecular Sciences 2022, 23 (3) , 1797. https://doi.org/10.3390/ijms23031797
    16. Philip J. Senter. Preservation of Soft Tissues in Dinosaur Fossils. The American Biology Teacher 2021, 83 (5) , 298-302. https://doi.org/10.1525/abt.2021.83.5.298
    17. Lisa K. Folkes, Silvina Bartesaghi, Madia Trujillo, Peter Wardman, Rafael Radi. The effects of nitric oxide or oxygen on the stable products formed from the tyrosine phenoxyl radical. Free Radical Research 2021, 55 (2) , 141-153. https://doi.org/10.1080/10715762.2020.1870684
    18. Nicolás Campolo, Federico M. Issoglio, Darío A. Estrin, Silvina Bartesaghi, Rafael Radi. 3-Nitrotyrosine and related derivatives in proteins: precursors, radical intermediates and impact in function. Essays in Biochemistry 2020, 64 (1) , 111-133. https://doi.org/10.1042/EBC20190052
    19. Claudia Tanja Mierke. Translation and Post-translational Modifications in Protein Biosynthesis. 2020, 595-665. https://doi.org/10.1007/978-3-030-58532-7_14
    20. Rumyana Dimova, Nevena Chakarova, Greta Grozeva, Georgi Kirilov, Tsvetalina Tankova. The relationship between glucose variability and insulin sensitivity and oxidative stress in subjects with prediabetes. Diabetes Research and Clinical Practice 2019, 158 , 107911. https://doi.org/10.1016/j.diabres.2019.107911
    21. Rafael Radi. The origins of nitric oxide and peroxynitrite research in Uruguay: 25 years of contributions to the biochemical and biomedical sciences. Nitric Oxide 2019, 87 , 83-89. https://doi.org/10.1016/j.niox.2019.03.003
    22. K. Ognik, K. Kozłowski, A. Stępniowska, R. Szlązak, K. Tutaj, Z. Zduńczyk, J. Jankowski. The effect of manganese nanoparticles on performance, redox reactions and epigenetic changes in turkey tissues. Animal 2019, 13 (6) , 1137-1144. https://doi.org/10.1017/S1751731118002653
    23. Nela Vanova, Lubica Muckova, Monika Schmidt, David Herman, Alzbeta Dlabkova, Jaroslav Pejchal, Daniel Jun. Simultaneous determination of malondialdehyde and 3‐nitrotyrosine in cultured human hepatoma cells by liquid chromatography–mass spectrometry. Biomedical Chromatography 2018, 32 (12) https://doi.org/10.1002/bmc.4349
    24. Rafael Radi. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proceedings of the National Academy of Sciences 2018, 115 (23) , 5839-5848. https://doi.org/10.1073/pnas.1804932115
    25. Silvina Bartesaghi, Rafael Radi. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biology 2018, 14 , 618-625. https://doi.org/10.1016/j.redox.2017.09.009
    26. Silvina Bartesaghi, Daniel Herrera, Débora M. Martinez, Ariel Petruk, Verónica Demicheli, Madia Trujillo, Marcelo A. Martí, Darío A. Estrín, Rafael Radi. Tyrosine oxidation and nitration in transmembrane peptides is connected to lipid peroxidation. Archives of Biochemistry and Biophysics 2017, 622 , 9-25. https://doi.org/10.1016/j.abb.2017.04.006
    27. Carlos Batthyány, Silvina Bartesaghi, Mauricio Mastrogiovanni, Analía Lima, Verónica Demicheli, Rafael Radi. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects. Antioxidants & Redox Signaling 2017, 26 (7) , 313-328. https://doi.org/10.1089/ars.2016.6787
    28. Sruti Shiva, Laura Castro, Paul S. Brookes. Mitochondria and Nitric Oxide. 2017, 137-156. https://doi.org/10.1016/B978-0-12-804273-1.00011-9
    29. Petr Niederhafner, Martin Šafařík, Eva Brichtová, Jaroslav Šebestík. Rapid acidolysis of benzyl group as a suitable approach for syntheses of peptides naturally produced by oxidative stress and containing 3-nitrotyrosine. Amino Acids 2016, 48 (4) , 1087-1098. https://doi.org/10.1007/s00726-015-2163-2
    30. Lin Zheng, Mouming Zhao, Chuqiao Xiao, Qiangzhong Zhao, Guowan Su. Practical problems when using ABTS assay to assess the radical-scavenging activity of peptides: Importance of controlling reaction pH and time. Food Chemistry 2016, 192 , 288-294. https://doi.org/10.1016/j.foodchem.2015.07.015
    31. Adrián Aicardo, Débora M. Martinez, Nicolás Campolo, Silvina Bartesaghi, Rafael Radi. Biochemistry of Nitric Oxide and Peroxynitrite: Sources, Targets and Biological Implications. 2016, 49-77. https://doi.org/10.1007/978-3-319-45865-6_5
    32. C. Houée-Lévin, K. Bobrowski, L. Horakova, B. Karademir, C. Schöneich, M. J. Davies, C. M. Spickett. Exploring oxidative modifications of tyrosine: An update on mechanisms of formation, advances in analysis and biological consequences. Free Radical Research 2015, 49 (4) , 347-373. https://doi.org/10.3109/10715762.2015.1007968
    33. Arunachalam Muthuraman, Parneet Kaur, Pardeep Kaur, Harwinder Singh, Preetinder Singh Boparai. Ameliorative potential of vitamin P and digoxin in ischemic–reperfusion induced renal injury using the Langendorff apparatus. Life Sciences 2015, 124 , 75-80. https://doi.org/10.1016/j.lfs.2014.12.022
    34. Christian Schöneich. Oxidation of Proteins in the In Vivo Environment: What We Know; What We Need to Study and Potential Mitigation Strategies. 2015, 137-151. https://doi.org/10.1007/978-1-4939-2543-8_9
    35. Leonor Thomson. 3-Nitrotyrosine Modified Proteins in Atherosclerosis. Disease Markers 2015, 2015 , 1-8. https://doi.org/10.1155/2015/708282
    36. Gerhard Spiteller, Mohammad Afzal. The Action of Peroxyl Radicals, Powerful Deleterious Reagents, Explains Why Neither Cholesterol Nor Saturated Fatty Acids Cause Atherogenesis and Age‐Related Diseases. Chemistry – A European Journal 2014, 20 (46) , 14928-14945. https://doi.org/10.1002/chem.201404383
    37. Nicolás Campolo, Silvina Bartesaghi, Rafael Radi. Metal-catalyzed protein tyrosine nitration in biological systems. Redox Report 2014, 19 (6) , 221-231. https://doi.org/10.1179/1351000214Y.0000000099
    38. Lissette C. Sánchez-Aranguren, Carlos E. Prada, Carlos E. Riaño-Medina, Marcos Lopez. Endothelial dysfunction and preeclampsia: role of oxidative stress. Frontiers in Physiology 2014, 5 https://doi.org/10.3389/fphys.2014.00372
    39. Fabrizia Fabrizi de Biani, Maddalena Corsini, Piero Zanello. Redox Chemistry and Electrochemistry of Homoleptic Metal Phenolates. 2014, 1-44. https://doi.org/10.1002/9780470682531.pat0600
    40. Elisa De Laurentiis, Carsten Prasse, Thomas A. Ternes, Marco Minella, Valter Maurino, Claudio Minero, Mohamed Sarakha, Marcello Brigante, Davide Vione. Assessing the photochemical transformation pathways of acetaminophen relevant to surface waters: Transformation kinetics, intermediates, and modelling. Water Research 2014, 53 , 235-248. https://doi.org/10.1016/j.watres.2014.01.016
    41. Marcelo G. Bonini, Marcia E. L. Consolaro, Peter C. Hart, Mao Mao, Andre Luelsdorf Pimenta de Abreu, Alyssa M. Master. Redox control of enzymatic functions: The electronics of life's circuitry. IUBMB Life 2014, 66 (3) , 167-181. https://doi.org/10.1002/iub.1258
    42. Sebastián Carballal, Silvina Bartesaghi, Rafael Radi. Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite. Biochimica et Biophysica Acta (BBA) - General Subjects 2014, 1840 (2) , 768-780. https://doi.org/10.1016/j.bbagen.2013.07.005
    43. Dany Kao, Alain Chaintreau, Jean-Pierre Lepoittevin, Elena Giménez-Arnau. Mechanistic studies on the reactivity of sensitizing allylic hydroperoxides: investigation of the covalent modification of amino acids by carbon-radical intermediates. Toxicology Research 2014, 3 (4) , 278. https://doi.org/10.1039/c3tx50109d
    44. Joanna Kolodziejczyk-Czepas, Barbara Wachowicz, Barbara Moniuszko-Szajwaj, Iwona Kowalska, Wieslaw Oleszek, Anna Stochmal. Antioxidative effects of extracts from Trifolium species on blood platelets exposed to oxidative stress. Journal of Physiology and Biochemistry 2013, 69 (4) , 879-887. https://doi.org/10.1007/s13105-013-0264-5
    45. Rafael Radi. Peroxynitrite, a Stealthy Biological Oxidant. Journal of Biological Chemistry 2013, 288 (37) , 26464-26472. https://doi.org/10.1074/jbc.R113.472936
    46. Cecilia Chavarría, José M. Souza. Oxidation and nitration of α-synuclein and their implications in neurodegenerative diseases. Archives of Biochemistry and Biophysics 2013, 533 (1-2) , 25-32. https://doi.org/10.1016/j.abb.2013.02.009
    47. Biji T. Kurien, Chandra Mohan, R. Hal Scofield. Mechanisms of Tissue Damage—Free Radicals and Fibrosis. 2013, 175-189. https://doi.org/10.1016/B978-1-4377-1893-5.00016-9
    48. Maria B. Feeney, Christian Schöneich. Tyrosine Modifications in Aging. Antioxidants & Redox Signaling 2012, 17 (11) , 1571-1579. https://doi.org/10.1089/ars.2012.4595
    49. Lisa K. Folkes, Silvina Bartesaghi, Madia Trujillo, Rafael Radi, Peter Wardman. Kinetics of oxidation of tyrosine by a model alkoxyl radical. Free Radical Research 2012, 46 (9) , 1150-1156. https://doi.org/10.3109/10715762.2012.695868
    50. Margaret A. Adgent, Giuseppe L. Squadrito, Carol A. Ballinger, David M. Krzywanski, Jack R. Lancaster, Edward M. Postlethwait. Desferrioxamine inhibits protein tyrosine nitration: Mechanisms and implications. Free Radical Biology and Medicine 2012, 53 (4) , 951-961. https://doi.org/10.1016/j.freeradbiomed.2012.06.003
    51. N.R. Jena, P.C. Mishra. Formation of ring-opened and rearranged products of guanine: Mechanisms and biological significance. Free Radical Biology and Medicine 2012, 53 (1) , 81-94. https://doi.org/10.1016/j.freeradbiomed.2012.04.008
    52. Eun Mi Choi. Magnolol Protects Osteoblastic MC3T3-E1 Cells Against Antimycin A-Induced Cytotoxicity Through Activation of Mitochondrial Function. Inflammation 2012, 35 (3) , 1204-1212. https://doi.org/10.1007/s10753-012-9430-0
    53. Sumitra Miriyala, Ivan Spasojevic, Artak Tovmasyan, Daniela Salvemini, Zeljko Vujaskovic, Daret St. Clair, Ines Batinic-Haberle. Manganese superoxide dismutase, MnSOD and its mimics. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2012, 1822 (5) , 794-814. https://doi.org/10.1016/j.bbadis.2011.12.002
    54. Meagan J. McManus, Michael P. Murphy, James L. Franklin. The Mitochondria-Targeted Antioxidant MitoQ Prevents Loss of Spatial Memory Retention and Early Neuropathology in a Transgenic Mouse Model of Alzheimer's Disease. The Journal of Neuroscience 2011, 31 (44) , 15703-15715. https://doi.org/10.1523/JNEUROSCI.0552-11.2011
    55. . Modification of Hydroxyl and Carboxyl Functional Groups in Proteins. 2011, 115-166. https://doi.org/10.1201/b11245-4
    56. Santiago Signorelli, Matías N. Möller, E. Laura Coitiño, Ana Denicola. Nitrogen dioxide solubility and permeation in lipid membranes. Archives of Biochemistry and Biophysics 2011, 512 (2) , 190-196. https://doi.org/10.1016/j.abb.2011.06.003
    57. Lisa K. Folkes, Madia Trujillo, Silvina Bartesaghi, Rafael Radi, Peter Wardman. Kinetics of reduction of tyrosine phenoxyl radicals by glutathione. Archives of Biochemistry and Biophysics 2011, 506 (2) , 242-249. https://doi.org/10.1016/j.abb.2010.12.006
    58. Laura Castro, Verónica Demicheli, Verónica Tórtora, Rafael Radi. Mitochondrial protein tyrosine nitration. Free Radical Research 2011, 45 (1) , 37-52. https://doi.org/10.3109/10715762.2010.516254
    59. Phillip J. White, Alexandre Charbonneau, Gregory J. Cooney, André Marette. Nitrosative modifications of protein and lipid signaling molecules by reactive nitrogen species. American Journal of Physiology-Endocrinology and Metabolism 2010, 299 (6) , E868-E878. https://doi.org/10.1152/ajpendo.00510.2010
    60. José M. Souza, Silvina Bartesaghi, Gonzalo Peluffo, Rafael Radi. Nitrotyrosine: Quantitative Analysis, Mapping in Proteins, and Biological Significance. 2010, 199-218. https://doi.org/10.1002/9780813814438.ch12
    61. Paolo Ascenzi, Alessandra di Masi, Clara Sciorati, Emilio Clementi. Peroxynitrite—An ugly biofactor?. BioFactors 2010, 36 (4) , 264-273. https://doi.org/10.1002/biof.103

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect