Skip to main content
Log in

Genetic-Biochemical Studies and Morphobiological Assessment of Small Radish (Raphanus sativus L.) under Artificial Light Culture Conditions

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

New highly productive forms of small radish (Raphanus sativus L.), adapted for growing under conditions of intense light culture, were obtained on the basis of the methodology of accelerated transgressive breeding developed at the Agrophysical Research Institute. Their genetic, morphobiological, and biochemical assessment was carried out, as well as the assessment of parental forms, in controlled and natural conditions of the environment. It has been shown that new radish forms, transgressive in terms of size and weight of root, are characterized by a complex of economically valuable traits: compact rosette, glabrous leaf, intense root growth, resistance to bolting, and improved biochemical composition. It was revealed that the characteristics of the length and diameter of the root, the compactness of the rosette, the resistance to bolting, and the degree of leaf pubescence are weakly dependent on the growing conditions, and the weight of the root and the yield of new forms exceed those for the parent varieties both in light culture and in open ground. The results of research allow us to conclude that the use of intense light culture is highly efficient for carrying out genetic selection studies and accelerating the breeding process by establishing the effects of the “genotype-environment” interaction. Evaluation and selection of hybrid plants can be carried out in a light culture for various growing conditions, including traditional protected and open ground by simulating the typical characteristics of growing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Singh, B.K., Radish (Raphanus sativus L.): breeding for higher yield, better quality and wider adaptability, in Advances in Plant Breeding Strategies: Vegetable Crops, Al-Khayri, J.M., Jain, S.M., and Johnson, D.V., Eds., Cham: Springer-Verlag, 2021, pp. 279—304. https://doi.org/10.1007/978-3-030-66965-2_7.

  2. Kurina, A.B., Kornyukhin, D.L., Solovyeva, A.E., and Artemyeva, A.M., Genetic diversity of phenotypic and biochemical traits in VIR radish (Raphanus sativus L.) germplasm collection, Plants, 2021, vol. 10, p. 1799. https://doi.org/10.3390/plants10091799

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kosenko, M.A., New early ripening variety of radish, Mezhdunar. Nauchno-Issled. Zh., 2020, nos. 2—1(92), pp. 79—83. https://doi.org/10.23670/IRJ.2020.92.2.015

  4. Kochetov, A.A. and Sinyavina, N.G., The strategy of creating highly productive forms of radish, adapted for cultivation under artificial light conditions, Ross. S-kh. Nauka, 2019, no. 1, pp. 29—33. https://doi.org/10.31857/S2500-26272019129-33

  5. Sinyavina, N.G., Kochetov, A.A., Khomyakov, Yu.V., et al., Small radish for light culture: challenges and prospects, Ovoshchi Rossii, 2019, no. 3, pp. 35—39. https://doi.org/10.18619/2072-9146-2019-3-35-39

  6. Kurina, A.B., Khmelinskaya, T.V., and Artem’eva, A.M., Genetic diversity of VIR collections of the Raphanus sativus L. (small radish and radish), Ovoshchi Rossii, 2018, no. 5, pp. 9—13. https://doi.org/10.18619/2072-9146-2017-5-9-13

  7. Gamba, M., Asllanaj, E., Raguindin, P.F., et al., Nutritional and phytochemical characterization of radish (Raphanus sativus): a systematic review, Trends Food Sci. Technol., 2021, vol. 113, pp. 205—218. https://doi.org/10.1016/j.tifs.2021.04.045

    Article  CAS  Google Scholar 

  8. Manivannan, A., Kim, J.H., Kim, D.S., et al., Deciphering the nutraceutical potential of Raphanus sativus—a comprehensive overview, Nutrients, 2019, vol. 11, no. 2, p. 402. https://doi.org/10.3390/nu11020402

    Article  CAS  PubMed Central  Google Scholar 

  9. Goyeneche, R., Roura, S., Ponce, A., et al., Chemical characterization and antioxidant capacity of red radish (Raphanus sativus L.) leaves and roots, J. Funct. Foods, 2015, vol. 16, pp. 256—264. https://doi.org/10.1016/j.jff.2015.04.049

    Article  CAS  Google Scholar 

  10. Jahangir, M., Abdel-Farid, I.B., de Vos, C.H.R., et al., Metabolomic variation of Brassica rapa var. rapa (var. raapstelen) and Raphanus sativus L. at different developmental stages, Pak. J. Bot., 2014, vol. 46, no. 4, pp. 1445—1452.

    Google Scholar 

  11. Kumar, A. and Kaushik, P., Advances and milestones of radish breeding: an update, Preprints, 2021, p. 2021080514. https://doi.org/10.20944/preprints202108.0514.v1.

  12. Bett, K.E. and Lydiate, D.J., Genetic analysis and genome mapping in Raphanus, Genome, 2003, vol. 46, pp. 423—430. https://doi.org/10.1139/g03-026

    Article  CAS  PubMed  Google Scholar 

  13. Tsuro, M., Suwabe, K., and Kubo, N., Mapping of QTLs controlling root shape and red pigmentation in radish, Raphanus sativus L., Breed. Sci., 2008, vol. 58, pp. 55—61. https://doi.org/10.1270/jsbbs.58.55

    Article  CAS  Google Scholar 

  14. Budahn, H., Peterka, H., Mousa, M.A., et al., Molecular mapping in oil radish (Raphanus sativus L.) and QTL analysis of resistance against beet cyst nematode (Heterodera schachtii), Theor. Appl. Genet., 2009, vol. 118, pp. 775—782. https://doi.org/10.1007/s00122-008-0937-6

    Article  PubMed  Google Scholar 

  15. Shirasawa, K., Oyama, M., Hirakawa, H., et al., An EST-SSR linkage map of Raphanus sativus and comparative genomics of the Brassicaceae, DNA Res., 2011, vol. 18, pp. 221—232. https://doi.org/10.1093/dnares/dsr013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kamei, A., Tsuro, M., Kubo, N., et al., QTL mapping of clubroot resistance in radish (Raphanus sativus L.), Theor. Appl. Genet., vol. 120, pp. 1021—1027. https://doi.org/10.1007/s00122-009-1230-z

  17. Yu, X., Choi, S.R., Ramchiary, N., et al., Comparative mapping of Raphanus sativus genome using Brassica markers and quantitative trait loci analysis for the Fusarium wilt resistance trait, Theor. Appl. Genet., 2013, vol. 126, pp. 2553—2562. https://doi.org/10.1007/s00122-013-2154-1

    Article  CAS  PubMed  Google Scholar 

  18. Nie, S., Li, C., Xu, L., et al., De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering, BMC Genomics, 2016, vol. 17, article number 389. https://doi.org/10.1186/s12864-016-2633-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zou, Z., Ishida, M., Li, F., et al., QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4‑methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L., PLoS One, 2013, vol. 8. e53541. https://doi.org/10.1371/journal.pone.0053541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hashida, T., Nakatsuji, R., Budahn, H., et al., Construction of a chromosome-assigned, sequence-tagged linkage map for the radish, Raphanus sativus L. and QTL analysis of morphological traits, Breed. Sci., 2013, vol. 63, pp. 218—226. https://doi.org/10.1270/jsbbs.63.218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shirasawa, K. and Kitashiba, H., Genetic maps and whole genome sequences of radish, in The Radish Genome: Compendium of Plant Genomes, Nishio, T. and Kitashiba, H., Eds., Cham: Springer-Verlag, 2017, pp. 31—42. https://doi.org/10.1007/978-3-319-59253-4_3

  22. Kochetov, A.A. and Sinyavina, N.G., Creation of new forms of small radish and radish (Raphanus sativus L.) with the predicted complex of economically valuable traits using the methodology of accelerated plant breeding, Kartofel Ovoshchi, 2019, no. 10, pp. 29—34. https://doi.org/10.25630/PAV.2019.70.54.003

  23. Kochetov, A.A. and Sinyavina, N.G., RF Patent 11518, 2021.

  24. Balashova, I.T., Sirota, S.M., and Pinchuk, E.V., Large fruit in tomato Solanum lycopersicum L.: genetic determinants, organogenesis, and fruit development, S-kh. Biol., 2020, vol. 55, no. 5, pp. 876—889. https://doi.org/10.15389/agrobiology.2020.5.876rus

    Article  Google Scholar 

  25. Balashova, I.T., Bespal’ko, L.V., Molchanova A.V., et al., Essential oil crops of the Lamiaceae family for vertical farming, Ovoshchi Ross., 2020, no. 4, pp. 72—75. https://doi.org/10.18619/2072-9146-2020-4-72-75

  26. Fiyaz, R.A., Ajay, B.C., Ramya, K.T., et al., Speed breeding: methods and applications, in Accelerated Plant Breeding, Gosal, S. and Wani, S., Eds., Cham: Springer-Verlag, 2020, vol. 1, pp. 31—49. https://doi.org/10.1007/978-3-030-41866-3_2.

  27. Ghosh, S., Watson, A., Gonzalez-Navarro, O.E., et al., Speed breeding in growth chambers and glasshouses for crop breeding and model plant research, Nat. Protoc., 2018, vol. 13, no. 12, pp. 2944—2963. https://doi.org/10.1038/s41596-018-0072-z

    Article  CAS  PubMed  Google Scholar 

  28. Hickey, L.T., Hafeez, A.N., Robinson, H., et al., Breeding crops to feed 10 billion, Nat. Biotechnol., 2019, vol. 37, no. 7, pp. 744—754. https://doi.org/10.1038/s41587-019-0152-9

    Article  CAS  PubMed  Google Scholar 

  29. Kochetov, A.A., Mirskaya, G.V., Sinyavina, N.G., and Egorova, K.V., Transgressive breeding: a methodology for the accelerated production of new plant forms with predictable set of economically valuable traits, Ross. S-kh. Nauka, 2021, no. 6, pp. 29—37. https://doi.org/10.31857/S2500262721060065

  30. Panova, G.G., Chernousov, I.N., Udalova, O.R., et al., Scientific and technical bases of year-round obtaining high yields of high-quality plant products under artificial lighting, Dokl. Ross. Akad. S-kh. Nauk, 2015, no. 4, pp. 17—21.

  31. Ermakov, E.I., Zheltov, Yu.I., Mil’to, N.E., and Kucherov, V.I., Patent RF 2081555, Byull., 1997, no. 17.

  32. Burenin, V.I., Pivovarova, N.S., and Vlasova, E.A., Izuchenie i podderzhanie mirovoi kollektsii korneplodov: (svekla, repa, turneps, bryukva): metodichesriye ukazaniya (Studying and Maintaining the World Collection of Root Crops (Beet, Turnip, Field Turnip, Rutabaga): Guidelines), Leningrad: Vseross. Inst. Rastenievod., 1989.

  33. Ermakov A.I., Arasimovich V.V., Yarosh N.P., et al., Metody biokhimicheskogo issledovaniya rastenii (Methods for Biochemical Study of Plants), Ermakov, A.I., Ed., Leningrad: Agropromizdat, 1987.

    Google Scholar 

  34. Fisher, R.A., Statistical Methods for Research Workers, Edinburgh: Oliver and Boyd, 1925, 3rd ed.

    Google Scholar 

  35. Sinyavina, N.G., Kochetov, A.A., Mirskaya, G.V., et al., The study of small radish biodiversity under conditions of intensive light culture and the identification of donors of economically valuable traits for breeding, Ovoshchi Ross., 2018, no. 3(41), pp. 56—59. https://doi.org/10.18619/2072-9146-2018-3-56-59

  36. Yu, X., Choi, S.R., Dhandapani, V., et al., Quantitative trait loci for morphological traits and their association with functional genes in Raphanus sativus, Front. Plant Sci., 2016, vol. 7, p. 255. https://doi.org/10.3389/fpls.2016.00255

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kaymak, H.Ç. and Güvenç, İ., The influence of vernalization time and day length on flower induction of radish (Raphanus sativus L.) under controlled and field conditions, Turk. J. Agric. For., 2010, vol. 34, no. 5, pp. 401—413. https://doi.org/10.3906/tar-0901-14

    Article  Google Scholar 

  38. Hu, T., Wei, Q., Wang, W., et al., Genome-wide identification and characterization of CONSTANS-like gene family in radish (Raphanus sativus), PLoS One, 2018, vol. 13, no. 9. e0204137. https://doi.org/10.1371/journal.pone.0204137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khalid, M., Khan, N.U., Din, A., et al., Linkage of morphological markers in Brassica, Pak. J. Bot., 2010, vol. 42, no. 5, pp. 2995—3000.

    Google Scholar 

  40. Cui, J., Song, S., Yu, J., and Liu, H., Effect of daily light integral on cucumber plug seedlings in artificial light plant factory, Horticulturae, 2021, vol. 7, no. 6, p. 139. https://doi.org/10.3390/horticulturae7060139

    Article  Google Scholar 

  41. Gao, M., He, R., Shi, R., et al., Differential effects of low light intensity on broccoli microgreens growth and phytochemicals, Agronomy, 2021, vol. 11, no. 3, p. 537. https://doi.org/10.3390/agronomy11030537

    Article  CAS  Google Scholar 

  42. Camejo, D., Frutos, A., Mestre, T.C., et al., Artificial light impacts the physical and nutritional quality of lettuce plants, Hortic. Environ. Biotechnol., 2020, vol. 61, no. 1, pp. 69—82. https://doi.org/10.1007/s13580-019-00191-z

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the state task of the Agrophysical Research Institute for 2022 “Development of Fundamental Principles for Managing the Production Process of Plants and Regulating the Flow of Nutrients in Agroecosystems by Establishing the Mechanisms of Interaction “Genotype–Environment” under Controlled Conditions and Obtaining New Forms of Plants with Highly Valuable Traits of Productivity and Quality When Using the Original Genetic Breeding Methodology, Bio-, Nano-, Agrotechnologies of the New Generation, and Applied Digitalization (FGEG-2-022-0005).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Sinyavina.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any research using animals or people as objects of research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinyavina, N.G., Kochetov, A.A., Egorova, K.V. et al. Genetic-Biochemical Studies and Morphobiological Assessment of Small Radish (Raphanus sativus L.) under Artificial Light Culture Conditions. Russ J Genet 58, 662–670 (2022). https://doi.org/10.1134/S1022795422060102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422060102

Keywords:

Navigation