MMSL 2016, 85(2):69-74 | DOI: 10.31482/mmsl.2016.013

RENAL CELL LINES FOR STUDY OF NEPHROTOXICITY IN VITROReview article

Martina Vrbová, Eva Dastychová, Tomáš Roušar*
Faculty of Chemical Technology, University of Pardubice, Pardubice, Studentska 573, 532 10 Czech Republic

The kidneys are one of the organ that can be commonly damaged by a number of toxic compounds (heavy metals, xenobiotics, drugs, etc.). To characterize the mechanism of toxicity, a variety of methods have been developed. The in vitro methods belong among the mostly used. Especially, the use of cell lines seems to be the leading approach to test and to characterize the toxicity mechanisms. At present, several cell lines of animal (from rat, dog, pig) or human origin are available. A detailed evaluation must go before any selection of a suitable cell line for experiments. Therefore, the aim of this review was to describe and to evaluate the mostly used renal cell lines.

Keywords: Kidney; nephrotoxicity; cell lines; human kidney cells

Received: May 1, 2016; Revised: May 30, 2016; Published: June 14, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Vrbová, M., Dastychová, E., & Roušar, T. (2016). RENAL CELL LINES FOR STUDY OF NEPHROTOXICITY IN VITRO. MMSL85(2), 69-74. doi: 10.31482/mmsl.2016.013
Download citation

References

  1. Hull, R. N.; Cherry, W. R., & Weaver, G. W. Origin and Characteristics of a Pig Kidney Cell Strain, Llc-Pk. In Vitro Cell Dev B. 1976, 12, 670-677. Go to original source... Go to PubMed...
  2. Graham, F. L.; Smiley, J.; Russell, W. C., & Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. The Journal of general virology. 1977, 36, 59-74. Go to original source... Go to PubMed...
  3. Ryan, M. J.; Johnson, G.; Kirk, J.; Fuerstenberg, S. M.; Zager, R. A., & Torokstorb, B. Hk-2 - an Immortalized Proximal Tubule Epithelial-Cell Line from Normal Adult Human Kidney. Kidney Int. 1994, 45, 48-57. Go to original source... Go to PubMed...
  4. Gaush, C. R.; Hard, W. L., & Smith, T. F. Characterization of an established line of canine kidney cells (MDCK). Proc Soc Exp Biol Med. 1966, 122, 931-935. Go to original source... Go to PubMed...
  5. Takuwa, Y., & Ogata, E. Differentiated Properties Characteristic of Renal Proximal Epithelium in a Cell-Line Derived from a Normal Monkey Kidney (Jtc-12). In Vitro Cellular & Developmental Biology. 1985, 21, 445-449. Go to original source... Go to PubMed...
  6. de Larco, J. E., & Todaro, G. J. Epithelioid and fibroblastic rat kidney cell clones: epidermal growth factor (EGF) receptors and the effect of mouse sarcoma virus transformation. J Cell Physiol. 1978, 94, 335-342. Go to original source... Go to PubMed...
  7. Koyama, H.; Goodpasture, C.; Miller, M. M.; Teplitz, R. L., & Riggs, A. D. Establishment and Characterization of a Cell Line from American Opossum (Didelphys-Virginiana). In Vitro Cell Dev B. 1978, 14, 239-246. Go to original source... Go to PubMed...
  8. Barron, E. T.; O'Brien, A., & Ryan, M. P. Primary cultures of rat and rabbit renal proximal epithelium as models for nephrotoxicity investigations. Toxicol Lett. 1990, 53, 161-165.
  9. Boogaard, P. J.; Nagelkerke, J. F., & Mulder, G. J. Renal Proximal Tubular Cells in Suspension or in Primary Culture as Invitro Models to Study Nephrotoxicity. Chem-Biol Interact. 1990, 76, 251-292. Go to original source... Go to PubMed...
  10. Lash, L. H.; Putt, D. A.; Hueni, S. E.; Cao, W.; Xu, F.; Kulidjian, S. J., & Horwitz, J. P. Cellular energetics and glutathione status in NRK-52E cells: toxicological implications. Biochem Pharmacol. 2002, 64, 1533-1546. Go to original source... Go to PubMed...
  11. Bessems, J. G. M., & Vermeulen, N. P. E. Paracetamol (acetaminophen)-induced toxicity: Molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol. 2001, 31, 55-138. Go to original source... Go to PubMed...
  12. Toutain, H., & Morin, J. P. Renal Proximal Tubule Cell-Cultures for Studying Drug-Induced Nephrotoxicity and Modulation of Phenotype Expression by Medium Components. Renal Failure. 1992, 14, 371-383. Go to original source... Go to PubMed...
  13. Courjaultgautier, F.; Chevalier, J.; Abbou, C. C.; Chopin, D. K., & Toutain, H. J. Consecutive Use of Hormonally Defined Serum-Free Media to Establish Highly Differentiated Human Renal Proximal Tubule Cells in Primary Culture. J Am Soc Nephrol. 1995, 5, 1949-1963. Go to original source... Go to PubMed...
  14. Kreisberg, J. I., & Wilson, P. D. Renal-Cell Culture. J Electron Micr Tech. 1988, 9, 235-263. Go to original source... Go to PubMed...
  15. Malstrom, K.; Stange, G., & Murer, H. Identification of proximal tubular transport functions in the established kidney cell line, OK. Biochim Biophys Acta. 1987, 902, 269-277. Go to original source... Go to PubMed...
  16. Courjault, F.; Gerin, B.; Leroy, D.; Chevalier, J., & Toutain, H. Morphological and biochemical characterization of the opossum kidney cell line and primary cultures of rabbit proximal tubule cells in serum-free defined medium. Cell Biol Int Rep. 1991, 15, 1225-1234. Go to original source... Go to PubMed...
  17. Guimaraes, J. T.; Vieira-Coelho, M. A.; Serrao, M. P., & Soares-da-Silva, P. Opossum kidney (OK) cells in culture synthesize and degrade the natriuretic hormone dopamine: a comparison with rat renal tubular cells. The international journal of biochemistry & cell biology. 1997, 29, 681-688. Go to original source... Go to PubMed...
  18. Komaba, S., & Coluccio, L. M. Myosin 1b Regulates Amino Acid Transport by Associating Transporters with the Apical Plasma Membrane of Kidney Cells. Plos One. 2015, 10, e0138012. Go to original source... Go to PubMed...
  19. Silva, E., & Soares-da-Silva, P. Long-term regulation of Na+,K+-ATPase in opossum kidney cells by ouabain. J Cell Physiol. 2011, 226, 2391-2397. Go to original source... Go to PubMed...
  20. Murray, R. D.; Merchant, M. L.; Hardin, E.; Clark, B.; Khundmiri, S. J., & Lederer, E. D. Identification of an RNA-binding protein that is phosphorylated by PTH and potentially mediates PTH-induced destabilization of Npt2a mRNA. American journal of physiology. Cell physiology. 2016, 310, C205-215. Go to original source... Go to PubMed...
  21. Weinman, E. J.; Steplock, D.; Cha, B.; Kovbasnjuk, O.; Frost, N. A.; Cunningham, R., Donowitz, M. PTH transiently increases the percent mobile fraction of Npt2a in OK cells as determined by FRAP. American journal of physiology. Renal physiology. 2009, 297, F1560-1565. Go to original source... Go to PubMed...
  22. Arthur, J. M. The MDCK cell line is made up of populations of cells with diverse resistive and transport properties. Tissue & cell. 2000, 32, 446-450. Go to original source... Go to PubMed...
  23. El-Sayed, I.; Bassiouny, K.; Nokaly, A.; Abdelghani, A. S., & Roshdy, W. Influenza A Virus and Influenza B Virus Can Induce Apoptosis via Intrinsic or Extrinsic Pathways and Also via NF-kappaB in a Time and Dose Dependent Manner. Biochemistry research international. 2016, 2016, 1738237. Go to original source... Go to PubMed...
  24. Carinhas, N.; Pais, D. A.; Koshkin, A.; Fernandes, P.; Coroadinha, A. S.; Carrondo, M. J., Teixeira, A. P. Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production. Scientific reports. 2016, 6, 23529. Go to original source... Go to PubMed...
  25. Kakisaka, M.; Mano, T., & Aida, Y. A high-throughput screening system targeting the nuclear export pathway via the third nuclear export signal of influenza A virus nucleoprotein. Virus research. 2016, 217, 23-31. Go to original source... Go to PubMed...
  26. Xiong, X. H.; Huang, L. H.; Zhong, Y. M.; Cheng, X. G.; Cen, M. F.; Wang, G. X., Wang, S. J. Absorption mechanism of oxymatrine in cultured Madin-Darby canine kidney cell monolayers. Pharm Biol. 2016, 1-8. Go to original source... Go to PubMed...
  27. Yu, R. Z.; Warren, M. S.; Watanabe, T.; Nichols, B.; Jahic, M.; Huang, J., Wang, Y. Lack of Interactions Between an Antisense Oligonucleotide with 2'-O-(2-Methoxyethyl) Modifications and Major Drug Transporters. Nucleic acid therapeutics. 2016, 26, 111-117. Go to original source... Go to PubMed...
  28. Gozalpour, E.; Wilmer, M. J.; Bilos, A.; Masereeuw, R.; Russel, F. G., & Koenderink, J. B. Heterogeneous transport of digitalis-like compounds by P-glycoprotein in vesicular and cellular assays. Toxicol in Vitro. 2016, 32, 138-145. Go to original source... Go to PubMed...
  29. Reznicek, J.; Ceckova, M.; Cerveny, L.; Muller, F., & Staud, F. Emtricitabine is a substrate of MATE1 but not of OCT1, OCT2, P-gp, BCRP or MRP2 transporters. Xenobiotica; the fate of foreign compounds in biological systems. 2016, 1-9. Go to original source... Go to PubMed...
  30. Rindler, M. J.; Chuman, L. M.; Shaffer, L., & Saier, M. H. Retention of Differentiated Properties in an Established Dog Kidney Epithelial-Cell Line (Mdck). J Cell Biol. 1979, 81, 635-648. Go to original source... Go to PubMed...
  31. Caplan, M. J.; Anderson, H. C.; Palade, G. E., & Jamieson, J. D. Intracellular sorting and polarized cell surface delivery of (Na+,K+)ATPase, an endogenous component of MDCK cell basolateral plasma membranes. Cell. 1986, 46, 623-631. Go to original source... Go to PubMed...
  32. Balcarova-Stander, J.; Pfeiffer, S. E.; Fuller, S. D., & Simons, K. Development of cell surface polarity in the epithelial Madin-Darby canine kidney (MDCK) cell line. The EMBO journal. 1984, 3, 2687-2694. Go to original source... Go to PubMed...
  33. Lever, J. E.; Kennedy, B. G., & Vasan, R. Amino acid transport in kidney epithelial cell line (MDCK): characteristics of Na+/amino acid symport in membrane vesicles and basolateral localization in cell monolayers. Arch Biochem Biophys. 1984, 234, 330-340. Go to original source... Go to PubMed...
  34. Gunness, P.; Aleksa, K.; Kosuge, K.; Ito, S., & Koren, G. Comparison of the novel HK-2 human renal proximal tubular cell line with the standard LLC-PK1 cell line in studying drug-induced nephrotoxicity. Can J Physiol Pharm. 2010, 88, 448-455. Go to original source... Go to PubMed...
  35. Andersen, K. J.; Maunsbach, A. B., & Christensen, E. I. Biochemical and ultrastructural characterization of fluid transporting LLC-PK1 microspheres. J Am Soc Nephrol. 1998, 9, 1153-1168. Go to original source... Go to PubMed...
  36. Mahdi, Z. M.; Synal-Hermanns, U.; Yoker, A.; Locher, K. P., & Stieger, B. Role of Multidrug Resistance Protein 3 (MDR3) in Antifungal-Induced Cholestasis. Molecular pharmacology. 2016. Go to original source... Go to PubMed...
  37. Miglionico, R.; Gerbino, A.; Ostuni, A.; Armentano, M. F.; Monne, M.; Carmosino, M., & Bisaccia, F. New insights into the roles of the N-terminal region of the ABCC6 transporter. J Bioenerg Biomembr. 2016. Go to original source... Go to PubMed...
  38. Peng, R.; Zhang, H.; Zhang, Y., & Wei, D. Y. Impacts of ABCB1 (G1199A) polymorphism on resistance, uptake, and efflux to steroid drugs. Xenobiotica; the fate of foreign compounds in biological systems. 2016, 1-5. Go to original source... Go to PubMed...
  39. Jeong, H. U.; Kwon, M.; Lee, Y.; Yoo, J. S.; Shin, D. H.; Song, I. S., & Lee, H. S. Organic anion transporter 3- and organic anion transporting polypeptides 1B1- and 1B3-mediated transport of catalposide. Drug design, development and therapy. 2015, 9, 643-653. Go to PubMed...
  40. Arthur, J.; Huang, J.; Nomura, N.; Jin, W. W.; Li, W.; Cheng, X., Lu, H. J. Characterization of the putative phosphorylation sites of the AQP2 C terminus and their role in AQP2 trafficking in LLC-PK1 cells. American journal of physiology. Renal physiology. 2015, 309, F673-679. Go to original source... Go to PubMed...
  41. Choi, H. J.; Jung, H. J., & Kwon, T. H. Extracellular pH affects phosphorylation and intracellular trafficking of AQP2 in inner medullary collecting duct cells. American journal of physiology. Renal physiology. 2015, 308, F737-748. Go to original source... Go to PubMed...
  42. Lee, D.; Kim, K. H.; Moon, S. W.; Lee, H.; Kang, K. S., & Lee, J. W. Synthesis and biological evaluation of chalcone analogues as protective agents against cisplatin-induced cytotoxicity in kidney cells. Bioorganic & medicinal chemistry letters. 2015, 25, 1929-1932. Go to original source... Go to PubMed...
  43. Song, K. I.; Park, J. Y.; Lee, S.; Lee, D.; Jang, H. J.; Kim, S. N., Yamabe, N. Protective effect of tetrahydrocurcumin against cisplatin-induced renal damage: in vitro and in vivo studies. Planta Med. 2015, 81, 286-291. Go to original source... Go to PubMed...
  44. Todaro, G. J., & Aaronson, S. A. Human cell strains susceptible to focus formation by human adenovirus type 12. Proc Natl Acad Sci U S A. 1968, 61, 1272-1278. Go to original source... Go to PubMed...
  45. Shaw, G.; Morse, S.; Ararat, M., & Graham, F. L. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. Faseb J. 2002, 16, 869-871. Go to original source... Go to PubMed...
  46. Wang, Q.; Lu, Y.; Yuan, M.; Darling, I. M.; Repasky, E. A., & Morris, M. E. Characterization of monocarboxylate transport in human kidney HK-2 cells. Molecular pharmaceutics. 2006, 3, 675-685. Go to original source... Go to PubMed...
  47. Shipp, M. A.; Vijayaraghavan, J.; Schmidt, E. V.; Masteller, E. L.; D'Adamio, L.; Hersh, L. B., & Reinherz, E. L. Common acute lymphoblastic leukemia antigen (CALLA) is active neutral endopeptidase 24.11 (enkephalinase): direct evidence by cDNA transfection analysis. Proc Natl Acad Sci U S A. 1989, 86, 297-301. Go to original source... Go to PubMed...
  48. Racusen, L. C.; Monteil, C.; Sgrignoli, A.; Lucskay, M.; Marouillat, S.; Rhim, J. G., & Morin, J. P. Cell lines with extended in vitro growth potential from human renal proximal tubule: characterization, response to inducers, and comparison with established cell lines. J Lab Clin Med. 1997, 129, 318-329. Go to original source... Go to PubMed...
  49. Fernandez-Martinez, A. B.; Benito Martinez, S., & Lucio Cazana, F. J. Intracellular prostaglandin E2 mediates cisplatin-induced proximal tubular cell death. Biochim Biophys Acta. 2016, 1863, 293-302.
  50. Kwon, H. K.; Shin, H. J.; Lee, J. H.; Park, S. H.; Kwon, M. C.; Panneerselvam, S., Choi, S. Etoposide Induces Necrosis Through p53-Mediated Antiapoptosis in Human Kidney Proximal Tubule Cells. Toxicol Sci. 2015, 148, 204-219. Go to original source... Go to PubMed...
  51. Fongsupa, S.; Soodvilai, S.; Muanprasat, C.; Chatsudthipong, V., & Soodvilai, S. Activation of liver X receptors inhibits cadmium-induced apoptosis of human renal proximal tubular cells. Toxicol Lett. 2015, 236, 145-153. Go to original source... Go to PubMed...
  52. Peng, P. A.; Wang, L.; Ma, Q.; Xin, Y.; Zhang, O.; Han, H. Y., Zhao, Y. X. Valsartan protects HK-2 cells from contrast media-induced apoptosis by inhibiting endoplasmic reticulum stress. Cell Biol Int. 2015, 39, 1408-1417. Go to original source... Go to PubMed...
  53. Kim, H. J.; Park, D. J.; Kim, J. H.; Jeong, E. Y.; Jung, M. H.; Kim, T. H., Chang, S. H. Glutamine protects against cisplatin-induced nephrotoxicity by decreasing cisplatin accumulation. Journal of pharmacological sciences. 2015, 127, 117-126. Go to original source... Go to PubMed...
  54. Solocinski, K.; Richards, J.; All, S.; Cheng, K. Y.; Khundmiri, S. J., & Gumz, M. L. Transcriptional regulation of NHE3 and SGLT1 by the circadian clock protein Per1 in proximal tubule cells. American journal of physiology. Renal physiology. 2015, 309, F933-942. Go to original source... Go to PubMed...
  55. Tang, W. B.; Ling, G. H.; Sun, L.; Zhang, K.; Zhu, X.; Zhou, X., & Liu, F. Y. Smad Anchor for Receptor Activation Regulates High Glucose-Induced EMT via Modulation of Smad2 and Smad3 Activities in Renal Tubular Epithelial Cells. Nephron. 2015, 130, 213-220. Go to original source... Go to PubMed...
  56. Romiti, N.; Tramonti, G.; Donati, A., & Chieli, E. Effects of grapefruit juice on the multidrug transporter P-glycoprotein in the human proximal tubular cell line HK-2. Life Sci. 2004, 76, 293-302. Go to original source... Go to PubMed...