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Several potential applications of structural biology depend on

discovering how one macromolecule might recognize a

partner. Experiment remains the best way to answer this

question, but computational tools can contribute where this

fails. In such cases, structures may be studied to identify

patches of exposed residues that have properties common to

interaction surfaces and the locations of these patches can

serve as the basis for further modelling or for further

experimentation. To date, interaction surfaces have been

proposed on the basis of unusual physical properties, unusual

propensities for particular amino-acid types or an unusually

high level of sequence conservation. Using the CXXSurface

toolkit, developed as a part of the CCP4MG program, a suite

of tools to analyse the properties of surfaces and their

interfaces in complexes has been prepared and applied. These

tools have enabled the rapid analysis of known complexes to

evaluate the distribution of (i) hydrophobicity, (ii) electro-

static complementarity and (iii) sequence conservation in

authentic complexes, so as to assess the extent to which these

properties may be useful indicators of probable biological

function.
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1. Introduction

In recent years, substantial effort has been directed towards

characterizing the properties that distinguish the parts of a

protein that are involved in molecular recognition (e.g. Jones

& Thornton, 1996; Lo Conte et al., 1999; Ma et al., 2003;

Teichmann, 2002). The reasons behind this are twofold. Firstly,

there is the scientific goal of understanding the physical

principles that underlie the exquisite molecular-recognition

processes that permit fidelity in processes such as signal

transduction. Secondly, there is the more applied goal of using

structures to contribute to the functional annotation of

genomic projects.

For this latter goal, the role of analysing the properties of

structurally characterized protein–protein interaction sites is

to inform the analysis of newly determined structures so as to

permit identification of parts of the molecule that are likely to

be involved in protein–protein (or other) interactions. A

further application of this approach is to exploit knowledge of

authentic interfacial properties in validating hypothetical

models in which proteins have been docked together.

The drive to characterize protein–protein interactions has

given rise to a number of computational tools that may be

used either in analysing a newly determined protein structure

or in using three-dimensional structural information to assist

in studying a novel gene sequence. Application of such tools is

a way to maximize the benefit that may be derived from

structural data, particularly when used to generate functional
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hypotheses that can be subsequently tested by experimental

techniques such as site-directed mutagenesis.

This article reviews a subset of analytical tools that char-

acterize a protein interaction site by mapping quantitative

descriptors of a property of that protein onto a triangulated

surface representation. This approach effectively filters the

possible set of descriptors of a molecule so as to focus on that

part of the molecule that is responsible for its interactions,

namely the molecular surface. We find that this approach can

‘sharpen’ the signal that demonstrates that properties (such as

hydrophobicity, electrostatic complementarity and sequence
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Figure 1
Example of a conservation-mapped molecular surface and an interfacial subset. (a) A molecular surface is generated from the CDK2 chain in a structure
of the CDK2–cyclin A complex (PDB code 1qmz; Brown et al., 1999). The cyclin molecule is shown in purple and the molecular surface in grey. The
peptide substrate is shown in yellow. (b) In the next step of the analysis, conservation scores calculated from a multiple sequence alignment of cdc2
functional homologues are projected onto the molecular surface. The molecular surface is now coloured in shades of red (high conservation), white
(intermediate conservation) and blue (low conservation, i.e. high variability). (c) The CDK2–cyclin A interface is extracted by identifying that part of the
CDK2 molecular surface that is buried by the cyclin A molecule upon complex formation.

conservation) are more typical of a protein–protein interface

than of a protein surface in general.

2. Conservation

Descriptive studies in which the extent of conservation of

interface residues is compared with the extent of conservation

of the rest of the protein surface have led to the generally

accepted view that active-site and ligand-binding site residues

are more conserved than general surface residues across many

different protein families (Grishin & Phillips, 1994; Ouzounis

et al., 1998; Bartlett et al., 2002; Caffrey et al., 2004). This result

is perhaps not surprising considering that the precise

arrangement of residues required for catalysis and ligand

binding is expected to impose strong constraints on the

evolution of sequences and structures (Shakhnovich et al.,

2003; Torrance et al., 2005).

Furthermore, predictive studies have shown that clusters of

residues that make up active sites or ligand-binding sites are

invariably more conserved than clusters of residues defined

elsewhere on the surface of a protein. These results show that

conservation analysis is of predictive value in the identification

of active sites and ligand-binding sites using sequence-based

(Watson et al., 2005), structure-based (Laskowski et al.,

2005a,b) or mixed strategies (Watson et al., 2005).

On the other hand, the role of conservation is less clear for

protein–protein interfaces (Grishin & Phillips, 1994; Valdar &

Thornton, 2001; Caffrey et al., 2004). The generally accepted

model for the variation of the rate of evolution of proteins is



one in which the rate of evolution increases (i.e. conservation

decreases) from the catalytic site to the protein core, to

substrate-specificity sites and finally to surface regulatory

regions (Valencia, 2005).

Conservation-analysis studies usually perform separate

statistical analyses of homodimeric and heterodimeric

protein–protein interfaces. Using sets of diverse homologues,

Caffrey and coworkers have found that in homodimers, while

the interface residues generally have higher conservation

scores than the total surface residues (in 17/42 cases), the

result is not statistically significant (P value 0.388; Caffrey et

al., 2004). Grishin & Phillips found similar results for homo-

dimeric enzyme interfaces (Grishin & Phillips, 1994). Caffrey

and coworkers also found that in heterodimers interface

residues have larger conservation scores (in 11/12 interfaces)

than residues making up the total protein surface. This result

was also found to be statistically significant (P value = 0.0387).

Structure-based evolutionary methods seek to predict

functional sites by sampling the evolutionary histories of gene

families and projecting the information onto the structure of a

single (presumably representative) structure of a member of

the gene family. The methods involve a step in which a

phylogenetic lineage of the sampled gene family is

constructed. Evolutionary-trace (ET) analysis (Lichtarge et

al., 1996) is the most widely implemented form of such

evolutionary methods. ET exploits a phylogenetic tree or

sequence-identity dendogram to rank residues by evolu-

tionary importance. For example, the colour red is assigned to

those conserved in all groups and green to those conserved in

at least one (but not all) groups. The ranks are then mapped

onto a representative structure (e.g. the structure of one of the

sequences in the analysis). It has been found that the highest

ranked residues often cluster together and can be used to

identify interaction sites (Yao et al., 2003).

These observations suggest that significant functional

insight can be derived from visualization of the distribution of

sequence conservation when mapped onto representations of

protein structure. Glaser and coworkers have implemented

this approach in the ConSurf server (Glaser et al., 2003) by

assigning a conservation score to sequence positions of a

protein of known structure so that a VDW representation can

be used to identify more conserved patches that.

We have mapped sequence conservation onto triangulated

molecular-surface representations of a protein. In addition to

permitting visualization of the conservation of amino acids

that form the molecular surface (e.g. Fig. 1b), this approach

has allowed us to re-evaluate the extent to which sequence

conservation is a statistically significant property of protein–

protein interfaces using a scoring system in which the

conservation score of a residue is weighted by the surface-area

contribution made by that residue to the surface of interest.

This is a departure from traditional conservation-analysis

studies (Grishin & Phillips, 1994; Valdar & Thornton, 2001;

Caffrey et al., 2004; Nimrod et al., 2005), in which analyses are

performed on whole residues (surface and interface) without

taking into account the relative size of the contribution that

the residue may make to a surface.

To assess which sequences should be included in the

multiple sequence alignment (MSA) from which conservation

scores are calculated, a strategy was used in which an MSA for

the protein class of interest was manually compared with a

structure-based (HOMSTRAD; Mizuguchi et al., 1998) align-

ment of members of that family. If the MSA was significantly

poorer than the HOMSTRAD alignment, the most divergent

sequence was deleted and the MSA was recalculated. This

procedure was iterated until the MSA closely resembled the

HOMSTRAD alignment.

The conservation scores of the columns of the final MSA

were calculated by a scheme that uses a normalized

BLOSUM62 (Henikoff & Henikoff, 1992) substitution matrix

to quantify the total pairwise similarity of all possible residue

pairs that can be assembled within each column of the align-

ment. The conservation score [C(x)] of a column within a set

of aligned sequence was calculated using

CðxÞ ¼

PN
i

PN
j>i

M½siðxÞ; sjðxÞ�

ðN � 1Þ �
PN

j

M½sjðxÞ; sjðxÞ�

( ) ; ð1Þ

where si(x) is the amino acid at column x in the ith sequence

and N is the total number of sequences in the alignment.

M(a, b) is the similarity between amino acids a and b. The

similarity matrix M is derived from the BLOSUM62 substi-

tution matrix [m(a, b)] using the transformation

Mða; bÞ ¼
mða; bÞ

½mða; aÞ �mðb; bÞ�1=2
: ð2Þ

This transformation has been suggested to permit the use of a

substitution matrix to measure amino-acid similarity (Valdar,

2002). These conservation values are passed on to the corre-

sponding residue in the sequence of the member of the gene

family whose structure is known (also present in the align-

ment).

Each vertex of the triangulated surface inherits the

conservation score of the atom that immediately underlies it.

Each triangle (T) of the surface can thus be assigned a

conservation score [C(T)], calculated as the mean conserva-

tion score of the triangle’s three vertices. A surface or surface

patch (S) can be assigned a mean conservation score [C(S)] by

forming the sum

CðSÞ ¼

P
T2S

CðTÞ � AðTÞP
T2S

AðTÞ
; ð3Þ

where A(T) is the area of triangle T.

Fig. 1 shows an example of the generation of spatial

conservation patterns of molecular surfaces and of the

extraction of the interfacial subset of the surface. This subset

corresponds to those triangles of the molecular surface,

generated from the atoms of one of the chains in the complex,

that become buried upon formation of a complex with its

partner. Apparent immediately is the increased level of
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conservation of surface residues involved in binding between

the two proteins and at the protein–substrate interface.

We have evaluated C(S) for the interface and non-interface

surfaces of a set of homodimers and heterodimers. The results

we obtained from analysis of spatial conservation patterns of

heterodimers and homodimers are summarized in Table 1. In

agreement with other workers (Caffrey et al., 2004; Grishin &

Phillips, 1994; Valdar & Thornton, 2001) our results show that

(i) in heterodimers the interface is more conserved than the

molecular surface and (ii) in homodimers the interface is no

more conserved than the molecular surface. The P value we

obtained in the analysis of heterodimers (0.0004322) indicates

greater significance than that obtained by Caffrey and

coworkers (0.0387; Caffrey et al., 2004). This can be explained

by a number of factors: (i) our sample is larger than that used

by Caffrey and coworkers, (ii) we have used different criteria

in selecting sequences for building the MSAs and (iii) our

approach includes consideration of three-dimensional struc-

tural information, namely the fractional surface area of each

residue involved in the interface.

Irrespective of which factor contributes most significantly,

these results may be rationalized in terms of the comparison

between the conceivably more complicated co-evolutions of

two independent proteins that are constrained to maintain an

heterodimeric interface and the conceivably simpler evolution

of a single sequence constrained to maintain the homodimeric

interface.

Furthermore, from a visual survey of the conservation

patterns for the data set used, it is evident that the structure of

conservation patterns in interfaces is complex. Areas of high

conservation are embedded within areas of high variability, i.e.

the distribution of conservation within interfaces is generally

uneven, with higher levels of conservation generally found at

the centre of an interaction site. Other workers have noted

similar results in analyses where conservation scores are

projected onto residues (Caffrey et al., 2004; Valdar &

Thornton, 2001).

3. Physical properties

3.1. Hydrophobicity

Water molecules in bulk water form a network of short-

lived hydrogen bonds participating on average in 3.5 hydrogen

bonds at any one time. An intuitive model of hydrophobicity

proposes that water molecules close to a hydrophobic surface

are unable to form hydrogen bonds with the nonpolar atoms

of the solute and therefore have a restricted choice of orien-

tations. Water close to the surface is therefore more ordered

than in bulk solvent. The ordering of water molecules in this

way would lead to a local decrease in entropy and hence an

unfavourable free energy of solvation (Frank & Evans, 1945;

Dill, 1990). For locations close to extended hydrophobic

surfaces it might be impossible to form the maximum number

of hydrogen bonds, making these positions enthalpically

unfavourable as well. It is the lack of opportunities for

hydrogen bonding that renders surfaces hydrophobic.

The importance of hydrophobicity for protein stability was

postulated in 1945, when it was recognized that protein

molecules contain nonpolar groups that would be exposed to

solvent in an unfolded protein (Southall et al., 2002). This

intuition was confirmed by the first protein structure showing

that hydrophobic residues are indeed preferentially buried in

the protein interior (Kendrew et al., 1958). Walter Kauzmann

introduced the term ‘hydrophobic bonding’ to describe inter-

actions driven by exclusion from water (Kauzmann, 1959).

While continuum electrostatics provides a relatively well

understood framework for the analysis of charge–charge

interactions, there is still no consensus about an appropriate

treatment of the hydrophobic effect.

Traditionally, amino acids have been roughly classified as

either hydrophobic, aliphatic or charged/hydrophilic. There

have been a number of attempts to make this classification

more quantitative by introducing continuous scales of

hydrophobicity (e.g. Nozaki & Tanford, 1971; Radzicka et al.,

1988). Hydrophobicity scales are commonly derived from the

partitioning of model compounds between an aqueous and an

oil-like phase. The use of such scales is based on the

assumption that the relative hydrophobicity is independent of

the apolar phase used. However, analysis of 36 hydrophobicity

scales for the 20 common amino acids reveals that the relative

hydrophobicity is strongly dependent on the apolar phase

used.

A related approach for the characterization of protein

surfaces assigns hydrophobicity scores based on the hydrogen-

bonding capacity of atoms or functional groups; for example,

classing all surface elements formed by carbon as hydro-

phobic. Intuitively, however, the true hydropathy of a given

point close to the surface of a protein depends on the total

opportunity for hydrogen bonding at that point. This can only

really be assessed by summing over all possible hydrogen-

bonding partners for a hypothetical water molecule at that

point, taking into consideration the highly directional char-

acter of hydrogen bonding. For instance, not all points close to

an oxygen atom provide equal hydrogen-bonding opportunity.

Our approach for the assignment of hydrophobicity is based

on empirical hydrogen-bonding potential parameterized in the

program GRID (Goodford, 1985; Wade & Goodford, 1993).

GRID parameterizes hydrophobicity by evaluating the

summed pairwise interactions of a water probe molecule with

all surrounding atoms.

For each position close to a protein surface, GRID deter-

mines the energy (EHB) of hydrogen bonds that could be

formed by a water molecule at that position. At every point
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Table 1
Analysis of the relative conservation of interface and non-interface
surfaces in a set of homodimers and heterodimers.

Interface
type

Total No. of
interfaces studied

No. in which interface
is more conserved than
non-interface molecular
surface

P
value

Homodimer 18 10 0.3927
Heterodimer 27 25 4.32 � 10�4



the Lennard–Jones potential (ELJ) for a water molecule is also

calculated and added to the hydrogen-bonding potential. The

effect of the Lennard–Jones term is to distinguish between

protein interior, protein surface and bulk solvent. If the

hydrophobic potential is evaluated for a point within the

VDW radius of a protein atom, the VDW term will result in a

large positive (repulsive) term. Outside this volume, the VDW

potential provides the behaviour of a weakly attractive force

that falls off sharply with separation (being proportional to

r�6).

The enthalpic component to the solvation is then corrected

by an entropy offset calculated under the simplified assump-

tion that water molecules close to a surface can only partici-

pate in three hydrogen bonds to bulk solvent instead of 3.5.

Thus, displacement of these waters gives rise to a constant

entropy offset at each point of the surface. The energy

returned by the GRID hydrophobic probe is calculated as

’ ¼ ELJ þWENT � EHB: ð4Þ

Close to hydrophobic patches, where few hydrogen bonds can

be formed, the value of ’ is dominated by the entropy offset.

Close to charged or polar groups, in contrast, it is dominated

by the hydrogen-bonding energy term. The Lennard–Jones

potential term contributes a small favourable component close

to surfaces of any character, but dominates as a strongly

repulsive potential at probe positions that are too close to or

within protein atoms.

The GRID hydrophobic potential generated in this way can

be interpreted as a measure of the energy that would be

required to remove a water molecule from a given point on the

protein surface into bulk solvent. Owing to the detailed

hydrogen-bonding function employed in GRID, this hydro-

phobic scoring function is very sensitive to both the position

and orientation of groups at the protein surface. This quality

allows the generation of high-resolution maps of surface

hydrophobicity.

The GRID approach succeeds in predicting some aspects of

protein-surface hydrophobicity that do not emerge from a

simple categorization of underlying atoms. For example, while

tryptophan is considered to be a hydrophobic amino acid, it

does have the capacity to form polar interactions, particularly

in the indole plane, through its N" atom (Fig. 2a) and thus this

part of the residue should properly be characterized as

hydrophilic. The GRID analysis captures this intuitive beha-

viour (Fig. 2b), clearly demonstrating hydrophilic patches on

the surface resulting from the polar N" atom. Complementary

intuitive behaviour is seen for arginine, a predominantly polar

amino acid (Fig. 2c). In addition to the generally hydrophilic

periphery of the guanidino group, GRID’s hydrophobic probe

identifies both the hydrophobic aliphatic part of the side chain

and a partly hydrophobic surface that is parallel to the plane

of the guanidino group (Fig. 2d). This latter behaviour arises

from the directional dependence of hydrogen bonds, which

form preferentially in the plane of the guanidino moiety

(Singh & Thornton, 1992).

An example of the insight that can be gained from the

GRID-type hydrophobic analysis is illustrated in Fig. 3. SH3

domains generally bind a proline-rich peptide motif. From an

analysis of the fold of an isolated SH3 domain (Fig. 3a),

relatively few insights into the peptide-binding mechanism

could be derived (Musacchio et al., 1992). However, the

hydrophobic surface potential reveals a striking correlation

between the binding pattern of the

naturally occurring ligand, as seen in the

crystal structure of an SH3–peptide

complex (Musacchio et al., 1994), and

the local surface hydrophobicity

(Fig. 3b).

A further benefit of using this

approach to characterizing hydro-

phobicity is demonstrated by posing the

question of whether hydrophobicity can

be statistically demonstrated to be

preferentially expressed at protein–

protein interfaces. Whereas this beha-

viour has been suggested, the statistical

significance, as evaluated using atom- or

residue-based methods of evaluating

hydrophobicity, has not been strong (Lo

Conte et al., 1999). We have addressed

this question by assigning to each

triangle (T) that is part of a protein

surface a hydrophobic potential [’(T)]

equal to the mean hydrophobic poten-

tial of a probe in contact with each of its

three vertices. The mean hydro-

phobicity of a surface [�(S)] is there-

fore the sum over all constituent
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Figure 2
Distribution of hydrophobicity around tryptophan and arginine residues. The side chains of
tryptophan (a, b) and arginine (c, d) are shown in either ball-and-stick (a, c) or molecular-surface
(b, d) representation. Ball-and-stick representations are coloured by atom type, whereas the surface
representation is coloured by GRID-assigned hydrophobic potential. Here, yellow indicates regions
with high local hydrophobicity, while purple indicates nonhydrophobic surface patches.



triangles of that surface of the area-weighted hydrophobicity

of that triangle, divided by the total area of the surface,

�ðSÞ ¼

P
T2S

’ðTÞ � AðTÞP
T2S

AðTÞ
; ð5Þ

where A(T) is the area of triangle T.

The hydrophobicity of an interface is therefore the mean

hydrophobic potential of that part of the surface that becomes

buried upon complex formation, while the hydrophobicity of

the non-interface surface is the mean hydrophobic potential of

the rest of the surface.

Assigning hydrophobicity to contact and noncontact

surfaces on this basis, we have evaluated the mean hydro-

phobicity of buried and exposed surface for 146 surfaces

involved in the intermolecular interactions studied by Lo

Conte and coworkers.

In testing whether hydrophobicity is significantly higher at

protein–protein interfaces, the null hypothesis is that buried

and exposed surfaces are subsets of the same population in

terms of hydrophobicity. Under the null hypothesis, it is as

likely that a buried surface should be more hydrophobic than

an exposed surface as that an exposed surface should be more

hydrophobic than a buried surface, i.e. that the probability of

�� [= �(buried) � �(exposed)] > 0 is identical to the

probability of �� < 0. Therefore, the probability of finding x

out of 146 values of �� to be smaller than zero can be

calculated using the binominal distribution on (p = 0.5, n =

144),

Binð144; 0:5Þ ¼
144!

x!ð144� xÞ!
0:5144: ð6Þ

As shown in Fig. 4, values for �� are far from being

distributed equally around zero, with only 15 examples of ��
being negative. Using the argument outlined above, the null

hypothesis can therefore be rejected with a P value of 1.2 �

10�24, unambiguously demonstrating that interfaces are

significantly more hydrophobic than the rest of the protein

surface.

3.2. Electrostatics

Whereas many biologically relevant protein–protein inter-

actions derive their affinity from the burial of hydrophobic

surface, electrostatics have been shown to play a key role in

determining specificity and, in some cases, the thermo-

dynamics and kinetics of macromolecular association (Honig

& Nicholls, 1995). Evaluating the potential field around a

protein is effectively a question of calculating the field around

a group of fixed charges in a low-dielectric environment

surrounded by a high-dielectric medium that contains freely

diffusing ions.

This is a complicated problem, but can reasonably be

achieved by solving some form of the Poisson–Boltzmann

equation (PBE; Sharp & Honig, 1990),
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Figure 3
The SH3 domain of Abl tyrosine kinase (PDB code 1abo) complex surface properties and function. (a) The secondary-structure representation of the
Abl tyrosine kinase, showing a typical SH3 domain. (b) A molecular-surface representation including the proline-rich ligand peptide as a ball-and-stick
model. The surface is coloured by local surface hydrophobicity, with strongly hydrophobic surfaces coloured yellow and weakly hydrophobic surfaces
elements coloured green.



r½"ðrÞr’ðrÞ� þ 4��ðrÞ � �2
0’ðrÞ ¼ 0; ð7Þ

where "(r) is the relative permittivity at r, �(r) is the charge

density arising from diffusible charges at r, ’(r) is the elec-

trostatic potential at r and �0 is the Debye–Huckel screening

parameter.

We have implemented a finite-difference approach to this

problem and made the resulting code available either as a

stand-alone executable or as part of CCP4MG (Potterton et

al., 2004). Our implementation exploits a rapid FFT-based

algorithm to define the protein interior, ‘anti-aliasing’ to

distribute charges within the initial potential map and optimal

over-relaxation, based on the spectral radius of the PBE map,

to speed up convergence of the finite difference approach.

Following the approach of Nicholls et al. (1991), we have

used the electrostatic potential maps that can be generated in

this way to assign potentials to the vertices of a triangulated

surface representation of a molecule. These representations

often offer insight into the character of a molecular inter-

action, since electrostatic complementarity is a documented

phenomenon at protein–protein and protein–ligand interfaces.

We have adapted the approach of McCoy et al. (1997) to

explore whether the extended set of complex structures

available to date confirms the previous observation that

authentic protein–protein interfaces are characterized by

experiencing a potential field generated by one binding

partner that is complementary in character to the potential

field generated by the other.

Briefly, for a complex of known structure containing

proteins A and B, two potential maps are calculated. The first

corresponds to the potential that would prevail with a solvent

envelope defined by the A+B complex, but with only atoms of

protein A charged, while the second corresponds to the

potential that would prevail with a solvent envelope defined

by the complex but with only atoms of protein B charged. The

interfacial subset of the surface of protein A is isolated as

described above for our analyses of conservation and hydro-

phobicity. Subsequently, two potentials are associated with

each vertex of this surface: one derived from interpolating

surface vertex positions into the first potential map and the

other from interpolating into the second potential map. The

electrostatic complementarity of the interface can then be

evaluated by calculating the linear correlation coefficient of

the two different potentials over the whole set of surface

vertices that define the interface.

This calculation was performed for the Lo Conte set of

protein–protein interfaces. From Fig. 5, it can be seen that the

vast majority of complexes demonstrate a marked electro-

static complementarity.

4. Conclusions

Both the sequence conservation and the composite physical

properties of protein–protein interfaces are significantly

different from non-interface parts of protein surfaces.

Mapping these properties onto surface representations offers

a way to both visualize and statistically analyse them so as to

produce insights into the collective properties of interfaces in

general. This also permits functional hypotheses to be drawn.

Further work is required to automate this process, so that any

hypothesized interface on a newly determined structure has a

confidence level associated with it. The results generated by

the ConSurf server, which maps conservation scores onto

surface residues, show promise for the applicability of such

approaches and represent an available option for applying

conservation analysis to protein molecules. This work suggests

that an analysis of the distribution of conserved residues at the

surface of a protein can contribute to both qualitative (Glaser

et al., 2003) and quantitative (Nimrod et al., 2005) prediction of

the functional sites on proteins.

Scripts and programs for generating and visualizing

property-mapped molecular surfaces are being introduced

into the CCP4 suite for visualization by CCP4MG.

The authors wish to thank Peter Goodford for many

interesting discussions about hydrophobicity. This work was

funded by an MRC studentship to JG, a Beit Trust Studentship

to AZ and a BBSRC grant to CPB and MEMN.
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Figure 4
Rank-ordered distribution of ��. The calculated differences between the
mean hydrophobicity of interface and non-interface surfaces are plotted
in ranked order. In all but 15 cases, the interfacial surface is more
hydrophobic than the non-interface surface.

Figure 5
Rank-ordered distribution of electrostatic complementarity. The linear
correlation coefficient of electrostatic potentials for different interacting
partners is presented for 72 structures. In the vast majority of cases there
is an anticorrelation of potential consistent with a marked electrostatic
complementarity.
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