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Abstract
Background: Alicyclobacillus sp. A4 is thermoacidophilic and produces many glycoside hydrolases. An extremely acidic 
β-1,4-glucanase (CelA4) has been isolated from Alicyclobacillus sp. A4 and purified. This glucanase with a molecular 
mass of 48.6 kDa decreases the viscosity of barley-soybean feed under simulated gastric conditions. Therefore, it has 
the potential to improve the nutrient bioavailability of pig feed. For the study reported herein, the full-length gene, 
CelA4, of this glucanase (CelA4) was identified using the sequences of six peptides and cloned from strain A4. The gene 
fragment (CelA4F) encoding the mature protein was expressed in Pichia pastoris. Sequence truncation and 
glycosylation were found for recombinant CelA4F, both of which affected the expression efficiency. The physical 
properties of various forms of CelA4 as they affected enzymatic activity were characterized.

Results: We located the full-length 2,148-bp gene for CelA4 (CelA4) in the genome of Alicyclobacillus sp. A4. CelA4 
encodes a 715-residue polypeptide with a calculated molecular mass of 71.64 kDa, including an N-terminal signal 
peptide (residues 1-39), a catalytic domain (residues 39-497), and a C-terminal threonine-rich region (residues 498-715). 
Its deduced amino acid sequence and that of an Alicyclobacillus acidocaldarius endo-β-1,4-glucanase were identical at 
44% of the residue positions. When the experimental molecular mass of CelA4F--a recombinant protein designed to 
mimic the CelA4 sequence lacking the N-terminal signal peptide that had been expressed in Pichia pastoris--was 
compared with its hypothetical molecular mass, it was apparent that CelA4F was truncated, possibly at residue 497. An 
artificially truncated gene fragment (CelA4T) without C-terminal threonine-rich region was expressed in P. pastoris, and 
the expression efficiency of CelA4T was substantially greater than that of CelA4F. Purified CelA4F and CelA4T had similar 
molecular masses (~60 kDa) and enzymatic properties (optimum pH, 3.4; optimum temperature, 60°C); they were 
relatively stable between pH 1.2 and 8.2 at 70°C and resistant to acidic and neutral proteases. However, their molecular 
masses and thermostabilities differed from those of CelA4 isolated from Alicyclobacillus sp. A4. A deglycosylated form of 
CelA4 (CelA4D) had properties similar to that of CelA4 except that it was thermoliable at 60°C.

Conclusions: Truncation during expression of CelA4F or artificial truncation of its gene--both of which produced a 
form of CelA4 lacking a threonine-rich region that includes a putative linker--increased the level of enzyme produced 
in comparison with that produced by cultivation of Alicyclobacillus sp. A4. Glycosylation increased the thermostability 
of CelA4. Of the four forms of CelA4 studied, CelA4T was produced in highest yield and had the most favorable physical 
properties; therefore, it has potential for use in the feed industry.

Background
β-Glucan is the major cell-wall component of cereals
such as barley, wheat, oat, and rye [1], and it can be

hydrolyzed by β-glucanases. Microbial glucanases are
often used in industry, including those related to waste
management [2], alcohol fermentation [3], and animal
feed production [4]. Several β-glucanases from the genus
Alicyclobacillus have been identified, including two endo-
glucanases (CelA and CelB) [5,6], one β-1,4-glucanase
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(CelA4) [7], one β-1,3(4)-glucanase (Agl9A) [8], and one
cellulase (CelG) [9]. All are very thermoacidophilic and
have optimum activities between 45 and 60°C and pH 2.0
and 6.0.

According to the primary structures of their catalytic
domains, β-1,4-glucanases have been classified as mem-
bers of the glycoside hydrolase (GH) families 5, 6, 7, 8, 9,
12, 44, 45, 48, and 51 http://www.cazy.org/fam/
acc_GH.html. Most of the GH 51-type glucanases are α-
L-arabinofuranosidases. Only three β-glucanases, endog-
lucanase F precursor from Fibrobacter succinogenes
(AAC45377) [10], endoglucanase CelB from A. acidocal-
darius (CAD86595) [6], and a cellulase from an uncul-
tured bacterium (CAF22222.1) [11], are GH 51-type
glucanases.

We previously purified the extremely acidic GH 51-
type β-1,4-glucanase, CelA4 with a molecular mass of
48.6 kDa, from the thermoacidophilic Alicyclobacillus sp.
A4 [7]. The pH optimum of CelA4 is 2.6, it is protease
resistant, and can decrease the viscosity of barley-soy-
bean feed under simulated gastric conditions. These
properties indicate that CelA4 may improve the nutrient
bioavailability of pig feed. For the commercialization of
CelA4, recombinant gene expression in a high-through-
put fermentation system is necessary. The methy-
lotrophic yeast, Pichia pastoris, is an excellent host for
the heterologous expression of recombinant proteins for
which expression is controlled by the alcohol oxidase 1
promoter [12]. High-cell-density fed-batch cultivation
usually consists of four phases and has been widely used
to improve protein expression in P. pastoris [13]. The pur-
pose of the study reported herein was to obtain the gene
for CelA4 and, using it, to develop a high-yield fermenta-
tion process for CelA4 in P. pastoris. Upon doing so, we
then examined how the physical properties of the native
and recombinant enzymes affected enzymatic activity
and identified certain properties that affected expression
efficiency.

Results
Identification and sequence analysis of the full-length β-
1,4-glucanase gene (CelA4)
We located the 2,148-bp full-length β-1,4-glucanase gene
(Figure 1) (CelA4) in the Alicyclobacillus sp. A4 genome
using six known peptide sequences of CelA4 as identifiers
[7]. CelA4 encodes a 715-residue polypeptide (calculated
molecular mass, 71.64 kDa), which includes an N-termi-
nal signal peptide (residues 1-39), a catalytic domain (res-
idues 39-497), and a C-terminal threonine-rich region
(residues 498-715, 21.12% threonine). Pro, Asp, Ser, and
Glu--typical linker amino acids [14]--comprise 62% of
residues 498-523, and therefore this region is presumed
to be a linker. The enzyme also contains nine putative N-
glycosylation sites having the consensus sequence, Asn-

Xaa-Thr/Ser-Zaa, where Zaa is not Pro; five of these
sequences are in the catalytic region, and four are in the
threonine-rich region. The deduced amino acid sequence
of CelA4 is most similar (44% identical) to that of the GH
51 cellulase, CelB, from A. acidocaldarius (CAD86595)
[6]. The threonine-rich regions of these two enzymes
have only 28% of their residues in common, and the thre-
onine-rich region of CelA4 has <15% sequence identity
with those of other glucanases. Alignment of CelA4 with
five other glucanases using ClustalW is shown in Figure
2. The sequence alignment indicated that CelA4 does not
contain a carbohydrate (cellulose)-binding domain found
in the four glucanase sequences of ACU75486 (residues
625-724), EEP70239 (residues 600-699), ACU35994 (resi-
dues 575-676), and EEW74700 (residues 613-716). The
putative catalytic residue in CelA4, Glu176, is highly con-
served in glucanases and is located within the active site
as predicted by sequence alignment [15,16].

Expression and purification of recombinant CelA4F in P. 
pastoris
The gene (CelA4F), which encodes a form of CelA4 that
lacks the N-terminal signal sequence, was cloned into the
pPIC9 vector that was then transformed into P. pastoris
competent cells. The cells were cultured and clones were
isolated. The clone that had the highest β-1,4-glucanase
activity after flask cultivation was selected for expression
in a 3.7-L fermenter. During fermentation, the cell mass
of recombinant P. pastoris kept increasing from phase
one (~110 g/L; about 18 hours) to phase four (~350 g/L;
about 184 hours) (Figure 3) (See Methods for descrip-
tions of the cultivation phases). The β-1,4-glucanase
activity in the supernatant was 268 U/mL 156 h after
induction with methanol.

Recombinant CelA4F was purified by anion exchange
chromatography. It migrated as a single band upon SDS-
PAGE and had an apparent molecular mass of ~60 kDa
(Figure 4), which is less than the predicted molecular
mass (71.64 kDa) of CelA4F, but greater than that of
CelA4 (48.6 kDa). Using LC-ESI-MS/MS, this band was
identified as CelA4F. These results indicate that recombi-
nant CelA4F was probably both truncated and glycosy-
lated.

Deglycosylation and artificial truncation of CelA4F

Because CelA4 has nine putative N-glycosylation sites,
the observed variation in apparent molecular mass of
CelA4F might be ascribed to glycosylation and/or trunca-
tion. After endo-β-N-acetylglucosaminidase H (Endo H)
treatment, the protein migrated as a single band of 48
kDa upon SDS-PAGE, and thus the decrease in apparent
molecular mass was ascribed to deglycosylation. The
molecular mass of deglycosylated CelA4F (CelA4D) is
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Figure 1 Nucleotide and amino acid sequences of the β-1,4-glucanase, CelA4, from the thermoacidophilic Alicyclobacillus sp. A4. The resi-
dues of the putative signal peptide (residues 1-39) are underlined, those of the linker region are underlined twice, and the threonine-rich region is 
indicated by dashed line, nine putative N-glycosylation sites are indicated by black boxes.
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almost the same as that of CelA4. Therefore, CelA4F was
both glycosylated and truncated when expressed in P.
pastoris.

According to the molecular mass comparison and
sequence analysis, residue 497 was predicted to be the
truncation site. CelA4T was expressed in P. pastoris as
described above. The P. pastoris culture for CelA4T fol-
lowed the same growth profile as for CelA4F. The β-1,4-
glucanase activity in the supernatant of the CelA4T cul-
ture reached 420 U/mL (Figure 3), which was much
higher than that found for the CelA4F culture. Purified
CelA4T migrated as a single band upon SDS-PAGE and
had a molecular mass of ~60 kDa, which is the same as
found for CelA4F.

Enzyme characterization
The physical properties of truncated CelA4F, artificially
truncated CelA4T, deglycosylated and truncated CelA4D,
and CelA4 [7] that affect enzyme activity were character-
ized and compared. CelA4F, CelA4T, and CelA4D showed
optimum activity at pH 3.4, as opposed to pH 2.6 for
native CelA4. The first three enzymes were less active
between pH 1.2 and 2.2 and between 4.8 and 7.6 than was
native CelA4 (Figure 5A). CelA4F, CelA4T, CelA4D, and
CelA4 were all stable between pH 1.8 and 8.2, at 37°C for
1 h, but the first three enzymes were more stable at pH
1.2 (>70% retention of activity) than was CelA4 (~36%
retention of activity) (Figure 5B). All of the enzymes dis-
played maximum activity between 60 and 65°C (Figure
5C). Notably, CelA4F and CelA4T were relatively stable at

Figure 2 Amino acid sequence alignment of CelA4F and five other glucanases. The sequences were those of glucanases from Alicyclobacillus ac-

idocaldarius DSM 446 (CAD86595), Catenulispora acidiphila DSM 44928 (ACU75486), Micromonospora sp. ATCC 39149 (EEP70239), Actinosynnema 
mirum DSM 43827 (ACU35994), and Streptomyces flavogriseus ATCC 33331 (EEW74700). ClustalW was used to align the sequences. Residues that are 
the same at all positions are indicated by solid grey boxes; the catalytic residue, Glu176, is indicated by a solid square.
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75°C, as they maintained > 75% of their initial activities
after a 1-h incubation at pH 3.4, 75°C. Under the same
conditions, CelA4D and CelA4 lost all activity (Figure 5D).

CelA4F, CelA4T, and CelA4D were highly resistant to
the acidic and neutral proteases, including trypsin, α-chy-
motrypsin, collagenase, pepsin, and subtilisin A, and they
retained more than 70% of their activities after incubation
with these proteases at 37°C for 2 h. This resistance to

acidic and neutral proteolysis had been found previously
for CelA4 [7].

Nucleotide sequence accession number
The nucleotide sequence of the β-1,4-glucanase gene
(CelA4) from Alicyclobacillus sp. A4 was deposited in
GenBank under the accession number GU576556.

Discussion
We previously isolated an extremely acidic GH 51 β-glu-
canase, CelA4, from thermoacidophilic Alicyclobacillus
sp. A4. Herein, we described the gene sequence and the
expression of CelA4F, which encodes CelA4 lacking the
N-terminal signal sequence. Its deduced amino acid
sequence is only 42% identical to that of CelB from A. aci-
docaldarius [6], indicating that CelA4 is a previously
uncharacterized gene. The deduced C-terminal 217-resi-
due sequence of CelA4 is threonine rich (21.2%), which is
a much higher than found on average (5.74%) for proteins
[17]. Threonine-rich regions have been reported to be
involved in fibronectin binding [18], unidirectional trans-
port of a mineralocorticoid receptor into the nucleus [19],
vanadate resistance [20], and resistance to HIV by bind-
ing to a specific receptor [21]. Structural analysis has
indicated that the functions of threonine-rich regions are
usually associated with those of linker regions and O-
linked glycosylation [22,23]. We have found that the thre-
onine-rich region containing the putative linker of native
CelA4 and CelA4F was removed during secretion from
Alicyclobacillus sp. A4 and P. pastoris, respectively.
Therefore, the threonine-rich region may act as a molec-
ular chaperone and be involved in proper folding of the
catalytic domain. The linker has been reported to be nec-
essary for thermostability [24,25]. Because it is removed
with the threonine-rich sequence, we assume that the
linker has no effect on the catalytic properties of CelA4.

Native CelA4 has excellent properties and therefore has
great potential for use in industrial applications [7]. How-
ever, the yield of CelA4 was very small (0.9 U/mL) when
Alicyclobacillus sp. A4 was cultured in a glucanase-induc-
ing medium. For the study reported herein, we used a 3.7-
L fermenter for the cultivation of P. pastoris containing a
plasmid carrying CelA4F. After expression, 268 U/mL of
CelA4 activity was measured in the culture supernatant,
which is approximately 300-fold greater than found upon
cultivation of Alicyclobacillus sp. A4. We also constructed
a gene for the C-terminally truncated glucanase, CelA4T
that lacked the threonine-rich region using a PCR-based
gene truncation method, expressed the protein in P. pas-
toris, and obtained a yield of 420 U/mL. Expression of
truncated genes has been shown to increase enzyme pro-
duction and improve both activity and thermostability
[26,27]. Truncated CelA4F and artificially truncated

Figure 3 Time courses for the appearance of β-1,4-glucanase ac-
tivity and increase in biomass during fermentation. The symbols 
and associated proteins are as follows: diamond stands for activity; 
Square stands for biomass; hollow stands for CelA4F and solid stands 
for CelA4T.
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CelA4T have similar molecular masses and enzymatic
properties but differ in the relative amount of enzyme
produced by fermentation. This difference might be
ascribed to the intracellular functions of the threonine-
rich region. It is possible that the threonine-rich region
acts as a molecular chaperone, but how it influences
enzyme production is unknown.

Both CelA4F and CelA4T were glycosylated when
expressed in P. pastries. It has been reported that glycosy-
lation has significant effects on enzyme thermostability
[28], the optimum pH value [29], and resistance to pro-
teases [30,31]. CelA4D, CelA4F, and CelA4T had similar
pH and stability profiles, but CelA4D was not as thermally
stable as the other two proteins. For example, CelA4D
exhibited ~30% of its maximal activity at 70°C, whereas

both CelA4F and CelA4T retained ~90% of their initial
activities. Moreover, CelA4F and CelA4T were thermo-
stable at 70°C, but CelA4D was not stable at 60°C.
Although the molecular mass of CelA4D was similar to
that of native CelA4, these enzymes differed with respect
to their pH and temperature profiles and, most notably,
their stabilities. Therefore, heterologous expression of
CelA4F increased the amount of the enzyme produced
and improved the thermostability by incorporating sugar
residues post-translationally.

CelA4T and CelA4F exhibited similar enzymatic proper-
ties, namely a pH optimum of 3.4, a temperature opti-
mum of 65°C, stability between pH 2.0 and 8.2 and at
70°C, and they were both active and stabile under simu-
lated gastric conditions. Both enzymes could decrease

Figure 5 Characterization of purified CelA4F, CelA4T, CelA4D, and native CelA4. A: Effect of pH on β-1,4-glucanase activity. Activity assays were 
performed at 65°C for CelA4F and CelA4T, and at 60°C for CelA4D, in buffers with pH values of 1.2 to 7.6. B: Effect of pH on stability. After incubating 
each enzyme at 37°C for 1 h in buffers with pH values between 1.2 and 9.2, activities were measured in 0.1 M citric acid-Na2HPO4 (pH 3.4, 65°C for 
CelA4F and CelA4T, and pH 2.6, 60°C for CelA4D). C: Effect of temperature on β-1,4-glucanase activity measured in 0.1 M citric acid-Na2HPO4 (pH 3.4 for 
CelA4F and CelA4T, and pH 2.6 for CelA4D). D: Thermostability assay. Each enzyme was incubated at 60, 65, or 70°C in 0.1 M citric acid-Na2HPO4 (pH 3.4 
for CelA4F and CelA4T, and pH 2.6 for CelA4D) for 1 h, and its activity was then measured under optimum conditions.
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the viscosity of barley-soybean feed (data not shown), but
more of the former was produced during P. pastoris fer-
mentation. Therefore, in the future we will produce
CelA4T, not CelA4F, by heterologous expression for com-
mercial applications.

Conclusions
For the study reported herein, we identified and cloned
the β-1,4-glucanase-encoding gene (CelA4) found in Ali-
cyclobacillus sp. A4, and achieved high-yield expression
of CelA4F in P. pastoris. CelA4F was truncated and glyco-
sylated during fermentation. Expression of CelA4T, which
lacks the threonine-rich region, produced greater
amounts of protein and had glucanase activity identical to
that of CelA4F. We speculate that the threonine-rich
region might act as a molecular chaperone that ensures
proper folding of the catalytic domain. Glycosylation was
necessary for the thermostability of both CelA4F and
CelA4T. All of our data indicate that recombinant CelA4T
produced using a P. pastoris fermentation system will
have great potential as a β-1,4-glucanase for use in the
feed industry.

Methods
Strains, plasmids, and chemicals
The strain Alicyclobacillus sp. A4 was deposited in the
China General Microbiological Culture Collection Cen-
ter under the registration number CGMCC3147 [32].
Escherichia coli JM109 was obtained from TaKaRa
(Dalian, China). P. pastoris GS115 and the pPIC9 vector
were obtained from Invitrogen (San Diego, CA, USA).
Barley β-glucan was supplied by Sigma (St. Louis, MO,
USA). T4 DNA ligase and restriction endonucleases were
obtained from Promega (Madison, WI, USA). All other
chemicals were of analytical grade and commercially
available.

Cloning and expression of the β-1,4-glucanase gene 
(CelA4F)
Using the sequences of an N-terminal peptide and five
internal peptides of native CelA4 [7], the full-length cod-
ing gene for CelA4 (CelA4) was identified in the genome
of Alicyclobacillus sp. A4 using BLASTp (Sequencing of
the complete Alicyclobacillus sp. A4 genome is in prog-
ress). The sequence of the N-terminal signal peptide was
predicted using SignalP http://www.cbs.dtu.dk/services/
SignalP/. Alignment of multiple protein sequences was
accomplished using ClustalW [33]. Vector NTI 10.0 soft-
ware was used to identify homologous and identical resi-
dues after sequence alignment and to predict the
molecular mass of the mature protein.

To construct the plasmid containing CelA4F, the gene
encoding CelA4F was PCR-amplified using the primers

CelA4FF: GCATACGTAATGGAGGCGACTATGCAA
GCAGC and CelA4FR: GAAGCGGCCGCTCAGACAC-
CCACAAAATGAGAAACCAC (SnaBI and NotI sites are
bold) with Alicyclobacillus sp. A4 genomic DNA as the
template. The PCR-amplified gene fragment was cloned
in-frame at the downstream site of the α-factor (signal
peptide) present in the pPIC9 vector and transformed
into P. pastoris competent cells. Positive transformants
were cultured in minimal dextrose medium or minimal
methanol medium, and the culture supernatants were
screened for glucanase activity.

High-cell-density fermentation of recombinant CelA4F

The positive transformant with the highest level of β-1,4-
glucanase activity was grown in a 3.7-L fermenter (Bioen-
gineering KLF 2000, Wald, Switzerland) using a four-step
fermentation strategy [13] that was scaled up. The Pichia
fermentation was performed according to instructions
obtained from Invitrogen. Fermentation began with a
batch growth phase in 2.0-L basic sodium medium and
the following conditions were used: agitation speed, 1,000
rpm; ventilation rate, 1.6 vvm; temperature, 30°C; pH, 4.5
(adjusted with 6 M NH4OH). The first phase was termi-
nated when the glycerol in the basic sodium medium was
consumed completely (about 18 h) and the cell mass had
increased to > 100 g/L (wet cell weight). The second glyc-
erol (50%, w/v) fed-batch phase was initiated at 70 mL/h
for ~6 h to further increase the cell mass to ~170 g/L.
During the third phrase, a glycerol/methanol (8:1, v:v)
mixture was fed at 25 mL/h for ~4 h to transition the cul-
ture from glycerol to methanol. In the fourth phase,
methanol was fed at 6-7 mL/h for ~156 h. During the fer-
mentation process, dissolved oxygen was kept above 20%.
Culture samples were collected every 12 h and subjected
to cell mass and enzyme activity analyses.

Purification and identification of recombinant CelA4F

The culture supernatant (about 2,500 mL) was concen-
trated ~15-fold by ultrafiltration using hollow-fiber
membranes with molecular weight cut-offs of first 6 kDa
(Motimo, Tianjin, China) and then 5 kDa (Vivascience,
Hannover, Germany). The resulting solution was dialyzed
against 20 mM McIlvaine buffer (0.2 M Na2HPO4 con-
taining 0.1 M citric acid), pH 7.5, and loaded onto a
HiTrap Q Sepharose XL FPLC column (Amersham Phar-
macia Biotech, Uppsala, Sweden) equilibrated with the
same buffer. Proteins were eluted using a linear gradient
of NaCl (0-1.0 M) in the same buffer. Fractions with
enzyme activity were collected and subjected to SDS-
PAGE [34]. To identify the purified protein as CelA4F, the
protein band was excised from the gel, digested with
trypsin, and sequenced using liquid chromatography/
electrospray ionization tandem mass spectrometry

http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
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(MALDI-TOF-MS/MS) at the Institute of Zoology, Chi-
nese Academy of Sciences.

Cloning of the artificially truncated β-1,4-glucanase gene 
(CelA4T)
According to the molecular mass comparison of CelA4F
and native CelA4 and the sequence analysis, residues
498-715 was supposed to be hit by profiles with a high
probability of occurrence (Entry: PS50325) based on
ScanProsite analysis http://www.expasy.ch/tools/scan-
prosite. Residue 497 was predicted to be the truncation
site. CelA4T encoding the truncated protein (residues 40-
497) was PCR-amplified using the primers CelA4TF
(GCATACGTAATGGAGGCGACTATGCAAGCAGC)
and CelA4TR (GAAGCGGCCGCAAACTGTGGCCCT-
TGTGGCTGATGC) (SnaBI and NotI sites are bold) with
genomic DNA of Alicyclobacillus sp. A4 as the template.
CelA4T was expressed in P. pastoris and subjected to the
same purification procedure as described above.

Deglycosylation of CelA4F

Purified CelA4F (a ~2 μg) was treated with 20 U of Endo
H for 2 h at 37°C according to the supplier's instructions
(New England Biolabs, Ipswich, MA, USA) and then ana-
lyzed by SDS-PAGE.

Enzyme assay
All enzymatic assays were performed in triplicate. The
final reaction systems contained 50 μL of an appropri-
ately diluted enzyme and a 450-μL solution containing 1%
barley β-glucan (w/v) and 200 mM McIlvaine buffer at
the optimum pH previously determined for each enzyme.
Reactions were allowed to proceed for 10 min at the opti-
mum temperatures and then terminated by adding 1.5
mL dinitrosalicylic acid [35]. Each mixture was heated in
a boiling water bath for 5 min. After addition of 1.0 mL
H2O, the absorbance of each mixture at 540 nm was mea-
sured. One unit of enzyme activity was defined as the
amount of enzyme that catalyzed the formation of 1 μmol
glucose per minute.

Biochemical characterization of purified CelA4F, CelA4T, 
and CelA4D

The pH optima for the enzyme activities of CelA4F and
CelA4T were determined at 65°C and at 60°C for CelA4D.
The enzymes were incubated for 1 h at 37°C in the
absence of substrate, and then their activities were mea-
sured at pH 3.4 and 65°C for CelA4F and CelA4T, and at
pH 2.6 and 60°C for CelA4D. The buffers used were 0.1 M
KCl-HCl for pH 1.2-2.2, 0.1 M McIlvaine buffer for pH
2.6-7.6, 0.1 M Tris-HCl for pH 8.0-9.0, and 0.1 M glycine-
NaOH for pH 9.4-12.0. The optimal temperature for
enzyme activity was determined using the McIlvaine buf-

fer (pH 3.4 for CelA4F and CelA4T; pH 2.6 for CelA4D) at
temperatures between 35°C and 75°C. The thermostabil-
ity of each enzyme was determined by incubating the
enzyme (100 μg/mL) in McIlvaine buffer (pH 3.4 for
CelA4F and CelA4T; pH 2.6, for CelA4D) at 60°C, 65°C, or
70°C without substrate for 1 h and then measuring the
enzyme activity under optimum conditions.

To examine resistance to different proteases, purified
CelA4F, CelA4T, and CelA4D (2 μg/mL) were each incu-
bated with 200 μg/mL trypsin, α-chymotrypsin, collage-
nase, pepsin, or 500 μg/mL subtilisin A at 37°C and at the
pH optimum of the specific protease for various lengths
of time. Incubations in the absence of each protease
served as the controls. Activities were determined under
the standard assay conditions of pH 3.4, 65°C for CelA4F
and CelA4T, and of pH 2.6, 60°C for CelA4D.
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fate-polyacrylamide gel electrophoresis.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
YB participated in the design of the study, the fermentation development, data
analysis, and in the writing of the manuscript. JW participated in the construc-
tion of the recombinant plasmids. CL participated in the fermentation proce-
dures and data analysis. YF participated in the biochemical characterization of
the enzymes. ZZ participated in the writing and reviewing of the manuscript.
BY participated in the writing and editorial supervision of the manuscript. PS
supervised the experiments. HH participated in the gene sequence analysis. HL
participated in the result analysis and the writing of the manuscript. All authors
read and approved the final manuscript.

Acknowledgements
This research was supported by the National High Technology Research and 
Development Program of China (863 program, grant 2007AA100601) and the 
earmarked fund for modern agro-industry technology research system 
(NYCYTX-42-G2-05).

Author Details
1Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed 
Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, 
PR China and 2Biotechnology Research Institute, Chinese Academy of 
Agricultural Sciences, Beijing 100081, PR China

References
1. Lee C, Horsley R, Manthey F, Schwarz P: Comparisons of β-glucan 

content of barley and oat.  Cereal Chemistry 1997, 74:571-575.
2. Liu B, Yang Q, Zhou Q, Song J, Chen D, Liu H: Cloning and expression of 

the endo-β-glucanase III cDNA gene from Trichoderma viride AS3.3711.  
Acta Environment Sinica 2004, 25:127-132.

3. Celestino KR, Cunha RB, Felix CR: Characterization of a β-glucanase 
produced by Rhizopus microsporus var. microsporus, and its potential 
for application in the brewing industry.  BMC Biochemistry 2006, 7:23.

4. Walsh GA, Murphy RA, Killeen GF, Headon DR, Power RF: Technical note: 
detection and quantification of supplemental fungal β-glucanase 
activity in animal feed.  Journal of Animal Science 1995, 73:1074-1076.

5. Eckert K, Zielinski F, Lo Leggio L, Schneider E: Gene cloning, sequencing, 
and characterization of a family 9 endoglucanase (CelA) with an 
unusual pattern of activity from the thermoacidophile Alicyclobacillus 

Received: 12 March 2010 Accepted: 14 May 2010 
Published: 14 May 2010
This article is available from: http://www.microbialcellfactories.com/content/9/1/33© 2010 Bai et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Microbial Cell Factories 2010, 9:33

http://www.expasy.ch/tools/scanprosite
http://www.expasy.ch/tools/scanprosite
http://www.microbialcellfactories.com/content/9/1/33
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17147821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7628950


Bai et al. Microbial Cell Factories 2010, 9:33
http://www.microbialcellfactories.com/content/9/1/33

Page 9 of 9
acidocaldarius ATCC27009.  Applied Microbiology and Biotechnology 2002, 
60:428-436.

6. Eckert K, Schneider E: A thermoacidophilic endoglucanase (CelB) from 
Alicyclobacillus acidocaldarius displays high sequence similarity to 
arabinofuranosidases belonging to family 51 of glycoside hydrolases.  
European Journal of Biochemistry 2003, 270:3593-3602.

7. Bai Y, Wang J, Zhang Z, Shi P, Luo H, Huang H, Feng Y, Yao B: Extremely 
acidic β-1,4-glucanase, CelA4, from thermoacidophilic Alicyclobacillus 
sp. A4 with high protease resistance and potential as a pig feed 
additive.  Journal of Agriculture and Food Chemistry 2010, 58:1970-1975.

8. Bai Y, Wang J, Zhang Z, Shi P, Luo H, Huang H, Luo C, Yao B: A novel family 
9 β-1,3(4)-glucanase from thermoacidophilic Alicyclobacillus sp. A4 
with potential applications in the brewing industry.  Applied 
Microbiology and Biotechnology 2010. DOI: 10.1007/s00253-010-2452-3

9. Morana A, Esposito A, Maurelli L, Ruggiero G, Ionata E, Rossi M, La Cara F: A 
novel thermoacidophilic cellulase from Alicyclobacillus acidocaldarius.  
Protein and Peptide Letter 2008, 15:1017-1021.

10. Malburg SR, Malburg LM Jr, Liu T, Iyo AH, Forsberg CW: Catalytic 
properties of the cellulose-binding endoglucanase F from Fibrobacter 
succinogenes S85.  Applied Environment and Microbiology 1997, 
63:2449-2453.

11. Grant S, Sorokin DY, Grant WD, Jones BE, Heaphy S: A phylogenetic 
analysis of Wadi el Natrun soda lake cellulase enrichment cultures and 
identification of cellulase genes from these cultures.  Extremophiles 
2004, 8:421-429.

12. Sreekrishna K, Brankamp RG, Kropp KE, Blankenship DT, Tsay JT, Smith PL, 
Wierschke JD, Subramaniam A, Birkenberger LA: Strategies for optimal 
synthesis and secretion of heterologous proteins in the 
methylotrophic yeast Pichia pastoris.  Gene 1997, 190:55-62.

13. Plantz BA, Sinha J, Villarete L, Nickerson KW, Schlegel VL: Pichia pastoris 
fermentation optimization: energy state and testing a growth-
associated model.  Applied Microbiology and Biotechnology 2006, 
72:297-305.

14. Wootton JC, Federhen S: Analysis of compositionally biased regions in 
sequence databases.  Methods in Enzymology 1996, 266:554-571.

15. Shallom D, Belakhov V, Solomon D, Gilead-Gropper S, Baasov T, Shoham 
G, Shoham Y: The identification of the acid-base catalyst of α-
arabinofuranosidase from Geobacillus stearothermophilus T-6, a family 
51 glycoside hydrolase.  FEBS Letter 2002, 514:163-167.

16. Gilkes NR, Henrissat B, Kilburn DG, Miller RC Jr, Warren RA: Domains in 
microbial β-1,4-glycanases: sequence conservation, function, and 
enzyme families.  Microbiological Reviews 1991, 55:303-315.

17. Karlin S, Bucher P, Brendel V, Altschul SF: Statistical methods and insights 
for protein and DNA sequences.  Annual Review of Biophysics and 
Biophysical Chemistry 1991, 20:175-203.

18. Rauceo JM, De Armond R, Otoo H, Kahn PC, Klotz SA, Gaur NK, Lipke PN: 
Threonine-rich repeats increase fibronectin binding in the Candida 
albicans adhesin Als5p.  Eukaryotic Cell 2006, 5:1664-1673.

19. Walther RF, Atlas E, Carrigan A, Rouleau Y, Edgecombe A, Visentin L, 
Lamprecht C, Addicks GC, Hache RJ, Lefebvre YA: A serine/threonine-rich 
motif is one of three nuclear localization signals that determine 
unidirectional transport of the mineralocorticoid receptor to the 
nucleus.  Journal of Biological Chemistry 2005, 280:17549-17561.

20. Nakamura T, Namba H, Ohmoto T, Liu Y, Hirata D, Miyakawa T: Cloning 
and characterization of the Saccharomyces cerevisiae SVS1 gene which 
encodes a serine- and threonine-rich protein required for vanadate 
resistance.  Gene 1995, 165:25-29.

21. Cotelle N, Lohez M, Cotelle P, Henichart JP: Conformational study of the 
threonine-rich C-terminal pentapeptide of peptide T.  Biochemistry and 
Biophysics Research Communication 1990, 171:596-602.

22. Tyshenko M, d'Anjou M, Davies P, Daugulis A, Walker V: Challenges in the 
expression of disulfide bonded, threonine-rich antifreeze proteins in 
bacteria and yeast.  Protein Expression and Purification 2006, 47:152-161.

23. Kieliszewski MJ, Leykam JF, Lamport DT: Structure of the Threonine-Rich 
Extensin from Zea mays.  Plant Physiology 1990, 92:316-326.

24. Dias FM, Goyal A, Gilbert HJ, Jose AMP, Ferreira LM, Fontes CM: The N-
terminal family 22 carbohydrate-binding module of xylanase 10B of 
Clostridium themocellum is not a thermostabilizing domain.  FEMS 
Microbiology Letters 2004, 238:71-78.

25. Li N, Shi P, Yang P, Wang Y, Luo H, Bai Y, Zhou Z, Yao B: A xylanase with 
high pH stability from Streptomyces sp. S27 and its carbohydrate-

binding module with/without linker-region-truncated versions.  
Applied Microbiology and Biotechnology 2008, 83:99-107.

26. Paloheimo M, Mantyla A, Kallio J, Puranen T, Suominen P: Increased 
production of xylanase by expression of a truncated version of the 
xyn11A gene from Nonomuraea flexuosa in Trichoderma reesei.  Applied 
Environment and Microbiology 2007, 73:3215-3224.

27. Wen TN, Chen JL, Lee SH, Yang NS, Shyur LF: A truncated Fibrobacter 
succinogenes 1,3-1,4-β-D-glucanase with improved enzymatic activity 
and thermotolerance.  Biochemistry 2005, 44:9197-9205.

28. Clark SE, Muslin EH, Henson CA: Effect of adding and removing N-
glycosylation recognition sites on the thermostability of barley α-
glucosidase.  Protein Engineering, Design and Selection 2004, 17:245-249.

29. Somera AF, Pereira MG, Souza Guimaraes LH, Polizeli Mde L, Terenzi HF, 
Melo Furriel RP, Jorge JA: Effect of glycosylation on the biochemical 
properties of β-xylosidases from Aspergillus versicolor.  Journal of 
Microbiology 2009, 47:270-276.

30. Wyss M, Pasamontes L, Friedlein A, Remy R, Tessier M, Kronenberger A, 
Middendorf A, Lehmann M, Schnoebelen L, Rothlisberger U, et al.: 
Biophysical characterization of fungal phytases (myo-inositol 
hexakisphosphate phosphohydrolases): molecular size, glycosylation 
pattern, and engineering of proteolytic resistance.  Applied Environment 
and Microbiology 1999, 65:359-366.

31. Takegawa K, Yoshikawa M, Mishima T, Nakoshi M, Iwahara S: 
Determination of glycosylation sites using a protein sequencer and 
deglycosylation of native yeast invertase by endo-β-N-
acetylglucosaminidase.  Biochemistry International 1991, 25:585-592.

32. Bai Y, Wang J, Zhang Z, Yang P, Shi P, Luo H, Meng K, Huang H, Yao B: A 
new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with 
broad-range pH activity and pH stability.  Journal of Industrial 
Microbiology and Biotechnology 2010, 37:187-194.

33. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the 
sensitivity of progressive multiple sequence alignment through 
sequence weighting, position-specific gap penalties and weight 
matrix choice.  Nucleic Acids Research 1994, 22:4673-4680.

34. Laemmli UK: Cleavage of structural proteins during the assembly of the 
head of bacteriophage T4.  Nature 1970, 227:680-685.

35. Miller GL: Use of dinitrosalicylic acid reagent for determination of 
reducing sugar.  Analytical Chemistry 1959, 31:426-428.

doi: 10.1186/1475-2859-9-33
Cite this article as: Bai et al., Expression of an extremely acidic ?-1,4-gluca-
nase from thermoacidophilic Alicyclobacillus sp. A4 in Pichia pastoris is 
improved by truncating the gene sequence Microbial Cell Factories 2010, 9:33

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12919323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15480866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9185849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16493554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8743706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1886523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1867715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16936142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15737989
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7489911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16290006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16667276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15336405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19107475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15966744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1805802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19916085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5432063

	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Results
	Identification and sequence analysis of the full-length ß-1,4-glucanase gene (CelA4)
	Expression and purification of recombinant CelA4F in P. pastoris
	Deglycosylation and artificial truncation of CelA4F
	Enzyme characterization
	Nucleotide sequence accession number

	Discussion
	Conclusions
	Methods
	Strains, plasmids, and chemicals
	Cloning and expression of the ß-1,4-glucanase gene (CelA4F)
	High-cell-density fermentation of recombinant CelA4F
	Purification and identification of recombinant CelA4F
	Cloning of the artificially truncated ß-1,4-glucanase gene (CelA4T)
	Deglycosylation of CelA4F
	Enzyme assay
	Biochemical characterization of purified CelA4F, CelA4T, and CelA4D

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author Details
	References

