Skip to main content
The application of confocal laser scanning microscopy (CLSM) to the physicochemical characterisation of pharmaceutical systems is not as widespread as its application within the field of cell biology. However, methods have been developed... more
The application of confocal laser scanning microscopy (CLSM) to the physicochemical characterisation of pharmaceutical systems is not as widespread as its application within the field of cell biology. However, methods have been developed to exploit the imaging capabilities of CLSM to study a wide range of pharmaceutical systems, including phase-separated polymers, colloidal systems, microspheres, pellets, tablets, film coatings, hydrophilic matrices, and chromatographic stationary phases. Additionally, methods to measure diffusion in gels, bioadhesives, and for monitoring microenvironmental pH change within dosage forms have been utilised. CLSM has also been used in the study of the physical interaction of dosage forms with biological barriers such as the eye, skin and intestinal epithelia, and in particular, to determine the effectiveness of a plethora of pharmaceutical systems to deliver drugs through these barriers. In the future, there is continuing scope for wider exploitation of existing techniques, and continuing advancements in instrumentation.
The aim of this study was to investigate and quantify drug movement to the brain via the neuro-olfactory system after intranasal dosing of four model drugs; three glycine receptor antagonists and one angiotensin antagonist. The drugs were... more
The aim of this study was to investigate and quantify drug movement to the brain via the neuro-olfactory system after intranasal dosing of four model drugs; three glycine receptor antagonists and one angiotensin antagonist. The drugs were dosed to rats via intranasal or intravenous administration, after which a quantitative method for tissue distribution was utilised to determine drug distribution to the olfactory lobes, brain sections and the blood over 30 min. Autoradiography was used to visualise and quantify drug distribution throughout the brain and in the CSF. Micro-autoradiography was used to examine drug distribution throughout the olfactory nerve apparatus. The three glycine receptor antagonist compounds were transported to the CNS to differing degrees although they had similar molecular structures and similar physicochemical characteristics. All three compounds were shown to exploit a direct route of transport from nose to brain with Direct Transport Percentages (DTP) of 99.99%, 96.71% and 51.95%, respectively, although for the last molecule a major part of the brain content originated from systemic transport across the BBB. Intranasal administration of GR138950 resulted in over 3.5 times more drug in the olfactory lobes at 1 min post-dose compared to intravenous administration; and 5 times more drug was delivered to the olfactory lobes over 30 min. Micro-autoradiography showed that GR138950 could be found throughout the olfactory nerve apparatus. Autoradiography illustrated drug distribution throughout the brain and CSF, with drug concentrations in the CSF being equal or higher than in the brain tissue. It was determined that approximately 0.8% of the administered dose moved into the brain and CSF via the olfactory pathway over 30 min. Intranasal administration resulted in greater delivery of the model drugs to the olfactory lobes and brain as compared to intravenous dosing. It is proposed that the drug moved through the neuro-olfactory system, primarily via paracellular pathways.
The aim of this study was to investigate and quantify drug movement to the brain via the neuro-olfactory system after intranasal dosing of four model drugs; three glycine receptor antagonists and one angiotensin antagonist. The drugs were... more
The aim of this study was to investigate and quantify drug movement to the brain via the neuro-olfactory system after intranasal dosing of four model drugs; three glycine receptor antagonists and one angiotensin antagonist. The drugs were dosed to rats via intranasal or intravenous administration, after which a quantitative method for tissue distribution was utilised to determine drug distribution to the olfactory lobes, brain sections and the blood over 30 min. Autoradiography was used to visualise and quantify drug distribution throughout the brain and in the CSF. Micro-autoradiography was used to examine drug distribution throughout the olfactory nerve apparatus. The three glycine receptor antagonist compounds were transported to the CNS to differing degrees although they had similar molecular structures and similar physicochemical characteristics. All three compounds were shown to exploit a direct route of transport from nose to brain with Direct Transport Percentages (DTP) of 99.99%, 96.71% and 51.95%, respectively, although for the last molecule a major part of the brain content originated from systemic transport across the BBB. Intranasal administration of GR138950 resulted in over 3.5 times more drug in the olfactory lobes at 1 min post-dose compared to intravenous administration; and 5 times more drug was delivered to the olfactory lobes over 30 min. Micro-autoradiography showed that GR138950 could be found throughout the olfactory nerve apparatus. Autoradiography illustrated drug distribution throughout the brain and CSF, with drug concentrations in the CSF being equal or higher than in the brain tissue. It was determined that approximately 0.8% of the administered dose moved into the brain and CSF via the olfactory pathway over 30 min. Intranasal administration resulted in greater delivery of the model drugs to the olfactory lobes and brain as compared to intravenous dosing. It is proposed that the drug moved through the neuro-olfactory system, primarily via paracellular pathways.
The application of confocal laser scanning microscopy (CLSM) to the physicochemical characterisation of pharmaceutical systems is not as widespread as its application within the field of cell biology. However, methods have been developed... more
The application of confocal laser scanning microscopy (CLSM) to the physicochemical characterisation of pharmaceutical systems is not as widespread as its application within the field of cell biology. However, methods have been developed to exploit the imaging capabilities of CLSM to study a wide range of pharmaceutical systems, including phase-separated polymers, colloidal systems, microspheres, pellets, tablets, film coatings, hydrophilic matrices, and chromatographic stationary phases. Additionally, methods to measure diffusion in gels, bioadhesives, and for monitoring microenvironmental pH change within dosage forms have been utilised. CLSM has also been used in the study of the physical interaction of dosage forms with biological barriers such as the eye, skin and intestinal epithelia, and in particular, to determine the effectiveness of a plethora of pharmaceutical systems to deliver drugs through these barriers. In the future, there is continuing scope for wider exploitation of existing techniques, and continuing advancements in instrumentation.
pH modifiers are often used to promote drug solubility/ stability in dosage forms, but predicting the extent and duration of internal pH modification is difficult. Here, a noninvasive technique is developed for the spatial and temporal... more
pH modifiers are often used to promote drug solubility/ stability in dosage forms, but predicting the extent and duration of internal pH modification is difficult. Here, a noninvasive technique is developed for the spatial and temporal mapping of pH in a hydrated pharmaceutical pellet, within a pH range appropriate for microenvironmental pH control by weak acids. Confocal dual excitation imaging (Ex 488/Ex 568) of pellets containing a single, soluble, pH-sensitive fluorophore with cross-validation from a pH microelectrode. The technique was used to investigate the changing pH distribution in hydrating pellets containing two weak acids of differing solubility. The algorithm developed provided pH measurements over the range pH 3.5-5.5 with a typical accuracy of 0.1 pH units and with excellent correlation with pH microelectrode measurements. The method showed how pellets containing 25%w/w tartaric acid exhibited a rapid but transient fall in internal pH, in contrast to a slower more pr...