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A meta-analysis of genome-wide association studies identifies 
17 new Parkinson’s disease risk loci 
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SUPPLEMENTARY NOTE 

Enrichment of PDGene associations in PDWBS data 
 
Top associations in PDGene were tested for enrichment of smaller p-values in the 
PDWBS data. All variants (of the 9,830 top PDGene variants) within 1Mb of 
previously associated loci were removed, and the remaining SNPs were LD-pruned 
with an r2 threshold of 0.01 (using 1000 Genomes data for reference LD 
information). After the previous filtering step, 448 SNPs remained. Enrichment of 
variants observed at each significance threshold in the PDWBS data was tested in 
the remaining SNPs using a chi-square test. Results are shown in Supplementary 
Table 3. We observe significant enrichment of smaller p-values in the top PDGene 
associations in the PDWBS data.  
 

Power calculations for phenotyped versus population controls 
 
The self-reported samples used as controls could result in a reduction of power in 
PDWBS. We investigated whether sample misdiagnosis or the presence of samples 
that may develop Parkinson’s in the future within controls led to a reduction in 
power. Assuming that the misdiagnosis rate is unlikely to exceed the population 
prevalence of PD, we modified the method for computing power of a GWAS 
(CaTs)[1] by adjusting the controls disease allele frequency to account for 
misdiagnosis (based on prevalence) using the equation: 
 

controladjDAF = controlDAF*(1-prevalance) + caseDAF*(prevalence) 

 
where caseDAF and controlDAF are unchanged from the original CaTs calculation.  
 
We compared the unadjusted power calculation (“phenotyped controls”) to the 
power calculation adjusted for a misdiagnosis rate equal to the population 
prevalence of PD (0.01) (“population controls”). Assuming a significance threshold 
alpha=5x10-8 and genotype relative risk of 1.1, we observe minimal loss in power 
(see plot below). For example, at a disease allele frequency of 0.3, misdiagnosis of 
controls decreased the power from 0.397 to 0.378. Increasing the population 
prevalence of PD to 0.02 did not substantially decrease power (see below). Given 
these power calculations, we conclude that the use of self-reported controls has a 
modest impact on the power to detect effects within PDWBS.  
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PD genetic risk score 
 
We calculated genetic risk scores (GRS) as described in previous studies to test 
whether the new PD risk loci significantly improved the GRS[2-4]. The GRS for 
previous loci used the 28 previously replicated GWAS variants (the 24 genome-wide 
significant loci in Table 1 in the main text, and four secondary signals in the GBA, 
TMEM175, SNCA and HLA-DQB1 locus [3]) with the addition of rarer variants N370S 
and E326K in the GBA gene and G2019S in LRRK2[5] (Bras et al under review) (31 
total variants).  We compared this to a GRS calculated with an additional 16 novel 
loci present in the NeuroX data (see Table 2 in main text) (47 total variants). All GRS 
analyses were weighted using combined discovery effect estimates applied to the 
NeuroX allele counts, adjusting for age (onset in cases or last exam in controls), sex 
and eigenvectors 1-5 within a logistic regression model. Comparing areas under the 
curve of logistic regression models, we see a slight but significant increase in 
classification accuracy from the 31 variant GRS (AUC = 0.6439, 95% CI: 0.634-
0.6537) to the 47 variant GRS (AUC = 0.6518, 95% CI: 0.6419-0.6616) quantified by 
DeLong’s test (|Z| = 5.4187, P = 6.002x10-8)[6]. A significant increase in accuracy 
was still observed if we removed the three loci that did not validate at a one-sided 
P<0.05 in the NeuroX dataset (|Z| = 5.342, P = 9.192x10-8). While slightly higher AUC 
was detected in the 47 variant GRS than in the 44 variant GRS (AUC = 0.6515, 95% 
CI: 0.6417-0.6614), the increase in AUC was not significant (P > 0.05).      
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Differential expression between PD and healthy controls 
 
Total RNA was extracted from the striatum and frontal cortex of subjects with a 
histopathological diagnosis of Parkinson’s disease and aged matched healthy 
controls for sequencing. 0.5 μg of total RNA was used as an input material for library 
preparation using TruSeq RNA Sample Preparation Kit v2 (Illumina). Size of the 
libraries was confirmed using Fragment Analyzer (Advanced Analytical 
Technologies). 
 
Library concentrations were determined by a qPCR-based method using a library 
quantification kit (KAPA). The libraries were multiplexed and then sequenced on 
Illumina HiSeq2500 to generate 25 million single-end 50-base reads per library. 
HTSeqGenie was used to perform feature counting, filtering & alignment. Only reads 
with unique genomic alignments were analyzed. Reads with alignments overlapping 
exons of the gene model were counted towards that gene. Gene models used in this 
step were from the IGIS gene model package on Bioconductor 
(TxDb.Hsapiens.BioMart.igis).  
 
Genes with mean expression across all samples and tissues < 2 RPKM were 
removed. Differential expression between Parkinson’s patients and healthy controls 
was assessed separately in the frontal cortex and in the striatum tissue. Differential 
expression was tested with DESeq2 [7]. Genes with an adjusted p-value < 0.05 in 
either tissue were considered as suggestive of differential expression. Because gene 
expression is derived from bulk tissue, it is equally possible that differential 
expression between the two disease states is due to differential cell-type 
composition of the tissue sample. Without expression data at cell-level resolution it 
is difficult to distinguish between a scenario with differential cell-type composition, 
differential gene expression or a mixture of the two. We therefore acknowledge that 
significant genes in our differential expression analysis are merely suggestive of 
differential gene expression between disease states.  
 
 

Colocalization of eQTL and PD-associations 
 
Colocalization is a formal way to test for overlap between the causal variant 
underlying a GWAS association and an eQTL association. One method typically used 
to carry this out on summary statistics is encoded by the R package, coloc[8]. 
Applying this method to GWAS and eQTL data requires making some key 
assumptions, including the assumption of a single causal variant and that the causal 
variant is included in the input summary statistics (see Giambortolomei et al. 2013 
for a more detailed discussion). As the meta-analysis was carried out on a subset of 
SNPs provided publicly by PDGene, we did not have dense genotyping of variants in 
the PD-associated loci with summary statistics from the meta-analysis. Thus, we 
could not carry out a full colocalization analysis on all of the PD-associated loci 
discussed in this study.  
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As an alternative, we carried out colocalization only on the PDWBS dataset at the 
previously reported PD-loci that were genome-wide significant in the PDWBS 
cohort alone and for which we report an eQTL (7 SNP-gene pairings, see below). 
Colocalization between causal variants in PD associated loci and eQTLs was carried 
out with the coloc.abf function in the coloc R package[8] with prior probablities p1 
and p2 parameters set to 1x10-5. eQTL summary statistics as pre-computed by GTEx 
and summary statistics from PDWBS were used as input for coloc. The colocalization 
analysis was run on all SNPs within 250kb of the index SNP that overlapped both 
the GTEx and the PDWBS GWAS data for each PD-associated locus. Of the eQTLs 
report, we find that all have moderate to high evidence of colocalization (posterior 
probability > 0.5).  
 

SNP Gene GTEx tissue 

Posterior 
probability of 
shared causal 
variant 

rs11060180 OGFOD2 Brain_Anterior_cingulate_cortex_BA24 0.523 

rs12637471 MCCC1 Muscle_Skeletal 0.554 

rs1474055 STK39 Brain_Putamen_basal_ganglia 0.593 

rs1474055 STK39 Testis 0.578 

rs34311866 DGKQ Brain_Cerebellum 0.514 

rs34311866 DGKQ Lung 0.858 

rs356182 SNCA Brain_Cerebellar_Hemisphere 0.548 

rs823118 NUCKS1 Brain_Caudate_basal_ganglia 0.63 

rs823118 NUCKS1 Skin_Sun_Exposed_Lower_leg 0.929 

rs823118 SLC41A1 Brain_Cerebellum 0.521 

rs823118 SLC41A1 Pancreas 0.626 

 

Gene sets used for targeted gene-set enrichment analyses 
Lysosomal, autophagy and mitochondrial gene-sets mapping to the background list 
of genes (see Methods section in the main paper) are listed below.  
 
Lysosomal genes 
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ABCA2, ABCA3, ABCB9, ABCC10, ACP2, ACP5, ACPP, AGA, AHNAK, ANKFY1, ANPEP, 
AP1G1, AP3B1, AP3D1, AP3M1, ARL8A, ARL8B, ARSA, ARSB, ARSG, ASAH1, ATP11A, 
ATP11C, ATP13A2, ATP6AP1, ATP6V0A1, ATP6V0A2, ATP6V0A4, ATP6V0C, 
ATP6V0D1, ATP6V1A, ATP6V1B1, ATP6V1B2, ATP6V1C1, ATP6V1C2, ATP6V1D, 
ATP6V1E1, ATP6V1F, ATP6V1G1, ATP6V1H, BTD, C18orf8, C1orf85, CCZ1, CD164, 
CD63, CD68, CECR1, CLCN5, CLCN6, CLCN7, CLN3, CLN5, CLU, COL6A1, CP, CPVL, 
CREG1, CST7, CTBS, CTNS, CTSA, CTSB, CTSC, CTSD, CTSF, CTSH, CTSK, CTSO, CTSS, 
CTSZ, DAGLB, DEPDC5, DNAJC13, DNAJC5, DNASE1, DNASE2, DPP4, DPP7, ECE1, EGF, 
ELANE, ENPEP, ENPP1, ENTPD4, EPDR1, FLOT1, FLOT2, FUCA1, FUCA2, GAA, GALC, 
GALNS, GBA, GDAP2, GGH, GLA, GLB1, GM2A, GNA11, GNAI1, GNAI2, GNAI3, GNAQ, 
GNB1, GNB2, GNB4, GNS, GPLD1, GPR137, GRN, GUSB, HEXA, HEXB, HGSNAT, HPSE, 
HYAL1, HYAL2, IDS, IDUA, IFI30, IL4I1, LAMP1, LAMP2, LAMP3, LAMTOR2, LAPTM4A, 
LAPTM5, LGMN, LIPA, LITAF, LMBRD1, LNPEP, LRP1, LRP2, MAN2B1, MAN2B2, 
MANBA, MCOLN1, MCOLN2, MCOLN3, MFSD8, MIOS, MON1B, MPO, MTOR, MYLPF, 
NAAA, NAGA, NAGLU, NAPA, NAPG, NCSTN, NEU1, NEU4, NPC1, NPC2, NSF, OSTM1, 
P2RX4, PCYOX1, PI4K2A, PLA2G15, PLBD1, PLBD2, PLD1, PLOD1, PPT1, PPT2, PRCP, 
PRTN3, PSAP, PSEN1, PTGDS, RAB14, RAB2A, RAB5C, RDH14, RNASE1, RNASE6, 
RNASET2, RNF13, RPTOR, RRAGA, RRAGB, SCARB1, SCARB2, SCPEP1, SGSH, SIAE, 
SIDT2, SLC11A1, SLC11A2, SLC12A4, SLC15A3, SLC17A5, SLC26A11, SLC29A3, 
SLC2A13, SLC2A8, SLC30A2, SLC36A1, SLC44A2, SMCR8, SMPD1, SMPD4, SMPDL3A, 
SPG11, SPHK2, SPNS1, SPPL2A, STARD3, STARD3NL, STX7, TCIRG1, TLR3, TM9SF1, 
TMBIM1, TMEM175, TMEM192, TMEM55A, TMEM55B, TMEM63A, TMEM74, 
TMEM8A, TMEM9, TMEM92, TPP1, UBA52, VAMP7, VASN, VPS11, VPS16, VPS18, 
VPS33A, VPS35, VPS39, VPS41, WDR11, WDR41, ZFYVE26 
 
Autophagy genes 
AAMP, AFF4, ALDOA, AMBRA1, APOL1, ARNT, ARSA, ARSB, ATF4, ATF6, ATG10, ATG12, 
ATG16L1, ATG16L2, ATG2A, ATG2B, ATG3, ATG4A, ATG4B, ATG4C, ATG4D, ATG5, 
ATG7, ATG9A, ATG9B, ATIC, BAG1, BAG3, BAK1, BAX, BCL2, BCL2L1, BECN1, BID, 
BIRC5, BIRC6, BNIP1, BNIP3, BNIP3L, C12orf44, CALCOCO2, CAMKK2, CANX, CAPN1, 
CAPN10, CAPN2, CAPNS1, CASP1, CASP3, CASP4, CASP8, CCL2, CCR2, CD46, CDKN1A, 
CDKN1B, CDKN2A, CFLAR, CHMP2B, CHMP4B, CLDN9, CLN3, CSNK1A1, CTSB, CTSD, 
CX3CL1, CXCR4, DAPK1, DAPK2, DDIT3, DIRAS3, DLC1, DNAJB1, DNAJB9, DRAM1, 
EDEM1, EEF2, EEF2K, EGFR, EIF2AK2, EIF2AK3, EIF2S1, EIF4EBP1, EIF4G1, ERBB2, 
ERN1, ERO1L, FADD, FAS, FKBP1A, FKBP1B, FOS, FOXO1, FOXO3, GAA, GABARAP, 
GABARAPL1, GABARAPL2, GAPDH, GNAI3, GNB2L1, GOPC, GRID1, GRID2, HDAC1, 
HDAC6, HGS, HIF1A, HSP90AB1, HSPA5, HSPA8, HSPB8, IFNG, IKBKB, IKBKE, IL24, 
ILF2, INTS7, IRGM, ITGA3, ITGA6, ITGB1, ITGB4, ITPR1, KAT8, KIAA0226, KIF5B, 
KLHL24, LAMP1, LAMP2, MAP1LC3A, MAP1LC3B, MAP1LC3C, MAP2K7, MAPK1, 
MAPK3, MAPK8, MAPK8IP1, MAPK9, MBTPS2, MLST8, MTMR14, MTOR, MYC, NAF1, 
NAMPT, NBR1, NCKAP1, NFE2L2, NFKB1, NKX2-3, NLRC4, NPC1, NRG1, NRG2, NRG3, 
P4HB, PARK2, PARP1, PEA15, PELP1, PEX14, PEX3, PIK3C3, PIK3R4, PINK1, 
PPP1R15A, PPP1R15B, PRKAB1, PRKAR1A, PRKCD, PRKCQ, PTEN, PTK6, RAB11A, 
RAB1A, RAB24, RAB33B, RAB5A, RAB7A, RAC1, RAF1, RB1, RB1CC1, RBX1, RELA, 
RGS19, RHEB, RPS6KB1, RPTOR, SAR1A, SERPINA1, SESN2, SH3GLB1, SIRT1, SIRT2, 
SPHK1, SPNS1, SQSTM1, ST13, STK11, TBK1, TM9SF1, TMEM74, TNFSF10, TP53, 
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TP53INP2, TP63, TP73, TSC1, TSC2, TUSC1, ULK1, ULK2, ULK3, USP10, UVRAG, 
VAMP3, VAMP7, VEGFA, WDFY3, WDR45, WIPI1, WIPI2, ZFYVE1 
 
Mitochondrial genes 
AADAT, AARS2, AASS, ABAT, ABCA13, ABCA9, ABCB10, ABCB6, ABCB7, ABCB8, ABCB9, 
ABCD1, ABCD2, ABCD3, ABCF2, ABHD10, ABHD11, ACAA1, ACAA2, ACACA, ACACB, 
ACAD10, ACAD11, ACAD8, ACAD9, ACADL, ACADM, ACADS, ACADSB, ACADVL, ACAT1, 
ACCS, ACLY, ACN9, ACO1, ACO2, ACOT13, ACOT2, ACOT7, ACOT9, ACOX1, ACOX3, ACP6, 
ACSF2, ACSF3, ACSL1, ACSL4, ACSL6, ACSM1, ACSM2A, ACSM3, ACSM5, ACSS1, ACSS3, 
ACYP2, ADCK1, ADCK2, ADCK3, ADCK4, ADCK5, ADHFE1, AFG3L2, AGK, AGMAT, 
AGPAT5, AGR2, AGXT, AGXT2, AHCYL1, AIFM1, AIFM2, AIFM3, AK2, AK3, AK4, AKAP1, 
AKAP10, AKR1B10, AKR7A2, ALAS1, ALAS2, ALDH18A1, ALDH1B1, ALDH1L1, 
ALDH1L2, ALDH2, ALDH3A2, ALDH4A1, ALDH5A1, ALDH6A1, ALDH7A1, ALDH9A1, 
ALKBH1, ALKBH3, ALKBH7, AMACR, AMT, ANGEL2, APEX2, APOA1BP, APOO, APOOL, 
APOPT1, ARF5, ARG2, ARL2, ARMC10, ARMS2, ASAH2, ATAD1, ATAD3A, ATAD3B, ATIC, 
ATP10D, ATP5A1, ATP5B, ATP5C1, ATP5D, ATP5E, ATP5F1, ATP5G1, ATP5G2, ATP5G3, 
ATP5H, ATP5I, ATP5J, ATP5J2, ATP5J2-PTCD1, ATP5L, ATP5O, ATP5S, ATP5SL, 
ATPAF1, ATPAF2, ATPIF1, ATXN2, AUH, AURKAIP1, BAD, BAK1, BAX, BCAT2, BCKDHA, 
BCKDHB, BCKDK, BCL2, BCL2L1, BCL2L13, BCL2L2, BCS1L, BDH1, BID, BLOC1S1, 
BNIP3, BNIP3L, BOLA1, BOLA3, BPHL, C10orf10, C10orf2, C12orf10, C12orf65, 
C14orf159, C14orf2, C15orf40, C15orf48, C15orf61, C16orf91, C17orf89, C19orf52, 
C19orf70, C1QBP, C20orf24, C21orf33, C2orf47, C2orf69, C3orf33, C5orf63, C6orf136, 
C6orf203, C6orf57, C7orf55, C8orf82, CA5A, CA5B, CARKD, CARS2, CASP8, CAT, CBR3, 
CBR4, CCBL2, CCDC109B, CCDC127, CCDC51, CCDC58, CCDC90B, CCT7, CDC25C, 
CECR5, CEP89, CHCHD1, CHCHD10, CHCHD2, CHCHD3, CHCHD4, CHCHD5, CHCHD6, 
CHCHD7, CHDH, CHPT1, CISD1, CISD2, CISD3, CKMT1A, CKMT1B, CKMT2, CLIC4, CLPB, 
CLPP, CLPX, CLYBL, CMC1, CMC2, CMC4, CMPK2, COA1, COA3, COA4, COA5, COA6, 
COA7, COASY, COMT, COMTD1, COQ10A, COQ10B, COQ2, COQ3, COQ4, COQ5, COQ6, 
COQ7, COQ9, COX10, COX11, COX14, COX15, COX16, COX17, COX18, COX19, COX20, 
COX4I1, COX4I2, COX5A, COX5B, COX6A1, COX6A2, COX6B1, COX6B2, COX6C, COX7A1, 
COX7A2, COX7A2L, COX7B, COX7C, COX8A, COX8C, CPOX, CPS1, CPT1A, CPT1B, CPT1C, 
CPT2, CRAT, CRLS1, CROT, CRY1, CRYZ, CS, CYB5A, CYB5B, CYB5R2, CYB5R3, CYC1, 
CYCS, CYP11A1, CYP11B2, CYP24A1, CYP27A1, CYP27B1, D2HGDH, DAP3, DARS2, DBI, 
DBT, DCAKD, DCXR, DDAH1, DDX28, DECR1, DGUOK, DHCR24, DHODH, DHRS1, 
DHRS4, DHRS7B, DHRSX, DHTKD1, DHX30, DIABLO, DLAT, DLD, DLST, DMGDH, DMPK, 
DNA2, DNAJA3, DNAJC11, DNAJC15, DNAJC19, DNAJC28, DNAJC30, DNAJC4, DNLZ, 
DNM1L, DTYMK, DUS2, DUSP26, DUT, EARS2, ECH1, ECHDC1, ECHDC2, ECHDC3, 
ECHS1, ECI1, ECI2, ECSIT, EEFSEC, EFHD1, EHHADH, ELAC2, EMC2, ENDOG, EPHX2, 
ERAL1, ETFA, ETFB, ETFDH, ETHE1, EXOG, FABP1, FAHD1, FAHD2A, FAM136A, 
FAM162A, FAM185A, FAM195A, FAM210A, FAM210B, FAM213A, FARS2, FASN, FASTK, 
FASTKD1, FASTKD2, FASTKD3, FASTKD5, FBXL4, FDPS, FDX1, FDX1L, FDXR, FECH, FH, 
FHIT, FIS1, FKBP10, FKBP8, FLAD1, FOXRED1, FPGS, FTH1, FTMT, FTSJ2, FUNDC1, 
FUNDC2, FXN, GADD45GIP1, GAPDH, GARS, GATC, GATM, GBAS, GCAT, GCDH, GCSH, 
GDAP1, GFER, GFM1, GFM2, GHITM, GK, GLDC, GLOD4, GLRX2, GLRX5, GLS, GLS2, 
GLUD1, GLYAT, GLYCTK, GNG5, GOLPH3, GOT2, GPAM, GPD2, GPI, GPT2, GPX1, GPX4, 
GRHPR, GRPEL1, GRPEL2, GRSF1, GSR, GSTK1, GSTO1, GSTZ1, GTPBP10, GTPBP3, 
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GTPBP6, GUF1, GUK1, HADH, HADHA, HADHB, HAGH, HAO2, HARS2, HCCS, HDHD3, 
HEBP1, HEMK1, HIBADH, HIBCH, HIGD1A, HIGD2A, HINT1, HINT2, HINT3, HK1, HK2, 
HMBS, HMGCL, HMGCS2, HOGA1, HRSP12, HSCB, HSD17B10, HSD17B4, HSD17B8, 
HSDL1, HSDL2, HSPA9, HSPB7, HSPD1, HSPE1, HTATIP2, HTRA2, IARS2, IBA57, ICT1, 
IDE, IDH1, IDH2, IDH3A, IDH3B, IDH3G, IDI1, IFI27, IMMP1L, IMMP2L, IMMT, ISCA1, 
ISCA2, ISCU, ISOC2, IVD, KARS, KIAA0100, KIAA0141, KIAA0391, KIF1B, KMO, KRT5, 
L2HGDH, LACE1, LACTB, LACTB2, LAMC1, LAP3, LARS2, LDHAL6B, LDHB, LDHD, 
LETM1, LETM2, LETMD1, LIAS, LIPT1, LIPT2, LONP1, LONP2, LRPPRC, LYPLA1, 
LYPLAL1, LYRM1, LYRM2, LYRM4, LYRM5, LYRM7, LYRM9, MACROD1, MALSU1, 
MAOA, MAOB, MARC1, MARC2, MARCH5, MARS2, MAVS, MCAT, MCCC1, MCCC2, MCEE, 
MCU, MCUR1, MDH1, MDH2, ME1, ME2, ME3, MECR, METAP1D, METTL15, METTL17, 
METTL5, METTL8, MFF, MFN1, MFN2, MGARP, MGME1, MGST1, MGST3, MICU1, 
MICU2, MIEF1, MINOS1, MIPEP, MLH1, MLYCD, MMAB, MMACHC, MMADHC, MOCS1, 
MPC1, MPC2, MPST, MPV17, MPV17L, MPV17L2, MRM1, MRPL1, MRPL10, MRPL11, 
MRPL12, MRPL13, MRPL14, MRPL15, MRPL16, MRPL17, MRPL18, MRPL19, MRPL2, 
MRPL20, MRPL21, MRPL22, MRPL23, MRPL24, MRPL27, MRPL28, MRPL3, MRPL30, 
MRPL32, MRPL33, MRPL34, MRPL35, MRPL36, MRPL37, MRPL38, MRPL39, MRPL4, 
MRPL40, MRPL41, MRPL42, MRPL43, MRPL44, MRPL45, MRPL46, MRPL47, MRPL48, 
MRPL49, MRPL50, MRPL51, MRPL52, MRPL53, MRPL54, MRPL55, MRPL57, MRPL9, 
MRPS10, MRPS11, MRPS12, MRPS14, MRPS15, MRPS16, MRPS17, MRPS18A, 
MRPS18B, MRPS18C, MRPS2, MRPS21, MRPS22, MRPS23, MRPS24, MRPS25, MRPS26, 
MRPS27, MRPS28, MRPS30, MRPS31, MRPS33, MRPS34, MRPS35, MRPS36, MRPS5, 
MRPS6, MRPS7, MRPS9, MRRF, MRS2, MSRA, MSRB2, MSRB3, MTCH1, MTCH2, MTCP1, 
MTERF, MTERFD1, MTERFD2, MTERFD3, MTFMT, MTFP1, MTFR1, MTFR1L, MTG1, 
MTG2, MTHFD1, MTHFD1L, MTHFD2, MTHFD2L, MTHFS, MTIF2, MTIF3, MTO1, 
MTPAP, MTRF1, MTRF1L, MTX1, MTX2, MUL1, MUT, MUTYH, NADK2, NAGS, NARS2, 
NBR1, NCEH1, NCOA4, NDUFA1, NDUFA10, NDUFA11, NDUFA12, NDUFA13, NDUFA2, 
NDUFA3, NDUFA4, NDUFA5, NDUFA6, NDUFA7, NDUFA8, NDUFA9, NDUFAB1, 
NDUFAF1, NDUFAF2, NDUFAF3, NDUFAF4, NDUFAF5, NDUFAF6, NDUFAF7, NDUFB1, 
NDUFB10, NDUFB11, NDUFB2, NDUFB3, NDUFB4, NDUFB5, NDUFB6, NDUFB7, 
NDUFB8, NDUFB9, NDUFC1, NDUFC2, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS5, 
NDUFS6, NDUFS7, NDUFS8, NDUFV1, NDUFV2, NDUFV3, NEU4, NFS1, NFU1, NGRN, 
NIF3L1, NIPSNAP1, NIPSNAP3A, NIPSNAP3B, NIT1, NIT2, NLN, NLRX1, NME3, NME4, 
NME6, NMNAT3, NNT, NOA1, NRD1, NSUN3, NSUN4, NT5C, NT5DC2, NT5DC3, NT5M, 
NTHL1, NUBPL, NUCB2, NUDT13, NUDT19, NUDT2, NUDT5, NUDT6, NUDT8, NUDT9, 
OAT, OBSCN, OCIAD1, OCIAD2, OGDH, OGDHL, OGG1, OMA1, OPA1, OPA3, OSBPL1A, 
OSGEPL1, OTC, OXA1L, OXCT1, OXLD1, OXNAD1, OXR1, OXSM, P4HB, PACSIN2, PAICS, 
PAK7, PAM16, PANK2, PARK7, PARL, PARS2, PC, PCBD2, PCCA, PCCB, PCK2, PDE12, 
PDF, PDHA1, PDHA2, PDHB, PDHX, PDK1, PDK2, PDK3, PDK4, PDP1, PDP2, PDPR, 
PDSS1, PDSS2, PET100, PET112, PET117, PEX11B, PGAM5, PGS1, PHB, PHB2, PHYH, 
PI4KA, PICK1, PIF1, PINK1, PISD, PITRM1, PKLR, PLGRKT, PMAIP1, PMPCA, PMPCB, 
PNPLA8, PNPO, PNPT1, POLDIP2, POLG, POLG2, POLRMT, PPA2, PPIF, PPM1K, PPOX, 
PPTC7, PPWD1, PRDX2, PRDX3, PRDX4, PRDX5, PRDX6, PRELID1, PRELID2, PREPL, 
PRODH, PRODH2, PROSC, PRSS35, PSMA6, PSTK, PTCD1, PTCD2, PTCD3, PTGES2, 
PTPMT1, PTPN4, PTRH1, PTRH2, PTS, PUS1, PUSL1, PXMP2, PXMP4, PYCR1, PYCR2, 
PYURF, QDPR, QRSL1, QTRT1, RAB11FIP5, RAB24, RAB32, RAB35, RARS, RARS2, RBFA, 

Nature Genetics: doi:10.1038/ng.3955



 

RCN2, RDH11, RDH13, RDH14, RECQL4, REXO2, RFK, RHOT1, RHOT2, RMDN1, RMDN3, 
RMND1, RNASEH1, RNMTL1, ROMO1, RPIA, RPL10A, RPL34, RPL35A, RPS14, RPS15A, 
RPS18, RPUSD3, RPUSD4, RSAD1, RTN4IP1, SAMM50, SARDH, SARS2, SCCPDH, SCO1, 
SCO2, SCP2, SDHA, SDHAF1, SDHAF2, SDHB, SDHC, SDHD, SDR39U1, SDSL, SECISBP2, 
SELO, SEPT4, SERAC1, SERHL2, SETD9, SFXN1, SFXN2, SFXN3, SFXN4, SFXN5, SHMT1, 
SHMT2, SIRT3, SIRT4, SIRT5, SLC16A1, SLC16A11, SLC16A7, SLC22A4, SLC25A1, 
SLC25A10, SLC25A11, SLC25A12, SLC25A13, SLC25A14, SLC25A15, SLC25A16, 
SLC25A17, SLC25A18, SLC25A19, SLC25A20, SLC25A21, SLC25A22, SLC25A23, 
SLC25A24, SLC25A25, SLC25A26, SLC25A27, SLC25A28, SLC25A29, SLC25A3, 
SLC25A30, SLC25A31, SLC25A32, SLC25A33, SLC25A34, SLC25A35, SLC25A36, 
SLC25A37, SLC25A38, SLC25A39, SLC25A4, SLC25A40, SLC25A41, SLC25A42, 
SLC25A43, SLC25A44, SLC25A45, SLC25A46, SLC25A47, SLC25A48, SLC25A5, 
SLC25A51, SLC25A53, SLC25A6, SLC30A6, SLC30A9, SLC37A4, SLIRP, SLMO1, SLMO2, 
SMDT1, SNAP29, SND1, SOD1, SOD2, SPATA19, SPATA20, SPG7, SPR, SPRYD4, SPTLC2, 
SQRDL, SSBP1, STAR, STARD7, STOM, STOML1, STOML2, STX17, SUCLA2, SUCLG1, 
SUCLG2, SUOX, SUPV3L1, SURF1, SYNJ2BP, TACO1, TAMM41, TARS, TARS2, TBRG4, 
TCAIM, TCHP, TCIRG1, TDRKH, TEFM, TFAM, TFB1M, TFB2M, THEM4, THG1L, 
THNSL1, TIMM10, TIMM10B, TIMM13, TIMM17A, TIMM17B, TIMM21, TIMM22, 
TIMM23, TIMM44, TIMM50, TIMM8A, TIMM8B, TIMM9, TIMMDC1, TK2, TKT, 
TMBIM4, TMEM11, TMEM126A, TMEM126B, TMEM143, TMEM14C, TMEM177, 
TMEM186, TMEM205, TMEM65, TMEM70, TMLHE, TOMM20, TOMM22, TOMM34, 
TOMM40, TOMM40L, TOMM5, TOMM6, TOMM7, TOMM70A, TOP1MT, TOP3A, TPI1, 
TRAP1, TRIAP1, TRIT1, TRMT1, TRMT10C, TRMT11, TRMT2B, TRMT61B, TRMU, 
TRNT1, TRUB2, TSFM, TSPO, TST, TSTD1, TSTD3, TTC19, TUBB3, TUFM, TXN2, 
TXNDC12, TXNRD1, TXNRD2, TYSND1, UCP1, UCP2, UCP3, UNG, UQCC1, UQCC2, 
UQCR10, UQCR11, UQCRB, UQCRC1, UQCRC2, UQCRFS1, UQCRH, UQCRQ, USMG5, 
VARS2, VDAC1, VDAC2, VDAC3, VWA8, WARS2, WBSCR16, WDR81, XPNPEP3, 
XRCC6BP1, YARS2, YBEY, YME1L1, ZADH2 

 

Non-targeted gene-set enrichment analysis of PD-associated regions 
Overall, we found the PD associated regions to be enriched for genes in the 
lysosomal KEGG pathway (Padjusted=0.02) (Supplementary Table 12). Of the 115 
genes mapping to this pathway, 12 mapped to 8 of the PD associated intervals 
(SCARB2, PSAPL1, ATP6V0A1, NEU1, PPT2, NAGLU, IDUA, LAMP3, GBA, GALC, ABCB9, 
and CTSB). Our candidate gene pipeline had nominated four of these twelve genes 
(ATP6V0A1, GBA, GALC AND CTSB). We note that both NAGLU and ATP6V0A1 were 
within 250kb of the index SNP rs601999, though only ATP6V0A1 was nominated by 
our candidate pipeline as a candidate gene.  
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SUPPLEMENTARY FIGURES 

 
Supplementary Figure 1. QQ-plot of PDWBS p-values. Genome-wide p-values for variants in PDWBS are 
shown in black circles (“All”, 11,933,700 SNPs). Association p-values for the 9,830 variants analyzed in 
this meta-analysis are shown in dark blue triangles (“PDGene overlap”). Of this subset, those within 1Mb 
of previously associated regions are displayed in blue squares (“PDGene overlap, w/in 1mb of 
previously reported”). The 4,706 variants outside of these regions are displayed in red diamonds 
(“PDGene overlap, not previously reported”).  
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Supplementary Figure 2. Regional association plots for loci with P<5x10-8 in the discovery phase meta-
analysis. For the 15 novel loci, regional association plots are displayed for p-values in the meta-analysis 
(left column), as well as in the PDWBS data alone (right column). The index SNP for each region is 
labeled and plotted as a purple diamond. Colors for all other variants refer to the LD (r2) with the index 
SNP as measured in 1000 Genomes data. Grey refers to missing LD information for this SNP. 
Recombination rates for the regions are displayed in blue. For each association, all variants within 
250kb of the index SNP are shown, with the exception of 4 regions (rs34043159, rs2694528, rs2296887, 
rs6416935) where variants within 500kb of the index SNP are shown. Grey arrows in (O-R) denote 
associations previously reported at non-genome-wide significant thresholds (rs1296028 and 
rs1536076). In two regions, the PDWBS GWAS indicate an alternate top signal. For rs34043159 (C-D), 
rs11679611 is the top association signal in the PDWBS data and for rs2296887 (U-V), rs9665587 is the 
top association signal in the PDWBS data. Plots were generated with Locus Zoom [9].  
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Supplementary Figure 3. Regional association plots for loci with 5x10-8<P<1x10-6 in the discovery phase 
meta-analysis.   
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Supplementary Figure 4. Candidate gene nomination pipeline. A description of the candidate gene 
nomination procedure can be found in the Methods section in the main text.  
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Supplementary Figure 5. Expanded candidate gene evidence plot for previously reported loci. Each locus 
is listed by chromosome followed by candidate genes. Loci with tied candidate genes are listed across 
several lines. Support for a gene with evidence from each category is indicated by a filled cell. Supporting 
evidence includes whether associated SNPs are cis-eQTLs; whether SNPs are in LD with protein-coding 
variants; whether genes have a neurological related phenotype in flies (“FlyBase”), mice (“Mouse KO”) or 
humans (“OMIM”); whether genes were expressed in any brain-specific cell type in mouse, or in human 
brain samples (“GTEx”); and, finally, whether genes were differentially expressed between PD patients 
and healthy controls.  
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Supplementary Figure 6. Expanded candidate gene evidence plot for new PD associations. Similar to 
Supplementary Figure 5, we present here a more detailed view of support for candidate genes of newly 
discovered PD associations.  
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Supplementary Figure 7. Mouse brain cell-type expression of PD candidate genes. For PD candidate 
genes, expression of the mouse homolog (if available) is plotted in specific mouse brain cells, as well as 
the whole cortex. Colors represent the log2(RPKM+1) of the gene, while the actual RPKM values are 
displayed for genes with expression >30 RPKMs. No enrichment of PD candidate genes for expression in 
a specific cell-type is observed.  
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SUPPLEMENTARY TABLES 
 
 

Supplementary Table 1. Enrichment statistics for PD heritability across 24 annotations. Data are 
provided in the corresponding file.  
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Cell-type 
Proportion 
SNPs 

Proportion 
h2 (std. 
error) 

Enrichment 
(std. error) 

Enrichment 
P-value 

Adrenal / Pancreas 0.094 
0.535 
(0.117) 5.716 (1.253) 4.370x10-5 

Cardiovascular 0.111 
0.382 
(0.140) 3.435 (1.262) 0.036 

CNS 0.149 
0.559 
(0.111) 3.757 (0.746) 0.001 

Connective Bone 0.115 
0.333 
(0.119) 2.897 (1.036) 0.044 

GI 0.168 
0.323 
(0.140) 1.925 (0.837) 0.251 

Immune 0.233 
0.457 
(0.146) 1.960 (0.624) 0.110 

Kidney 0.043 
0.142 
(0.081) 3.332 (1.909) 0.198 

Liver 0.072 
0.267 
(0.111) 3.704 (1.533) 0.068 

Other 0.203 
0.523 
(0.150) 2.582 (0.738) 0.033 

SkeletalMuscle 0.104 
0.271 
(0.126) 2.615 (1.212) 0.187 

 

Supplementary Table 2. Enrichment statistics for PD heritability across 10 cell-type groups.  
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Significance 
threshold 

Observed 
# SNPs 

Expected # 
SNPs P-value 

0.1 157 45 7.05x10-19 

0.05 128 22 5.68x10-21 

0.001 17 0 8.93x10-5 

1.00x10-6 1 0 1 
 

Supplementary Table 3. Enrichment of PDGene associations in PDWBS.  Within the 9830 SNPs analyzed 
in the meta-analysis, the number of SNPs observed at various significance thresholds in the PDWBS 
GWAS is more than expected by chance alone (with the exception of the 1x10-6 threshold). After 
removing SNPs within regions previously associated with PD, the number of SNPs observed at each 
significance threshold in the PDWBS study was compared to the expected number of SNPs under the null 
hypothesis of no association (uniform distribution of p-values). P-values are calculated from a chi-
squared test.  
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Supplementary Table 4. Candidate PD associations with P<1x10-6 in the discovery meta-analysis. Data 
are available in the corresponding file.  
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Supplementary Table 5. NeuroX and joint meta-analysis association statistics for loci with P<1x10-6 in 
the discovery meta-analysis. Grayed out rows represent weaker proxies that were not included in the 
main manuscript. No suitable proxies were available for rs62333164 and rs4657041. (*) denotes that 
publicly available data from PDGene for this SNP includes overlapping NeuroX data. Data are available in 
the corresponding file.  
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Supplementary Table 6. Variants with regulomeDB scores > 3 that are in LD with novel PD-associated 
index SNPs. Data are available in the corresponding file. 
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CHR BP 
Condition 
SNP Candidate gene 

Most significant 
SNP after 
conditioning Poriginal Pcondition 

1 205723572 rs823118 
NUCKS1,SLC41A
1 rs11557080 1.23x10-7 3.99x10-4 

4 951947 rs34311866 
TMEM175,DGK
Q rs34884217* 1.38x10-6 3.7x10-5 

4 15737101 rs11724635 FAM200B,CD38 rs7674301 0.152 3.75x10-7 

4 77198986 rs6812193 FAM47E rs4859430* 3.60x10-4 5.31x10-9 

4 90626111 rs356182 SNCA rs7681154* 0.171 2.38x10-13 

6 32666660 rs9275326 
HLA-DRB6,HLA-
DQA1 rs532965 7.71x10-7 1.11x10-4 

9 17579690 rs13294100 SH3GL2 rs4961588 3.88x10-5 2.27x10-4 

12 40614434 rs76904798 LRRK2 rs28370830 1.14x10-14 4.08x10-15 

12 123303586 rs11060180 OGFOD2 rs10847864 3.31x10-13 7.12x10-5 

16 31121793 rs14235 ZNF646,KAT8 rs4889685 4.22x10-5 4.02x10-4 
 

Supplementary Table 7. Loci with residual associations after conditional analysis. Loci with residual 
associations (Pcondition < 1x10-3) after conditional analysis in the PDWBS data are listed. The most 
significant SNP in the locus after conditioning is listed along with its original p-value and its p-value after 
conditioning on the “Condition SNP.” (*) denotes the SNP listed is the independent variant reported in 
the Nalls et al. study.  
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Index 
Coding 
variant r2 Gene Type Transcript ID Change 

rs9275326 rs9272785 0.61 HLA-DQA1 missense ENST00000343139 p.Ala210Thr 

rs8118008 rs2295547 0.66 DDRGK1 missense ENST00000380201 p.Phe298Leu 

rs35749011 rs2230288 0.89 GBA missense ENST00000327247 p.Glu365Lys 

rs34311866 rs34311866 1.00 TMEM175 missense ENST00000264771 p.Met393Thr 

rs17649553 rs62063857 0.99 STH missense ENST00000537309 p.Gln7Arg 

rs17649553 rs62621252 0.99 SPPL2C missense ENST00000329196 p.Ser224Pro 

rs17649553 rs63750417 0.99 MAPT missense ENST00000344290 p.Pro202Leu 

rs17649553 rs34579536 0.99 KANSL1 missense ENST00000262419 p.Ile1085Thr 

rs17649553 rs16940681 0.99 CRHR1 missense ENST00000339069 p.Glu280Gln 

rs17649553 rs12949256 0.62 ARHGAP27 missense ENST00000428638 p.Ala117Thr 

rs14235 rs749670 0.89 ZNF646 missense ENST00000394979 p.Glu327Gly 

rs12637471 rs2270968 0.69 MCCC1 missense ENST00000492597 p.His355Pro 

rs4653767 rs147889095 0.85 ITPKB 

disruptive 
inframe 
deletion ENST00000429204 p.Ser93_Ser95del 

rs62333164 rs34755939 0.62 CLCN3 missense ENST00000504131 p.Ala15Gly 

rs61747226 rs61747226 1.00 ARRDC4 missense ENST00000268042 p.Thr235Met 

rs5910 rs5911 0.98 ITGA2B missense ENST00000262407 p.Ile874Ser 

rs4657041 rs1801274 1.00 FCGR2A missense ENST00000271450 p.His167Arg 

rs143918452 rs5743845 1.00 TLR9 missense ENST00000360658 p.Arg863Gln 

rs143918452 rs150311081 1.00 STAB1 missense ENST00000321725 p.Arg1019His 

rs143918452 rs201539522 1.00 PHF7 

splice 
acceptor 
variant & 
intron 
variant ENST00000327906 NA 

rs143918452 rs61736838 1.00 NISCH missense ENST00000345716 p.Ala1028Val 

rs143918452 rs151083454 1.00 ITIH4 missense ENST00000266041 p.Gly893Ser 

rs143918452 rs148156289 1.00 ITIH3 missense ENST00000449956 p.Met757Ile 

rs143918452 rs61729450 1.00 DNAH1 missense ENST00000420323 p.Ile190Thr 

rs143918452 rs146661777 1.00 BAP1 missense ENST00000478368 p.Asp145His 

rs143918452 rs35338461 1.00 ALAS1 missense ENST00000394965 p.Arg13Gln 

rs12497850 rs4955419 0.71 CCDC71 missense ENST00000321895 p.Gln317Leu 

rs11868035 rs11649804 0.94 RAI1 missense ENST00000353383 p.Pro165Thr 

rs10463554 rs34813 0.92 GIN1 missense ENST00000399004 p.Thr239Met 
 

Supplementary Table 8. Functional variants for PD associated loci. Functional variants are listed for PD 
associated loci, in addition to the r2 between the index variant and the coding variant (measured in 1000 
Genomes) the Ensembl transcript ID, as well as the corresponding amino acid change (if applicable) is 
noted. If the variant impacted several transcripts, only the longest transcript is listed. If the index 
variant is in LD with multiple coding variants for the same gene only the one with the largest r2 is listed.   
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Supplementary Table 9. Cis-eQTLs for PD associated loci. For PD associated regions with significant cis-
eQTLs (as displayed in Figure 3), the brain and non-brain tissue with the most significant p-value is 
listed for each PD loci. "Risk expression" considers the direction of expression the risk allele is 
associated with. Data are available in the corresponding file. 
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Supplementary Table 10. Genes within 250kb of PD associated loci with evidence of co-expression 
and/or protein-protein interactions. Data are available in the corresponding file. 
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Category P-value Obs. Exp. 
Candidate genes in these 
gene sets 

Lysosome 

Previously reported 1.33x10-3 2 0.22 GBA , TMEM175 

Novel associations 3.64x10-5 3 0.19 CTSB, GALC, ATP6V0A1 

All 3.35x10-6 5 0.40   

Autophagy 

Previously reported 1.09x10-3 2 0.20 BAG3, KAT8 

Novel associations NA 1 0.18 CTSB 

All 5.71x10-3 3 0.38   

Mitochondrial 

Previously reported NA 1 1.03 MCCC1 

Novel associations 0.058 2 0.89 COQ7, ALAS1 

All 0.13 3 1.92   
 

Supplementary Table 11. Targeted enrichment analysis of PD associations. PD associations are enriched 
for genes in the lysosomal and autophagy pathways. P-values were not calculated for gene-sets with less 
than 2 observed genes. Expected number of genes (“Exp.”) is calculated as (#genes in the gene-set)/(# 
genes in the background set)*(# genes associated with PD).  
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Supplementary Table 12. General gene-set enrichment analysis of PD associations. Data are available in 
the corresponding file. 
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Supplementary Table 13. All protein-coding genes within 250 kb of PD-associated loci used as input for 
STRING analysis. Data are available in the corresponding file. 
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Supplementary Table 14. Minimum p-values for the 42 genes in the lysosomal pathway for which SNPs 
tested in this meta-analysis were within 250kb. Data are available in the corresponding file. 
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Supplementary Table 15. Minimum p-values for 117 genes in the mitochondrial pathway for which SNPs 
tested in this meta-analysis were within 250kb of. Data are available in the corresponding file. 
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Supplementary Table 16. Minimum p-values for 25 genes in the autophagy pathway for which SNPs 
tested in this meta-analysis were within 250kb of. Data are available in the corresponding file. 
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