

SUPPLEMENTARY INFORMATION

In format as provided by the authors

Glycosylation in health and disease

Colin Reily, Tyler J. Stewart, Matthew B. Renfrow and Jan Novak https://doi.org/10.1038/s41581-019-0129-4

Supplementary information

Supplementary Table 1: Common mammalian saccharides

Monosaccharide	Abbreviation	Symbol
Arabinose	Ara	☆
Fructose	Fru	
Fucose	Fuc	
Galactose	Gal	\bigcirc
Galactosamine	GalN	
N-acetylgalactosamine	GalNAc	
Glucose	Glc	\bigcirc
Glucosamine	GlcN	
N-acetylglucosamine	GlcNAc	
Glucuronic acid	GlcA	\diamond
Mannose	Man	\bigcirc
Muramic acid	Mur	
Neuraminic acid	Neu	• •
Sialic acid	Sia	•
Rhamnose	Rha	\mathbf{A}
Ribose	Rib	\overleftrightarrow
Xylose	Xyl	\bigstar

Supplementary Table 2: Methodologies and techniques for the analysis of glycosylation

Method	Data Obtained	Techniques and/or Reagents	Applications
Acid hydrolysis coupled with chromatographic separation and detection	Monosaccharide compositional analysis	HPEAC-PAG, GC-FL, GC- MS	Fungal polysaccharides enhance cell-mediated immunity ¹
HPLC profiling of glycoconjugates (released glycans, glycopeptides, GAGs, etc)	Separation of glycoconjugates, identification of glycoconjugates by comparison to reference compounds	HILIC-UPLC	Plasma <i>N</i> -glycans as biomarkers ²
Mass spectrometry (MS, most often combined with HPLC)		LC-MS	For review see ³
Intact glycoproteins and other glycoconjugates	Glycoform heterogeneity in context of intact glycoconjugate	Top-down MS	Characterization of biosimilars and therapeutic antibodies ⁴
Glycopeptides and partially cleaved glycoconjugates	Identification, composition, relative abundance, partial quantitation, site-specific context of glycoform heterogeneity.	Glycosidases + proteases + LC-MS	HIV-1 Env multiple <i>N</i> - glycans ⁵ ; Glycoproteins as disease markers ⁶
Released glycans	Identification, composition, overall trends of glycan composition for the entire sample	PNGase F release + HILIC HPLC + MS & MS/MS	Profiling of cell-surface glycans review ⁷
Tandem mass spectrometry (MS/MS)	Confirmation of glycan composition, some linkage information, identification of sites of attachment for multi-chain glycoconjugates	CID, ETD, EDD	IgA1 O-glycans ⁸ ; Chondroitin sulfate GAG ⁹ ; C1-inhibitor ¹⁰
NMR	3D structural analysis of glycoconjugates including linkage information, dynamics of glycan interactions		Glycoprotein analysis ¹¹ ; Heparan sulfate ¹²
Lectin	Selective identification/quantification of structural epitopes in cells, tissues and biological fluids	Lectin-Western Blot, Lectin-ELISA	Quantitative lectin ELISA ¹³ ; for review see ¹⁴
Lectin affinity chromatography	Selective separation/enrichment of glyconjugate epitopes	Jacalin, wheat- germ agglutinin, ConA	Biomarker analysis ^{15,16}
Glycan-specific antibodies	Detection of selective glycan epitopes in cell culture and tissues.	RL2 & CTD110 (<i>O</i> - GlcNAc); 2G12, PG9 (<i>N</i> - glycans on HIV Env)	O-GlcNAc ^{17,18} ; HIV <i>N</i> -glycans ¹⁹ ; for review see ²⁰
Exoglycosidases (Combined with various detection methods)	Sequence, anomeric configuration, partial linkage confirmation	α2,3 neuraminidase, α1,6 mannosidase	Assisted annotation of <i>N</i> - glycans ²¹
Glycosidase inhibitors	Can alter glycan production pathways in the cellular environment	Mannosidase inhibitors; neuraminidase inhibitors	Kifunensine ²² ; Review of neuraminidase inhibitors ²³
Chemo-enzymatic synthesis of glycans, glycopeptides, and glycoconjugates	Molecular tools for testing specific glycoforms/glycoconjugates in isolation instead of the context of complex mixtures		For review see ^{24,25}
Engineered glycosyltransferases	Labeling of glycoconjugates for detection or selective attachment of synthetic glycans.		Single-glycoform glycoprotein ²⁶ ; Modulating IgG effector function ²⁷

Aptamers	Create novel molecular inhibitors or sensors of specific glycoconjugate epitopes.	Oligonucleotides or peptides from	Protein-glycan inhibitors ²⁶ ; Molecular sensors ²⁸
	specific gijeceenjagate opropos.	random sequence	
		pool	
Array technologies			
Glycan arrays	High throughput screening of glycan interacting	Synthetic glycans	Cell-based glycan arrays ²⁹ ;
	biomolecules across individualized glyconjugates	and glycopeptides	For review see ³⁰
Lectin arrays	High throughput screening for multiple specific		Serum biomarkers ³¹ ;
	glycoconjugate epitopes in heterogeneous or		Detection of pathogenic
	complex mixtures.		bacteria ³²
Molecular modeling and molecular dynamics simulations	Visualization and estimations of glycoconjugates as part of larger	PDB, NMR data, GlyCAM	For review see ³³
	macromolecular complex to identify intra- and		
	intermolecular interactions that cannot be		
	accomplished by other techniques.		
Genomics, transcriptomics	Cell or tissue-specific expression		Regulation of glycan
	profiles of glycosyltransferases, gene		structures in tissues ³⁴
	variants, gene mutations		
Glycomics and glycoproteomics	Global identification/quantitation of	All tools above	For review see35
	glycoconjugates in biological systems.		
Bioinformatics	Combining glycoconjugate profiling with omics-	Glycomics, genomics,	IgG glycosylation ³⁶ ; Cell
	based data to find consensus of biological	proteomics	surface analysis of B-cell
	function and outcomes.		lymphoma ³⁷
Medical bioinformatics	Combining glycan analysis and omics	Pattern recognition,	For review see ^{38,39}
	technologies with patient clinical data	phenomics, PubMed	
		+ omics data	

Abbreviations: HPAEC-PAD, high performance anion-exchange chromatography-pulsed amperometric detection; GC-FL, gas chromatography fluorescence; GC-MS, gas chromatography-mass spectrometry; HILIC-UPLC, hydrophilic interaction liquid chromatography-ultra-performance liquid chromatography; LC-MS, liquid chromatography-mass spectrometry; PNGase F, Peptide: *N*- glycosidase F; MS/MS, tandem mass spectrometry; CID, collision-induced dissociation; ETD, electron-transfer dissociation; EDD, electron-detachment dissociation; ELISA, enzyme-linked immunosorbent assay; PDB, protein data bank.

References

- 1. Chen, L. *et al.* Endo-polysaccharide of *Phellinus igniarius* exhibited anti-tumor effect through enhancement of cell-mediated immunity. *Int. Immunopharmacol.* **11**, 255-259, (2011).
- 2. Doherty, M. et al. Plasma N-glycans in colorectal cancer risk. Sci. Rep. 8, 8655, (2018).
- 3. Yang, Y., Franc, V. & Heck, A. J. R. Glycoproteomics: a balance between high-throughput and in-depth analysis. *Trends Biotechnol.* **35**, 598-609, (2017).
- 4. Tran, B. Q. *et al.* Comprehensive glycosylation profiling of IgG and IgG-fusion proteins by top-down MS with multiple fragmentation techniques. *J. Proteomics* **134**, 93-101, (2016).
- 5. Go, E. P. *et al.* Characterization of host-cell line specific glycosylation profiles of early transmitted/founder HIV-1 gp120 envelope proteins. *J. Proteome Res.* **12**, 1223-1234, (2013).
- 6. Chandler, K. & Goldman, R. Glycoprotein disease markers and single protein-omics. *Mol. Cell. Proteomics* **12**, 836-845, (2013).
- 7. Chandler, K. B. & Costello, C. E. Glycomics and glycoproteomics of membrane proteins and cell-surface receptors: Present trends and future opportunities. *Electrophoresis* **37**, 1407-1419, (2016).
- 8. Takahashi, K. *et al.* Naturally occurring structural isomers in serum IgA1 O-glycosylation. *J. Proteome Res.* **11**, 692-702, (2012).
- 9. Leach, F. E., 3rd *et al.* Hexuronic acid stereochemistry determination in chondroitin sulfate glycosaminoglycan oligosaccharides by electron detachment dissociation. *J. Am. Soc. Mass Spectrom.* **23**, 1488-1497, (2012).
- 10. Stavenhagen, K. *etal. N* and O-glycosylation analysis of human C1-inhibitor reveals extensive mucin-type O-Glycosylation. *Mol. Cell. Proteomics* **17**, 1225-1238, (2018).
- 11. Zhuo, Y., Yang, J. Y., Moremen, K. W. & Prestegard, J. H. Glycosylation alters dimerization properties of a cell-surface signaling protein, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). *J. Biol. Chem.* **291**, 20085-20095, (2016).
- 12. Gao, Q. *etal.* Structural aspects of heparan sulfate binding to robo1-lg1-2. ACS Chem. Biol. **11**, 3106-3113, (2016).
- 13. Moldoveanu, Z. *et al.* Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. *Kidney Int.* **71**, 1148-1154, (2007).
- 14. Hendrickson, O. D. & Zherdev, A. V. Analytical application of lectins. *Crit. Rev. Anal. Chem.* **48**, 279-292, (2018).
- 15. Totten, S. M. *etal*. Multi-lectin affinity chromatography and quantitative proteomic analysis reveal differential glycoform levels between prostate cancer and benign prostatic hyperplasia sera. *Sci. Rep.* **8**, 6509, (2018).
- 16. Darula, Z., Sarnyai, F. & Medzihradszky, K. F. O-glycosylation sites identified from mucin core-1 type glycopeptides from human serum. *Glycoconj. J.* **33**, 435-445, (2016).
- 17. Mullis, K.G., Haltiwanger, R.S., Hart, G.W., Marchase, R.B. & Engler, J.A. Relative accessibility of *N*-acetylglucosamine in trimers of the adenovirus types 2 and 5 fiber proteins. *J. Virol.* **64**, 5317-5323, (1990).
- 18. Comer, F. I., Vosseller, K., Wells, L., Accavitti, M. A. & Hart, G. W. Characterization of a mouse monoclonal antibody specific for *O*-linked *N*-acetylglucosamine. *Anal. Biochem.* **293**, 169-177, (2001).
- 19. Walker, L. M. *et al.* Broad neutralization coverage of HIV by multiple highly potent antibodies. *Nature* **477**, 466-470, (2011).
- 20. Sterner, E., Flanagan, N. & Gildersleeve, J. C. Perspectives on anti-glycan antibodies gleaned from development of a community resource database. *ACS Chem. Biol.* **11**, 1773-1783, (2016).
- 21. Aldredge, D., An, H. J., Tang, N., Waddell, K. & Lebrilla, C. B. Annotation of a serum *N*-glycan library for rapid identification of structures. *J. Proteome Res.* **11**, 1958-1968, (2012).
- 22. 289 Gebuhr, I. *et al.* Differential expression and function of alpha-mannosidase I in stimulated naive and memory CD4+ T cells. *J. Immunother.* **34**, 428-437, (2011).
- 23. Laborda, P., Wang, S.Y. & Voglmeir, J. Influenza neuraminidase inhibitors: synthetic approaches, derivatives and biological activity. *Molecules* **21**, (2016).
- 24. Li, T., Li, C., Quan, D. N., Bentley, W. E. & Wang, L. X. Site-specific immobilization of endoglycosidases for streamlined chemoenzymatic glycan remodeling of antibodies. *Carbohydr. Res.* **458-459**, 77-84, (2018).
- 25. Li, C. & Wang, L. X. Chemoenzymatic methods for the synthesis of glycoproteins. *Chem. Rev.* **118**, 8359-8413, (2018).
- 26. Schwarz, F. *et al.* A combined method for producing homogeneous glycoproteins with eukaryotic *N*-glycosylation. *Nat. Chem. Biol.* **6**, 264-266, (2010).

- 27. Li, T. *et al.* Modulating IgG effector function by Fc glycan engineering. *Proc. Natl. Acad. Sci. U. S. A.* **114**, 3485-3490, (2017).
- 28. Chen, Y., Ding, L., Song, W., Yang, M. & Ju, H. Liberation of protein-specific glycosylation information for glycan analysis by exonuclease III-aided recycling hybridization. *Anal. Chem.* **88**, 2923-2928, (2016).
- 29. Briard, J. G., Jiang, H., Moremen, K. W., Macauley, M. S. & Wu, P. Cell-based glycan arrays for probing glycan-glycan binding protein interactions. *Nat. Commun.* **9**, 880, (2018).
- 30. Geissner, A. & Seeberger, P. H. Glycan Arrays: From basic biochemical research to bioanalytical and biomedical applications. *Annu. Rev. Anal. Chem.* **9**, 223-247, (2016).
- 31. Shah, A. K. *et al.* Evaluation of serum glycoprotein biomarker candidates for detection of esophageal adenocarcinoma and surveillance of Barrett's esophagus. *Mol. Cell. Proteomics*, (2018).
- Saucedo, N. M., Gao, Y., Pham, T. & Mulchandani, A. Lectin- and saccharide-functionalized nanochemiresistor arrays for detection and identification of pathogenic bacteria infection. *Biosensors* 8, (2018).
- 33. Woods, R. J. Predicting the structures of glycans, glycoproteins, and their complexes. *Chem. Rev.* **118**, 8005-8024, (2018).
- 34. Nairn, A. V. *et al.* Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. *J. Biol. Chem.* **283**, 17298-17313, (2008).
- 35. Dong, X. et al. Advances in mass spectrometry-based glycomics. *Electrophoresis*, (2018).
- 36. Benedetti, E. *et al.* Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. *Nat. Commun.* **8**, 1483, (2017).
- 37. Deeb, S. J., Cox, J., Schmidt-Supprian, M. & Mann, M. *N*-linked glycosylation enrichment for in-depth cell surface proteomics of diffuse large B-cell lymphoma subtypes. *Mol. Cell. Proteomics* **13**, 240-251, (2014).
- 38. Ferreira, C. R. et al. Recognizable phenotypes in CDG. J. Inherit. Metab. Dis. 41, 541-553, (2018).
- 39. Everest-Dass, A. V., Moh, E. S. X., Ashwood, C., Shathili, A. M. M. & Packer, N. H. Human disease glycomics: technology advances enabling protein glycosylation analysis part 2. *Expert Rev. Proteomics* **15**, 341-352, (2018).