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Piperlongumine (PL), a natural alkaloid from Piper longum L., possesses the highly selective and effective anticancer property.
However, the effect of PL on ovarian cancer cells is still unknown. In this study, we firstly demonstrate that PL selectively
inhibited cell growth of human ovarian cancer cells. Furthermore, PL notably induced cell apoptosis, G2/M phase arrest, and
accumulation of the intracellular reactive oxidative species (ROS) in a dose- and time-dependent manner. Pretreatment with
antioxidant N-acety-L-cysteine could totally reverse the PL-induced ROS accumulation and cell apoptosis. In addition, low dose
of PL/cisplatin or paclitaxel combination therapies had a synergistic antigrowth effect on human ovarian cancer cells. Collectively,
our study provides new therapeutic potential of PL on human ovarian cancer.

1. Introduction

Ovarian cancer is the most lethal cancer of female repro-
ductive tract, accounting for ∼16,000 deaths annually [1].
The high mortality results partially from the nonspecific
and commonlymisinterpreted symptoms associated with the
disease. As a result, more than 70% of patients are diagnosed
only after the disease has progressed to a late stage [2].
Cytoreduction surgery combined with cisplatin (DDP) or
paclitaxel (TX) chemotherapy in ovarian cancer results in a
clinical remission but is infrequently a cure. Improving the
current responses to chemotherapy is a key for achieving a
better outcome and we have demonstrated that silence of
survivin could effectively increase the sensitivity of ovarian
cancer cells to chemotherapeutical drugs [3–6]. Etiology
of ovarian cancer is still unknown; several theories such
as gonadotropin theory and genetic alteration have been

proposed as the mechanism of carcinogenesis [7]. A role for
chronic oxidative stress has been proposed in the etiology of
malignant transformation and elevation of reactive oxygen
species (ROS) levels has been observed in many cancer cells
relative to nontransformed cells [8, 9].Therefore, the elevated
ROS in cancer cells provide for a prospect of selective cancer
treatment [10, 11].

Piperlongumine (PL) is a biologically active alkaloid iso-
lated from the long pepper (Piper longum Linn) which is used
to treat cough, respiratory infections, stomachache, and other
diseases in Indian Ayurvedic medicine [12]. The chemical
structure of PL has been well-characterized (Figure 1(a)).
Recently, PL has shown potential cytotoxic and antitumor
properties on several types of cancer cells, including hemato-
logical [13], gastrointestinal [14], central nervous system [15],
and other solid tumors [16]. Its cytotoxicity was observed in
the micromolar range in tumor cells, but not in normal cells
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Figure 1: PL selectively inhibited the growth of human ovarian cancer cells. (a) Structure of PL. (b) The growth curves of PL-treated A2780,
OVCAR3, SKOV3, and HEK293T cells. Cells were grown in 96-well plates for 24 hr and treated with PL (0, 1, 3, 10, 30, and 100 𝜇M) for 72 hr.
Cell survival was measured by MTT assay and the IC

50
value of PL in each cell lines was calculated.

[14, 16–18]. Quantitative proteomics approaches identified
two strong PL-binding proteins, S-transferase pi 1 (GSTP1)
and carbonyl reductase 1, known to regulate oxidative stress
by modulating redox and ROS homeostasis [18]. Consistent
with this theory, when PL interacted directly with GSTP1,
protein glutathionylation was identified as a process associ-
ated with cellular toxicity [19]. Furthermore, PL induced cell
cycle arrest in G1 or G2/M phase followed by mitochondrial-
dependent apoptosis [20]. More recently, PL also promoted
autophagy and mediates cell death in several cancer cell lines
[21, 22].

In the present study, we firstly demonstrate that PL
selectively inhibited cell growth and induced ROS-dependent
cell apoptosis and G2/M cell cycle arrest in human ovarian
cancer. Furthermore, PL synergizes with DDP and TX to
inhibit the growth of human ovarian cancer cells. Our results
provide new drug therapeutic potential of PL on human
ovarian cancer.

2. Materials and Methods

2.1. Cells Lines and Reagents. The human epithelia ovarian
cancer (EOC) lines A2780, OVCAR3, and SKOV3 and
human embryonic kidney cell line HEK293T were cultured
in DMEM (Gibco, NY, USA) culture medium supplemented
with 10% fetal bovine serum (Gibco, NY, USA) at 37∘C and
5% CO

2
. PL, N-acetyl-L-cysteine (NAC), dihydroethidium

(DHE), anti-𝛽-actin antibody, and other chemicals were pur-
chased from SigmaChemical Co. (St. Louis,MO,USA). Anti-
cleaved-PARP (C-PARP) antibody was from Cell Signaling
Technologies (Danvers, MA, USA).

2.2. MTT Assay. Cells were harvested with trypsin and
resuspended in a final concentration of 5 × 104 cells/mL.
Aliquot (100 𝜇L) for each cell suspension was distributed
evenly into 96-well multiplates. The different concentrations
of PL (10 𝜇L/well) were added to designated wells. After 72
hours (hr), 10 𝜇L of 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl
tetrazolium bromide (MTT) solution (5mg/mL) was added
to each well, and the plate was further incubated for 4 hr,
allowing viable cells to change the yellowMTT into dark-blue
formazan crystals. Subsequently, the medium was discarded
and 100 𝜇L of dimethylsulfoxide (DMSO) was added to each
well to dissolve the formazan crystals. The absorbance in
individual well was determined at 490 nm by multidetection
microplate reader 680 (BioRad, PA, USA). The concentra-
tions required to inhibit growth by 50% (IC

50
)were calculated

from survival curves using the Bliss method [23, 24]. For
drug combination experiments, cells were cotreated with
different concentrations of PL and DDP or TX for 72 hr. The
data were analyzed by CompuSyn software with the results
showed in combination index (CI) values, where CI <1, =1,
and >1 indicate synergism, additive effect, and antagonism,
respectively.

2.3. Apoptosis Analysis. Cell apoptosis was evaluated with
flow cytometry (FCM) assay. Briefly, cells were harvested
and washed twice with cold phosphate-buffered saline (PBS),
stained with Annexin V-FITC and propidium iodide (PI) in
the binding buffer, and detected by FACSCalibur FCM (BD,
CA, USA) after 15min incubation at room temperature in
the dark. Fluorescence was measured at an excitation wave
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Figure 2: PL induced apoptosis in OVCAR3 ovarian cancer cells. (a) The results of cell apoptosis in PL-treated OVCAR3 cells. Cells were
treated with the indicated concentration of PL for 48 hr, stained with Annexin V/PI, and examined by FCM. The proportions of Annexin
V+/PI− and Annexin V+/PI+ cells indicated the early and late stages of apoptosis. (b)The quantified results of (a). (c) and (d) Representative
Western blotting analysis of C-PARP in OVCAR3 cells treated with the indicated PL. 𝛽-actin was used as loading control. ∗𝑃 < 0.05 and
∗∗
𝑃 < 0.01 versus corresponding control.

length of 480 nm through FL-1 (530 nm) and FL-2 (585 nm)
filters. The early apoptotic cells (Annexin V positive only)
and late apoptotic cells (Annexin V and PI positive) were
quantified.

2.4. Measurement of ROS Production. Cells were incubated
with 10 𝜇M of DHE for 30min at 37∘C, washed twice with
PBS, and immediately microphotographed under a conven-
tional fluorescent microscope (Olympus, Japan). For each
well, 5 fields were taken randomly.

2.5. Cell Cycle Analysis. Cells were harvested and washed
twice with cold PBS and then fixed with ice-cold 70% (v/v)
ethanol for 30min at 4∘C. After centrifugation at 200×g
for 10min, cells were washed twice with PBS, resuspended
with 0.5mL PBS containing PI (50𝜇g/mL), Triton X-100

(0.1%, v/v), 0.1% sodium citrate, and DNase-free RNase
(100 𝜇g/mL), and detected by FCM after 15min incubation
at room temperature in the dark. Fluorescence was measured
at an excitation wave length of 480 nm through a FL-2filter
(585 nm). Data were analyzed using ModFit LT 3.0 software
(Becton Dickinson).

2.6. Western Blot Analysis. Cells were harvested and washed
twice with cold PBS and then resuspended and lysed in
RIPA buffer (1% NP-40, 0.5% sodium deoxycholate, 0.1%
SDS, 10 ng/mL PMSF, 0.03% aprotinin, and 1 𝜇M sodium
orthovanadate) at 4∘C for 30min. Lysates were centrifuged
for 10min at 14,000×g and supernatants were stored at−80∘C
as whole cell extracts. Total protein concentrations were
determined with Bradford assay. Proteins were separated
on 12% SDS-PAGE gels and transferred to polyvinylidene
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Figure 3: PL induced subG1 accumulation and G2/M arrest in OVCAR3 ovarian cancer cells. (a) The results of cell cycle distribution in PL-
treated OVCAR3 cells. Cells were treated with the indicated PL, stained with PI, and examined by FCM.The percentages of subG1, G1/G0, S,
and G2/M phase were calculated using ModFit LT 3.0 software. (b) The quantified results of (a).
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Figure 4: Piperlongumine induced ROS accumulation in OVCAR3 ovarian cancer cells. Cells were treated with PL as indicated, incubated
with DHE, and microphotographed under a conventional fluorescent microscope.

difluoride membranes. Membranes were blocked with 5%
BSA and incubated with the indicated primary antibod-
ies. Corresponding horseradish peroxidase-conjugated sec-
ondary antibodies were used against each primary antibody.
Proteins were detected using the chemiluminescent detection
reagents and films.

2.7. Statistical Analysis. All experiments were repeated at
least 3 times and the differences were determined by using
Student’s 𝑡-test. The significance was determined at 𝑃 < 0.05.

3. Results

3.1. PL Selectively Inhibited the Growth of Ovarian Cancer
Cells. To determine the effect of PL on ovarian cancer cells,
three ovarian cancer cell lines A2780, OVCAR3, and SKOV3
and human embryonic kidney cell line HEK293T were
treated with either the vehicle control (DMSO) or increasing
concentrations of PL range from 1𝜇M to 100 𝜇M for 72 hr.
As shown in Figure 1(b), the results of MTT assay revealed
that the growth of three ovarian cancer cell lines was similarly
inhibited by PL in a concentration-dependent manner. The
IC
50
values of PL after 72 hr exposure were 6.18 𝜇M, 6.20𝜇M,

and 8.20𝜇M in A2780, OVCAR3, and SKOV3, respectively
(Figure 1(b)). However, PL showed the much weaker inhi-
bition effect on the human normal HEK293T cells than
three ovarian cancer cell lines and the IC

50
values of PL

were 60.23 𝜇M to HEK293T. These data suggested that PL
selectively inhibits the growth of human ovarian cancer cells
compared with normal cells.

3.2. PL Induced Apoptosis in OVCAR3 Ovarian Cancer Cells.
To determine whether the growth inhibition of ovarian
cancer cells by PL was due to the induction of apoptosis, cell
apoptosis was assessed by FCM with Annexin V/PI staining.
OVCAR3 cells were treated with the different concentrations
of PL for 48 hr, stained with Annexin V/PI, and examined by
FCM.As shown in Figures 2(a) and 2(b), PL treatmentmostly
induced apoptosis in OVCAR3 cells and both proportions
of Annexin V+/PI− (early stage of apoptosis) and Annexin
V+/PI+ (late stage of apoptosis) cells were increased with the
elevated PL concentrations.

To further detect the apoptosis induced by PL, the expres-
sion of apoptosis marker cleaved-PARP (C-PARP) proteins
was analyzed by Western blot in OVCAR3 cells with or
without PL treatment. Compared with the loading control 𝛽-
actin proteins, the levels ofC-PARPproteins inOVCAR3 cells
were increased in a dose- and time-dependent manner after
being treated with PL (Figures 2(c) and 2(d)). Together, these
results indicated that the growth inhibition of PL on ovarian
cancer cells might be due to the induction of apoptosis.

3.3. PL Induced SubG1 Accumulation and G2/M Arrest in
OVCAR3Ovarian Cancer Cells. In addition to the evaluation
of PL-induced growth inhibition and proapoptosis effect,
the effect of PL on cell cycle distribution was analyzed by
FCM with PI staining. OVCAR3 cells were treated with PL
(3 𝜇M and 10 𝜇M) for 24 hr and 48 hr, stained with PI, and
examined by FCM. The percentages of subG1, G1/G0, S, and
G2/M phase were calculated using ModFit LT 3.0 software.
Compared to the control groups, the subG1 and G2/M
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Figure 5: ROS generation was critical for PL-induced apoptosis in OVCAR3 ovarian cancer cells. (a) ROS accumulation and (c) cell apoptosis
in PL-treated OVCAR3 cells were reversed by NAC. Cells were treated with PL (10 𝜇M) for 24 hr in the presence or absence of 3mM NAC
pretreatment for 1 hr.The apoptosis was detected by FCMwith Annexin V/PI staining and the expression of C-PARP proteins was analyzed by
Western blot. (c) The quantified results of (d). (b) Representative Western blotting analysis of C-PARP in OVCAR3 cells treated as indicated.
𝛽-actin was used as loading control. ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01 versus corresponding control.

groups of PL-treated OVCAR3 cells were dose- and time-
dependently increased (Figures 3(a) and 3(b)).Therefore, the
effect of PL on cell cycle distribution in OVCAR3 cells is the
induction of subG1 accumulation which indicated apoptosis-
associated chromatin degradation and arrest of cell cycle in
G2/M phase.

3.4. ROS Generation Was Critical for PL-Induced Apoptosis in
OVCAR3Ovarian Cancer Cells. Numerous anticancer agents
exhibit antitumor activity via ROS-dependent activation of

apoptotic cell death [25] and it has previously been reported
that the elevated intracellular ROS mediated PL-induced
apoptosis in several human cancer cells (EJ, MDA-MB-231,
U2OS, and MDA-MB-435) [18]. Dihydroethidium (DHE) is
a classic ROS fluorescent probe, which can penetrate through
living cell membrane freely and be oxidized by intracellular
ROS to oxide ethidium that conjugated with DNA to emit
the detectable red fluorescence. As shown in Figure 4, PL
exposure resulted in a time- and concentration-dependent
ROS accumulation in OVCAR3 cells. Significant intracellular
ROS generation was observed when the cells were treated just
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Figure 6: PL synergized with DDP in OVCAR3 ovarian cancer cells. (a)The growth histogram of OVCAR3 treated with the indicated PL and
DDP. Cells were treated with PL (range from 0.1 to 1 𝜇M) combined with DDP (0.1 to 1𝜇M) and cell survival was detected by MTT assay.The
data were analyzed by CompuSyn software with the results showing dose-effect curve (b), CI values (c), and normalized isobologram (d).

for as little as 1 hr; ROS production was increasing and being
maintained even at 48 hr, indicating a rapid and sustained
generation of ROS in the PL-treated cells. As predicted, the
PL-induced ROS accumulation was greatly reduced by NAC
due to its ability to elevate intracellular glutathione to prevent
the production of ROS (Figures 5(a) and 5(b)).

To further investigate the relationship between the ROS
generation and PL-induced apoptosis, OVCAR3 cells were
treatedwith PL (10 𝜇M) for 24 hr in the presence or absence of
3mMNAC pretreatment for 1 hr. The apoptosis was detected
by FCM with Annexin V/PI staining and the expression of
C-PARP proteins was analyzed by Western blot. As shown
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Figure 7: PL synergized with TX in OVCAR3 ovarian cancer cells. (a) The growth histogram of OVCAR3 treated with the indicated PL and
TX. Cells were treated with PL (range from 0.1 to 1𝜇M) combined with TX (0.01 to 0.1𝜇M) and cell survival was detected by MTT assay. The
data were analyzed by CompuSyn software with the results showing dose-effect curve (b), CI values (c), and normalized isobologram (d).

in Figures 5(c) and 5(d), PL-induced apoptosis and the
increased expression of C-PARP proteins were completely
blocked byNAC.These data suggested that ROS generation is
critical for PL-induced apoptosis in OVCAR3 ovarian cancer
cells.

3.5. PL Synergized with DDP or TX in OVCAR3 Ovarian
Cancer Cells. Combinations of agents at lowdoses can reduce
side effects of chemotherapy and improve the compliance of
patients with chemotherapy; thus investigating novel agents
for combination chemotherapy to overcome drug resistance
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and achieve better therapeutic effects is of vital significance.
For example, a new synthetic compoundphenoxodiol exerted
potent anticancer activity combined with DDP against ovar-
ian cancer [26]. Currently, DDP and TX are the two of main
chemotherapeutic drugs for ovarian cancer in clinic. The
present study tested whether lower dose of two drugs in
combination (PL + DDP or PL + TX) was able to exert a
synergistic antitumor activity compared to PL, DDP, or TX
treatment alone. OVCAR3 cells were treated with PL (range
from 0.1 to 1 𝜇M) combined with DDP (0.1 to 1𝜇M) or TX
(0.01 to 0.1 𝜇M) and cell survival was detected by MTT assay.
As shown in Figures 6 and 7, the cell survival was decreased
in the combination of lower dose PL with either DDP or TX.
The CI values of both combination were <1, suggesting that
the antigrowth effect of combination is synergistic rather than
additive. These observations demonstrated that PL was able
to sensitize OVCAR3 ovarian cancer cells to both DDP and
TX.

4. Discussion

In this report, we firstly demonstrated that PL selectively
mediated time- and concentration-dependent antigrowth
effects on human ovarian cancer cells. The IC

50
value after

72 hr treatment with PL ranges from 6 to 8 𝜇M in three
human ovarian cancer cell lines, was similar to the IC

50

value of PL in other solid cancers [14]. The results of FCM
analysis showed that PL treatment increased both early and
later stage of apoptosis, subG1 accumulation andG2/M phase
arrest. Inhibition of the intercellular ROS accumulation by
NAC could totally block PL-induced apoptosis. Moreover, PL
synergistically enhanced the antigrowth effect of DDP or TX,
which suggested that PLmight be a potential chemosensitizer
for ovarian cancer chemotherapy.

The intracellular production of ROS greatly contributes to
the regulation of cell survival and death [27]. Although cancer
cells become well adapted to persistent intrinsic oxidative
stress, a further increase in ROS above the toxic threshold
level may result in cell death [28]. Chemotherapeutical agents
including DDP, TX and etoposide induce apoptotic cell
death by increasing the intracellular ROS levels. However,
continuous DDP treatment may reduce cellular ROS levels
and cancer cells may become drug resistant. The chemore-
sistance of ovarian cancer was also linked to increased
cellular glutathione content [29]. Furthermore, an elevation
of the cellular ROS level by exogenous ROS generation in
combination with DDP resensitized drug-resistant cancer
cells [30]. It has been postulated that PL kills carcinoma cells
by targeting their “nononcogene codependency” on elevated
antioxidative defense pathways acquired in response to cell
transformation-induced oxidative stress [18]. Our findings on
ovarian cancer cells have suggested that PL-mediated growth
inhibition was related to G2/M phase arrest and apoptosis
by the increasing intercellular ROS. Previously reported, a
dose-dependent decrease of cdc-2 expression but not cyclinB1
changing was associated with PL-mediated cell cycle arrest
in PC-3 cells [16]. The present study has attributed the
generation of ROS to the proapoptotic effect of PL in ovarian

cancer cells, which was in agreement with the previous
findings in other cancer cell types [12, 18].

Altogether, the present study offers the first evidence
that PL selectively inhibited cell growth and induced ROS-
dependent cell apoptosis andG2/M cell cycle arrest in human
ovarian cancer. Furthermore, PL synergizes with DDP and
TX to inhibit the growth of human ovarian cancer cells.
Further in vivo experiments may aid in the confirmation of
the therapeutic efficacy of this agent for patients with ovarian
cancer.
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